

Blueprint for AI Execution in Space: Beyond the CPU

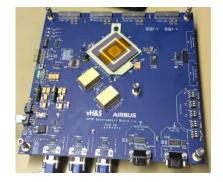
Bridging Reliability and High Performance in AI Execution with Radiation-Hardened Co-Processing.

Pablo Ghiglino, Mandar Harshe, Rafael Tordoya and Hans Dermot Doran

Agenda:

- Motivation
- Optimized Al-Execution Framework
- HPDP Architecture
- Verification and Validation
- Results
- Conclusions
- Perspectives

- Motivation
- Optimized Al-Execution Framework Klepsydra Al
- HPDP Architecture
- Verification and Validation
- Results
- Conclusions
- Perspectives


Motivation

Agenda:

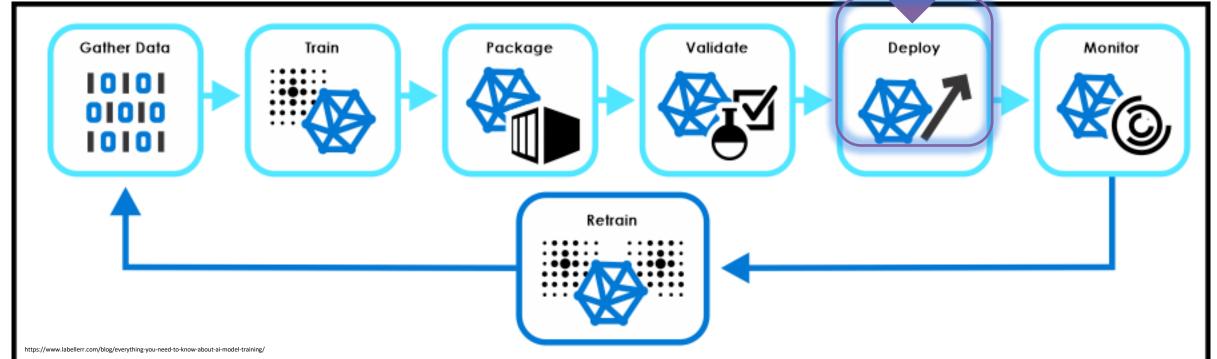
- Motivation
- Optimized Al-Execution Framework
- HPDP Architecture
- Verification and Validation
- Results
- Conclusions
- Perspectives

- HPDP development started mid 2010's
- The HPDP is already part of ESA's mission TRUTHS (Launch in 2030)
- The development of HPDP has been initiated by the European Space Agency (ESA) and DLR to address the need for a flexible and reprogrammable high-performance data processor.
- It is being implemented in the 65nm radiation hardened technology of ST Microelectronics (C65SPACE).

ESA TRUTHS Mission.
Image source: https://www.esa.int/Applications/Observing_the_Earth/TRUTHS

October 2025, Elx EDHPC 2025 , ZHAW Institute of Embedded Systems

Motivation



MANDALA is aimed to AI deployment to the onboard processor

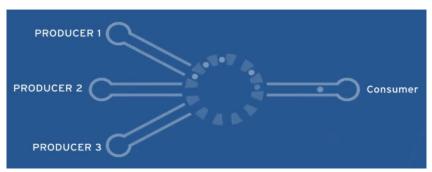


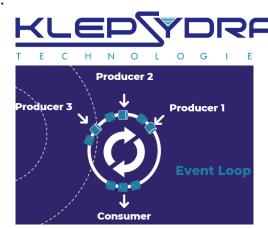
Motivation

- Agenda:
 - Motivation
 - Optimized Al-Execution Framework
 - HPDP Architecture
 - Verification and Validation
 - Results
 - Conclusions
 - Perspectives

- To address the challenges posed by AI in space we use radiation-hardened hardware.
- Well-known solutions in this domain include the Gaisler series of processors.
 - Dependable Processors:
 - E.g. GR740 (LEON4), GR765 (RISC-V).
 - Local Al inference.
 - Proven reliability, RTEMS 6 SMP support.
 - Application-specific requirement (e.g., rad-hard).

