

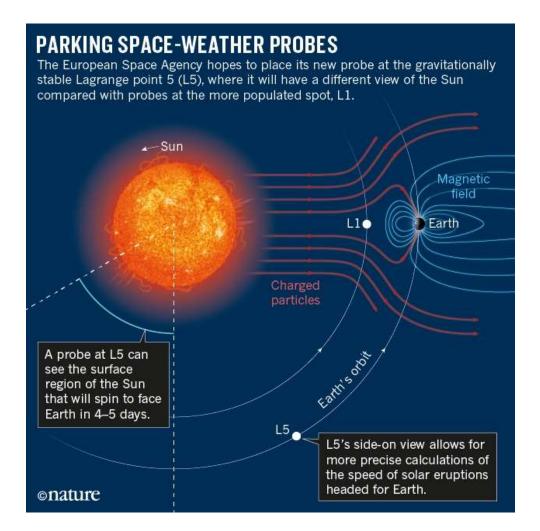
0 0

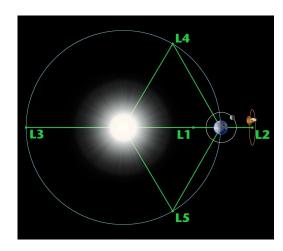
Real-Time Onboard Data Accumulation and Pre-Processing for the Photospheric Magnetic field Imager (PMI) on ESA's Vigil mission

Deepa Muraleedharan

PhD Student (IMPRS)

Max Planck Institute for Solar System Research


Göttingen, Germany


EDHPC 2025

15-10-2025

THE VIGIL MISSION

- Vigil is part of ESA's Space Safety Programme
- Monitors Sun from Lagrange point L5

PHOTOSPHERIC MAGNETIC FIELD IMAGER (PMI)

PMI is a solar full-disk imaging magnetograph designed to continuously monitor the Sun's photospheric magnetic field and line-of-sight velocity fields.

Heritage

Builds on the heritage of SO/PHI (Polarimetric and Helioseismic Imager onboard ESA/NASA Solar Orbiter).

Upgrade

Unlike SO/PHI (limited by telemetry & pointing constraints), PMI is optimized for continuous full-disk observations.

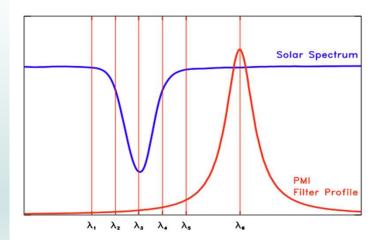
Mission support

Supports space weather forecasts and scientific studies of solar activity & evolution

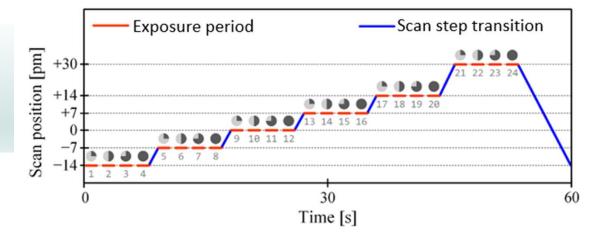
Real-time onboard data reduction is essential due to:

- **Telemetry limitations** at 1 Astronomical Unit in the L5 Lagrange point
- Need for uninterrupted monitoring of the solar photospheric vector magnetic field and line-ofsight velocity
- Requirement for low-latency (~20 min) data products with ~30 min cadence

PMI - MEASUREMENT SCHEME



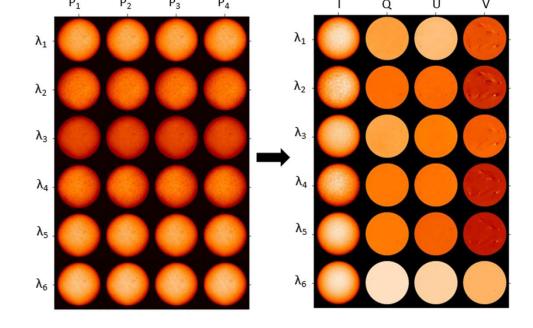
Magnetic field measurement: PMI uses the **Zeeman effect**; field direction appears as a wavelength-dependent polarization pattern.


Spectral scanning: 6 wavelength positions across Fe I line at 617.3 nm.

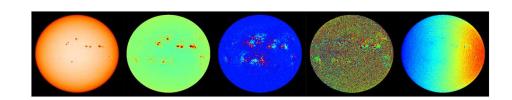
Polarization states: 4 modulation states per wavelength \rightarrow **24 raw** images per dataset.

