

N7 Development Strategy

European Leader in FPGA, SoC FPGA & ASIC Design

- French Based Company: Paris, Montpellier, Grenoble
- 140+ Employees with more than 90% R&D Engineers
- Offer products for Hi-Rel markets
- **3** different products offering:
 - High reliable SoC FPGA
 - ASIC design services
 - Silicon IPs
- **∀** ITAR Free Technology
- Focus on Space & Defense markets

NANOXPLORE: a 'One-Stop- Shop' Solution Provider

SERVICES & DIFFERENTORS

IPs

ASIC

- Space proven products
- Tool chains

- Silicon proven IPs
- Tool chains

- Turnkey Service for complex ICs
 - vice for

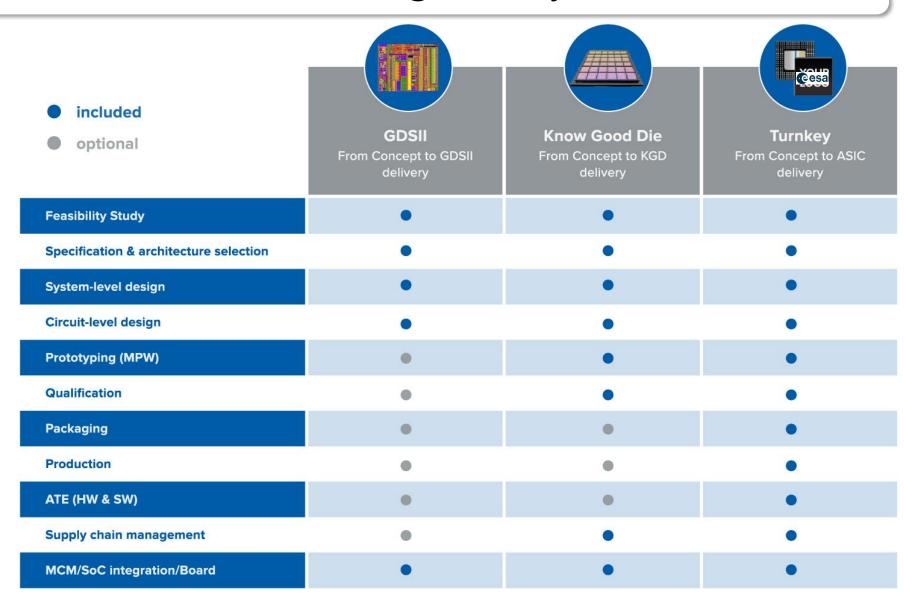
Security

Radiation

Hardened

- म्बर्
- European
 Supply chain

- Cryptographic & Security Services
- Sovereign Foundries
- Sovereign OSAT -Testing & Packaging
- ITAR Free & European Sovereignty


All foundries

NanoXplo

Nanoxplore At the heart of the EU sovereign ecosystem

- Following the acquisition of Dolphin ASIC business, NX offers ASIC design service based on any process platform and N7 design platform particularly.
 - •ISO9001 / EN9100 certified
 - Common Criteria MSSR certification in-progress
- Simplify the access to the N7 design platform for European partners.
- Flexible clear business model

N7 Platform - Key Considerations

Increasing complexity of Satellite payloads

- Large Data Processing capabilities
- Future proof solutions
- Mission Flexibility & Reconfigurability
- →SoC FPGA leveraging UDSM nodes is a suitable solution to tackle the above requirement.

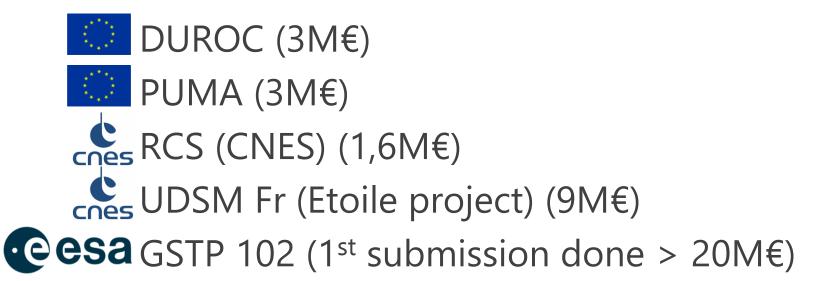
Key Consideration

Fine pitch process to address the upcoming challenges

- Objective is to design high-reliable (hardened, space mission profile) UDSM components
 - Secure the technology necessary for next-generation space exploration and satellite constellations.
 - Remain at the forefront of space innovation and autonomy.
- No possibility to use commercial IP blocks without hardening / characterization effort
- Leverage as much as possible existing commercial technologies and EU design know-how to set up the right ITAR free design platform
 - Don't recreate the wheel when possible...