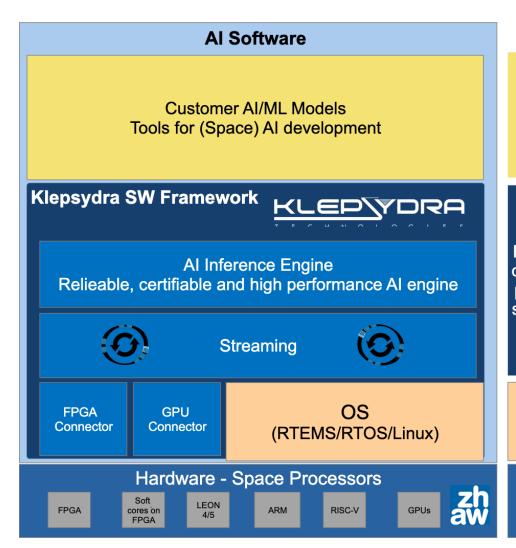
- Streaming Co-Processor:
 - E.g. High-Performance Data Processor (HPDP).
 - Executes compute-intensive tasks.
 - Rad-hard, parallel, dataflow-oriented architecture.
 - Part of the forthcoming mission TRUTH


Optimized Execution Framework



- Motivation
- Optimized Al-Execution Framework
- HPDP Architecture
- Verification and Validation
- Results
- Conclusions
- Perspectives

- Traditional frameworks (PyTorch/TensorFlow):
 - Optimized for prototyping, not embedded or dependable systems.
 - Introduce latency -> centralized execution control and blocking operations.
 - Unsuitable for deterministic, low-power inference.
- Klepsydra Al framework (Lock-free, non-blocking design):
 - Optimized for embedded systems.
 - Parallel, dataflow-oriented architecture. Low CPU overhead.
 - Supports x86/x86_64, ARM, RISC-V, SPARCV8.
 - Supports RTEMS 6 SMP / bare-metal / Linux.
 - Moving towards IEC 61508 compliance.


- Klepsydra Al inference execution:
 - Executes inference locally on the main processor.
 - Offloads to a streaming co-processor when available.

Optimized Execution Framework

Agenda:

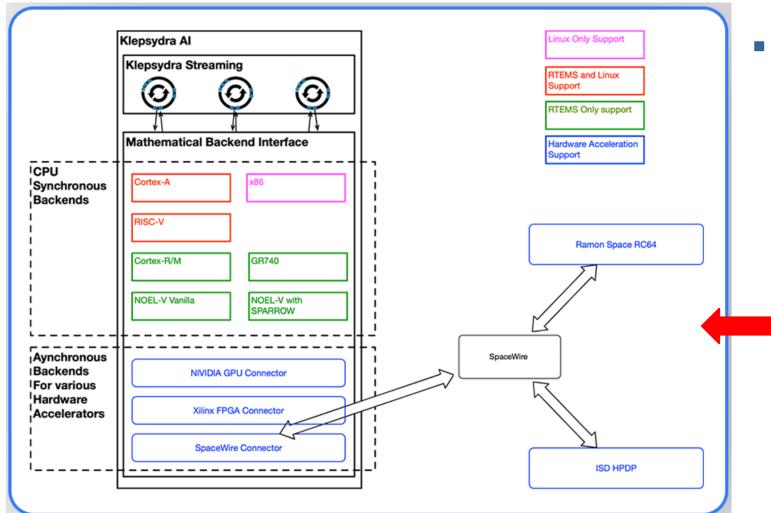
- Motivation
- Optimized Al-Execution Framework
- HPDP Architecture
- Verification and Validation
- Results
- Conclusions
- Perspectives

Reliable and trusted
Tool to develop Space Al
Applications

Reliable, secure and space certifiable inference engine, providing performance and support for edge processors