Focal Plane Assembly (FPA): 2048×2048 pixels, 12-bit depth, 10 fps.

Up to 20 exposures per spectral—polarization combination are accumulated **to improve signal-to-noise ratio.**



PMI - ONBOARD DATA PROCESSING

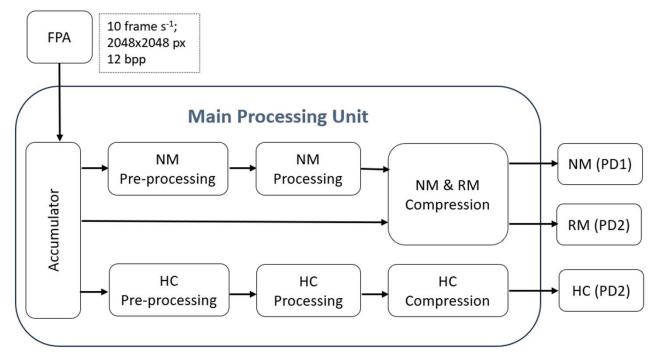

24 raw filtergrams \rightarrow image corrections + polarimetric demodulation

Produces Stokes images (I, Q, U, V) at each wavelength position

Onboard RTE inversion retrieves **5 physical** parameters

- Vector magnetic field
- · Line-of-sight plasma velocity

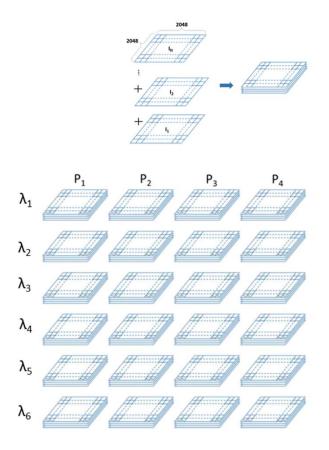
PMI - DATA PRODUCTS



- Nominal (Priority 1) computed by RTE Inversion, Cadence=30 min, Latency=20 min
 - ✓ Continuum Intensity (Ic),
 - ✓ **Vector magnetic field** (strength B, inclination γ and azimuth ϕ)
 - ✓ Plasma Line-of-Sight velocity (v_{LOS})
 - ✓ For each dataset, 24.159 Gbit of raw data is converted onboard into the five parameter maps and finally compressed to ~6 bpp, corresponding to 0.125829 Gbit per product set, a **192x** reduction relative to the raw data.
- High Cadence (Priority 2) Cadence = 1-2 min
 - √ Ic, v_{LOS}
 - ✓ Provides timely indicators of rapidly evolving magnetic features
- Raw (Priority 2) Cadence = 30-120 min
 - √ Raw filtergrams
 - ✓ Used for calibration, verification and algorithm refinement on the ground

MAIN PROCESSING UNIT (MPU) - NOMINAL MODE PROCESSING PIPELINE

- Transforms raw detector readouts into science-ready data products for downlink.
- Implemented on a radiation-tolerant AMD Kintex XQRKU060 FPGA
- Each stage is realized as custom FPGA Intellectual Property (IP) cores



DEEPA MURALEEDHARAN | EDHPC 2025 | 15.10.2025

ACCUMULATOR IP CORE

- Raw frame acquisition from FPA (2048 x 2048 pixels, 12 bpp, 10 fps → that must be sustained in real-time)
- Frames streamed via channel-link interface to Accumulator IP core
- Pixel re-ordering: reconstructs layout from 2 multiplexed FPA channels
- Up to 20 accumulations per polarization state & wavelength position to improve the SNR
- Sequencing of accumulation across wavelength–polarization grid (λ , P), controlled by programmable parameters
- Final result stored as 32-bit floating-point (IEEE-754) in memory
- Galactic Cosmic Ray (GCR) detection and correction each pixel compared to running mean, If the difference exceeds a programmable threshold, accumulated mean is added instead of the outlier → prevents propagation of artefacts

NOMINAL MODE PRE-PROCESSING IP CORE

Computes :

- ✓ Stokes parameters (I, Q, U, V) at 6 wavelengths
- ✓ Continuum image (Ic) Stokes I at first or sixth wavelength (programmable)

Auxiliary inputs:

- ✓ 1 dark field image (independent of p and λ)
- √ 6 -24 flat field images (independent of p)
- √ 4 x 4 demodulation matrix (16 elements, each 2K x 2K pixels)
- ✓ Scalar calibration coefficients for cross-talk correction

Pre-processing Functions

Dark field subtraction

Remove offsets and fixed-pattern noise

Flat field division

Compensates for pixel-to-pixel gain variations and optical non-uniformities

Demodulation

Transform measurements into Stokes parameters

Cross Talk Correction (Q,U,V)

Mitigates cross-talk among the Stokes parameters caused by imperfections in modulation matrix

Optional Limb masking

Exclude regions outside the solar disk, reduce computation & noise propagation.