Key Consideration

N7 Platform and Ecosystem requirements


- Key components and IP requirements requiring a large and diverse European ecosystem:
 - Processor (RISC V)
 - Accelerator (GPA)
 - Fabrik eFPGA (ULTRA7)
 - ADC/DACs
 - RF Rx/Tx
- Not a single country in Europe has the technical capability to design such platform -> good time to team up !!

Current funding update

Various projects already started to support the design platform development

N7 design platform overview

Analog & Digital IPs and blocks.

Hard Block IPs

- Foundation (digital cells, memory blocks, IOs) Library
- Analog Building Blocks (Thermal Sensor, P and Aging Monitors, Oscillator, PLL, ...)
- Interfaces (LVDS, ...)
- High Speed Serial Link (Long & short Range)
 PHY
- RF ADC and DAC
- eFPGA fabric
- DDR4/5 PHY memory interface
- UCIe die to die Interface

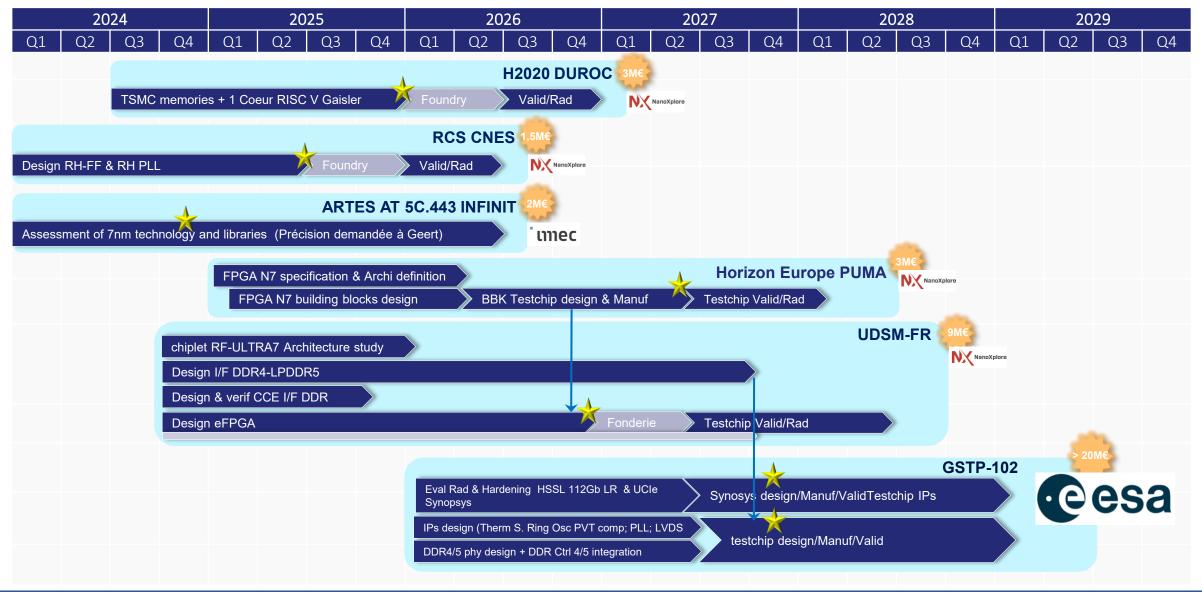
Digital IPs

- JESD204 and SpF controller
- DDR4/5 controller
- General Purpose Processor (RISC-V based)
- General Purpose Accelerator (RISC-V based)
- PCIe controller
- Ethernet controller
- SpW controller
- All commercial SW IPs can be bought from commercial IPs vendors -> hardening done by end-users using rad-hard foundation libraries

Hard blocks IPs development strategy

 Selection of various IPs blocks development strategy based on the following criteria by order of priority:

- Technical capabilities, silicon proven know how
- 2. Existing commercial version to be hardened
- 3. Design from scratch with evidence of technical know how
- 4. ITAR free
- 5. Based in Europe
- 6. Already part of the European Space Ecosytem
- Need to grow knowledge and competency in Europe on critical IPs (HSSL, UCI-e, ...)



N7 design platform – Hard block IPs funding strategy

			cnes	cnes	esa		
Hard block IPs	DUROC	PUMA	RCS	Etoile	GSTP102	Not funded yet	Partners
Foundation digital cells library	S		\bigcirc				NX, IMEC
Thermal Sensor, P and Aging Monitors, Oscillator, PLL			⊘		⊘		University of Pisa, NX
LVDS					\bigcirc		University of Pisa, NX
112Gbs HSSL long range					\bigcirc		Synopsys
112Gbs HSSL short range							Synopsys
FPGA fabric		\bigcirc		V			NX
DDR4/5 PHY memory interface				⊘	⊘		NX, TAS, ADS
UCIe die to die Interface					\bigcirc		Synopsys
RF ADC and DAC						8	

N7 Platform Development gantt chart

Thank you