(RT)OS

Space Processors

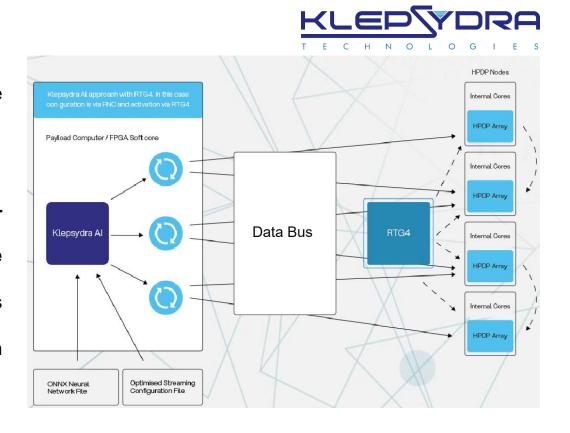

Optimized Execution Framework

Agenda:

- Motivation
- Optimized Al-Execution Framework
- HPDP Architecture
- Verification and Validation
- Results
- Conclusions
- Perspectives

Support to a large number of processors, operating systems and hardware

accelerators:

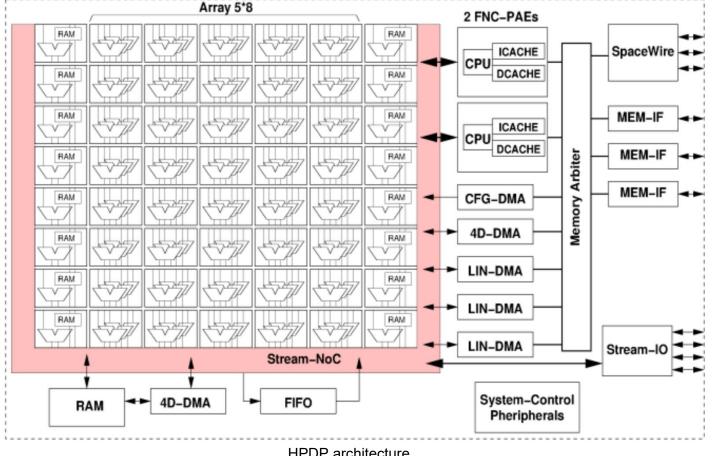

- Unified API
- Unified use of SDO
- Unified use of KITL
- Supported by ESA and other European
- organisations

Al execution system

- Agenda:
 - Motivation
 - Optimized Al-Execution Framework
 - HPDP Architecture
 - Verification and Validation
 - Results
 - Conclusions
 - Perspectives

- System design for dependable Al execution integrates:
 - Klepsydra Al framework: Coordinates data flow and model execution.
 - Orchestration.
 - Math-backend platform.
- Execution only in Local Processor:
 - Inference runs entirely on the radiation-hardened CPU.
 - RTEMS6 SMP:
 - Deterministic scheduling.
- Execution with Streaming Co-Processor:
 - Offload computationally intensive operations.
 - Payload CPU manages orchestration and light operations.
 - Offloaded operations executed with predictable timing and low power.

HPDP Architecture



Agenda:

- Motivation
- Optimized Al-Execution Framework
- **HPDP Architecture**
- Verification and Validation
- Results
- Conclusions
- Perspectives

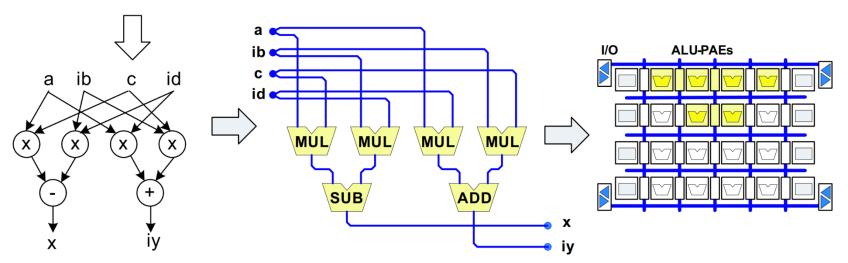
The HPDP is composed by the following elements

HPDP architecture

^[1] https://indico.esa.int/event/225/contributions/4251/attachments/3379/5380/OBDP2019paper-Airbus Helfers HPDP-

⁴⁰ High Performance Data Processor A New Generation Space Processor in Demo 10 nstration.pdf