Re-order Stokes output for RTE-Inverter

All mathematical operations are carried out in 32-bit IEEE-754 single-precision floating-point format.

DESIGN CONSTRAINTS AND IMPLEMENTATION REQUIREMENTS

Throughput and timing:

- ✓ Accumulator: 500 Mbps input in real time, 20 frames × 6 λ × 4 P accumulation ≤ 60s
- ✓ Preprocessing: ≤ 120 s (Nominal), ≤ 60 s (High-Cadence)

Data Representation:

- ✓ Accumulator: 12-bit integer input → 32-bit IEEE-754 floating point
- ✓ Pre-processing: all operations in the 32-bit IEEE-754 floating point domain

· Parallel & Modular Design:

- ✓ IP cores operate in parallel
- ✓ Scalable resource allocation & deterministic scheduling
- √ Simplifies verification and IP reuse

Resource budget:

- ✓ Accumulator: ~1% LUTs; (LUT Look Up Tables)
- ✓ Pre-processing: ~2.5% LUTs
- ✓ Fit within FPGA LUT, BRAM, DSP limits

Deterministic Operation:

- ✓ Strictly deterministic timing and data flow
- ✓ Starts processing when commanded, and signals completion with an interrupt.

Interface Requirements

√ Channel-link input → memory → Preprocessing → RTE-ready Stokes vectors → memory

System Level Scheduling

✓ In NM 30 minute observation cycle, Accumulation: 0–1 min, Preprocessing: 2–3 min, RTE inversion: 4–18 min, Compression: ~19 min → data ready by ~20 min

VERIFICATION APPROACH

Simulation based Verification

- Verified VHDL IP cores using Open Source VHDL Verification Methodology (OSVVM) using QuestaSim
- Directed test cases + constrained-random stimuli
- · Scoreboard comparison in an automated manner: DUT outputs vs. expected results
- Simulation limited to datasets up to 2048 × 8 pixels

Hardware-in-the-Loop Validation

- IP cores synthesized and implemented on XCKU040 FPGA
- System level tests on AMD Kintex UltraScale KCU105 board
- PCIe 4.0 interface streams 2048 × 2048 pixel datasets
- MicroBlaze processor manages commands & configuration
- Validates throughput and timing under realistic conditions

Software Model Comparison

- Same input datasets as in hardware validation used; all programmable parameters tested
- IP core outputs compared to floating-point reference model in Python
- Confirms functional consistency at every processing stage

3

DEEPA MURALEEDHARAN | EDHPC 2025 | 15.10.2025

RESULTS

- Hardware-in-the-Loop + Python Reference:
 - ✓ Confirms throughput and timing requirements

Accumulator IP Core performance

13.75 fps

processing rate, exceeding the 10 fps requirement

27.92 s

meets <60 s per dataset requirement

Processing of 2048 × 2048 px dataset (16 accumulations × 6 λ × 4 P)

Nominal Mode Pre-processing IP core performance

15.63 s

Well within 120 s limit

- Accuracy and timing
 - ✓ Hardware outputs bit-accurate vs. software reference
 - ✓ Achieves timing closure at 100 MHz

- Simulation Verification (OSVVM):
 - ✓ Bit-accurate agreement with expected outputs
 - √ >99.9% code coverage → robust testbench & design

RESULTS

• Resource Utilization:

✓ Accumulator & Nominal Mode Pre-processing fit within FPGA resource budget (LUT, BRAM, DSP)

Resource Utilization of Accumulator IP Core in XQRKU060 FPGA

Resource	Utilization	Available	Utilization
			%
LUT	1415	331680	0.43
FF	2204	663360	0.33
BRAM	20.50	1080	1.90
DSP	4	2760	0.14

Resource Utilization of Pre-processing IP Core in XQRKU060 FPGA

Resource	Utilization	Available	Utilization %
LUT	8374	331680	2.52
FF	12983	663360	1.96
BRAM	68.50	1080	6.34
DSP	92	2760	3.33

CONCLUSION

- Both Accumulator and Preprocessing IP cores:
 - ✓ Achieve bit-accurate correctness
 - ✓ Meet throughput & timing requirements
 - ✓ Conform to the FPGA resource budget
- The presented solution is therefore validated as suitable for spaceborne deployment in the Vigil mission context.

THANK YOU!!!