XPP Array Dataflow



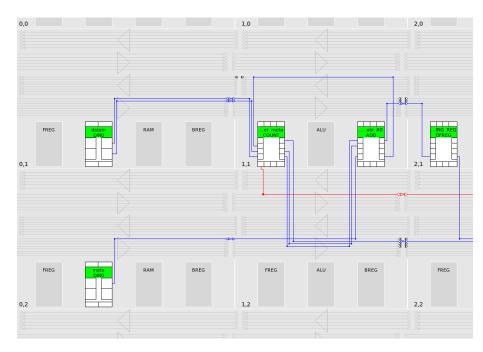
- Motivation
- Optimized Al-Execution Framework
- HPDP Architecture
- Verification and Validation
- Results
- Conclusions
- Perspectives

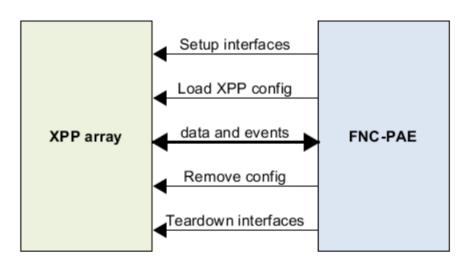
- Each PAE operates in parallel and process the data as soon as it arrives
- Data can be processed as a continuous data stream that flows through XPP array
 - Low latency and optimized throughput
 - Suitable for applications that benefit from parallel execution

$$x + iy = (a+ib) * (c+id)$$

= $(ac - bd) + i (ad + bc)$

Mapping a complex multiplication to XPP array


HPDP Configuration



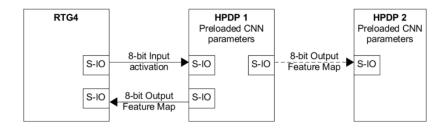
- Optimized AI-Execution Framework
- **HPDP Architecture**
- Verification and Validation
- Results
- Conclusions
- Perspectives

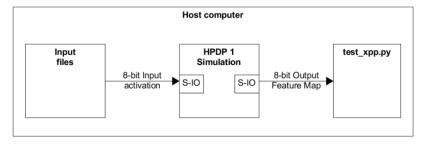
- Two main components should be programmed:
 - FNC-PAE: programmed in C
 - XPP array: programmed using NML

XPP array configuration example

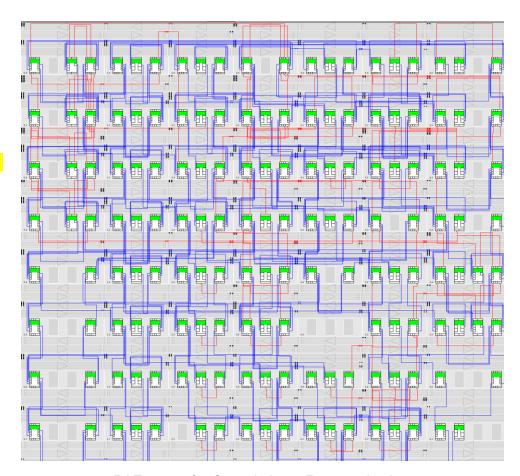
FNC-PAE and XPP array communication

HPDP as a Co-processor for CNN





13

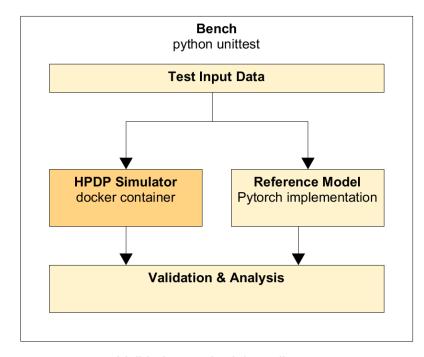

- Motivation
- Optimized Al-Execution Framework
- HPDP Architecture
- Verification and Validation
- Results
- Conclusions
- Perspectives

- Iterative process of validation and refinement:
 - Implementation progressively improved
 - Stable version:
 - Convolution + Re-quantization
 - Rely solely on input parameters
 - The implemented solution supports multiple kernel sizes

Convolution and Re-quantization operations in HPDP

PAE usage for Convolution + Re-quantization

Verification and Validation



Agenda:

- Motivation
- Optimized AI-Execution Framework
- HPDP Architecture
- Verification and Validation
- Results
- Conclusions
- Perspectives

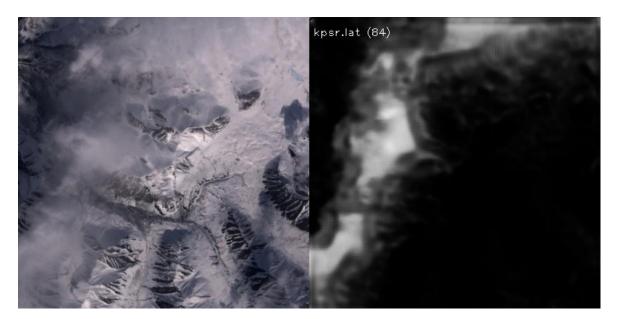
Debug

- XPP debugger XDBG
- Verification
 - Unit-test mathematic implementation
 - HPDP simulator -> cycle-accurate representation.
 - Results from simulation closely reflects HW results.
- Validation
 - Test against a golden model
 - Test against a battery of kernel sizes
 - Systematic on-target validation

Validation methodology diagram

Results

15


Agenda:

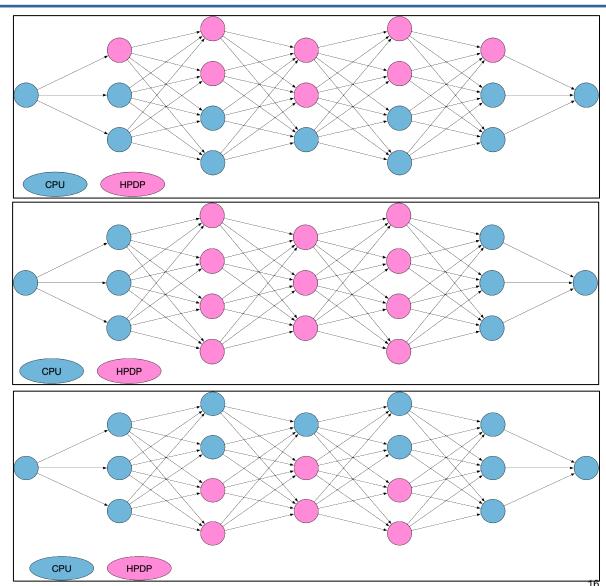
- Motivation
- Optimized AI-Execution Framework
- HPDP Architecture
- Verification and Validation
- Results

October 2025, Elx

- Conclusions
- Perspectives

OBPMark-ML was commissioned by ESA as set of DNNs to benchmarks for different Space hardware. The two most important DNNs included are Cloud Detection (Unet based) and Ship Detection (YoloX)

Future work



Agenda:

- Motivation
- Optimized AI-Execution Framework
- HPDP Architecture
- Verification and Validation
- Results
- Conclusions
- Perspectives

SDO tool can gather statistics of the execution of CPU and HPDP including:

- Latency of each layer
- Overhead time on the activation and output transmission via Stream-IO or SpaceWire
- Chaining layers in the HPDP or CPU
- This can be done dynamically for all the kernel size supported by HPDP. I.e., only the layers of the supported sized might be send to the HPDP.

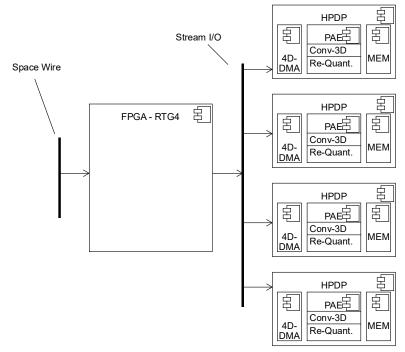
Conclusions

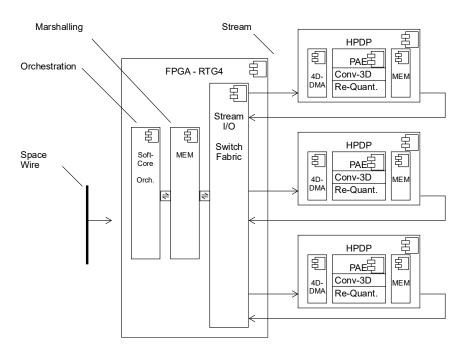
Agenda:

- Motivation
- Optimized Al-Execution Framework
- HPDP Architecture
- Verification and Validation
- Results
- Conclusions
- Perspectives

Operative Conclusions

- HPDP achieved highly competitive performance.
- HPDP tightly integrated into a performant (Klepsydra AI) execution queue
- One-shot configuration (for most input shapes)
- Excellent relationship between computational efficiency and dependability.
- IEC 61508 compliant implementation includes rigorous V&V
- Tactical/Strategic conclusions
 - Klepsydra AI decouples orchestration and HW-specific execution
 - Orchestration now offers scheduling for computationally intensive tasks secure AI execution
 - The execution deployment develops from tightly coupled through loosely coupled to distributed architectures
 - Model an accelerator as a mathematical operation -> SW definable Compute Unit


Perspective 1 -> External co-processors



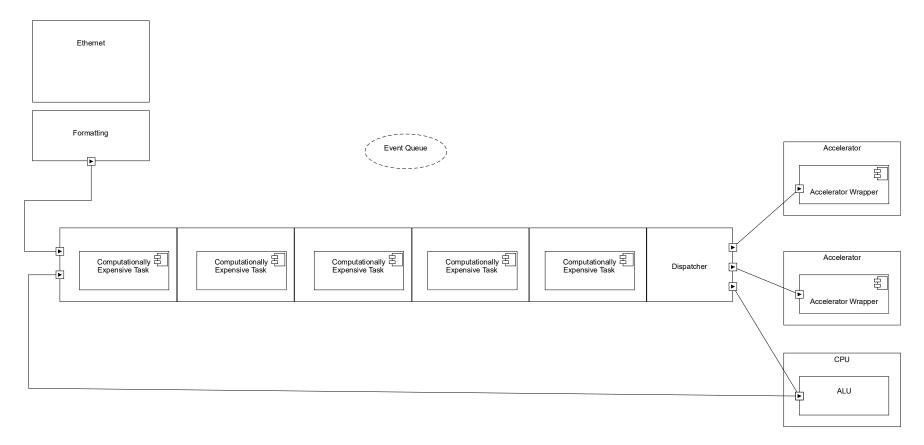
- Motivation
- Optimized Al-Execution Framework
- HPDP Architecture
- Verification and Validation
- Results
- Conclusions
- Perspectives

- Replication of developed Compute Unit in external accelerator facilitates both performance and reliability predictability
- HW can be scaled to required performance KPIs with known ramifications for other KPIs (power, cost ...)

Perspective 2 -> Configurable co-processors

- Motivation
- Optimized Al-Execution Framework
- HPDP Architecture
- Verification and Validation
- Results
- Conclusions
- Perspectives

- Replication of developed Compute Unit in configurable/programmable coprocessors (FPGA GPU, NPU ...) facilitates both performance and reliability predictability together with co-existence of other functions.
- Vendor dependent and independent performance predictions and results.


Perspective 2 -> Configurable co-processors

- Motivation
- Optimized AI-Execution Framework
- HPDP Architecture
- Verification and Validation
- Results
- Conclusions
- Perspectives

- Frontload event-queue with direct data from inputs
 - Example some Ethernet variant

Conclusions

Support industry standard file format (e.g. ONNX)

Space qualified solution (HW + SW)

Different AI models, same API (e.g. no coding needed)

Thank you for your attention!

Klepsydra Technologies AG pablo.ghiglino@klepsydra.com

Zurich University of Applied Sciences hans.doran@zhaw.ch

October 2025, Elx EDHPC 2025 ZHAW Institute of Embedded Systems 22