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Overview

Capture and analysis of telemetry data from the tens, hundreds or even thousands of on-board sensors can give a
good indication of satellite health and allow operators to act to mitigate the effect of imminent failure. Automating
this process and operating in real-time will improve the operator’s options and allow more timely action.

. Anomaly Detection and LSTM implementation

Architecture of an Adaptive SoC for Space Flight Missions

. Memory Mapping of an Al Algorithm

Simulation and Hardware Results

. Conclusions
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Anomaly Detection and LSTM Implementation

* Reference anomaly detection data comes from
research based on real mission data

* Models are trained on normal data to predict
future behaviour.

* Anomaly detected when model fails to track real
sensor behaviour

* Avoids problem of limited training data for
anomalous behaviour

* Anomaly can be detected with statistical
comparison algorithm, or even a simple
threshold.
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Anomaly Detection and LSTM Implementation

e LSTM Model is built of 2 LSTM layers, shown here
and a final dense output layer (just Matrix
Multiply)

e LSTM Layer is recurrent with internal feedback of
outputs and a forgetting factor.

e Core processing in layer is large matrix multiply,
combining new inputs and current output state

e Other processing in layer is less than 1% of the
computational load.
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Architecture of an Adaptive SoC for Space Flight

Architecture of the Versal Edge Adaptive SoC

Scalar Engines
» Dual Core Application Processor for high end
application
» Dual Core Real-Time Processor for system level
management
* Triple-Mode Redundant microcontrollers for platform
management, configuration control, system monitoring
and even scrubbing.
Adaptable Engines
* Programmable Logic Array for user custom logic
Intelligent Engines
» AIE-ML Array for Al/ML and high performance signal
processing applications
» Network on-chip
» High speed packet switched backbone to connect up
logic, IP, processors and memory
+ High-performance 10
» Hardened DDR4 Memory Controllers
» Very high performance serial transceivers
* Flexible General Purpose 10
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Architecture of an Adaptive SoC for Space Flight

Architecture of the Versal AIE-ML Array

* The AIE-ML is an array of VLIW processing Tile

» Each Tile can achieve 73.6 GMACs performance with the
BFLOAT16 data type

» Each Tile has a local 64kB memory store

» Each tile can access the memory of 3 neighbouring tiles a full
rate

 Interconnect blocks are used to move data further around the
array.

* Interconnect streams can transfer data to/from the PL or the
NoC into and out of AIE-ML Tiles

* Interconnect streams can transfer data between Tiles that are
not neighbours

* Interconnect can transfer data between Shared Memory
512kB blocks and AIE-ML tiles

* Interconnect can transfer data between Shared Memory
512kB blocks and the PL or NoC interfaces.
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Architecture of an Adaptive SoC for Space Flight

Architecture of a 3U Space VPX reconfigurable flight computer

Config Watchdog
Flash

Memory
Module

The ADM-VB630 provides a development and reference platform for designs
that aim to use the XQR Grade AMD Versal Edge VE2302 for Space.

One key feature of the board relevant to this presentation is the 8GB Space
DDR4 memory bank that will be required to hold off-chip model data and other
application code and data.

UART + CAN
72 GPIO
(64XPIO+ 8MIO)

2x SpaceWire

16 MIO
(GEM)
x8 HSSIO

Data input from sensors to the processor can be achieved via GPIO, HSSIO,
SpaceWire or CAN bus interfaces running across the VPX backplane from the
various sensors across the platform.
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Architecture of an Adaptive SoC for Space Flight

Mapping the application onto the hardware

The Anomaly Detection Application is a good fit for the Versal
Architecture

The programmable logic and IO can capture and pre-process the
sensor data coming in from the backplane connections and pass it
to the model in real time.

This can be passed to the AIE-ML array to run the LSTM RNN
Models of the sensors.

The output predictions can be compared with the telemetry data in
the ARM sub-system, and an anomaly diagnosis made.

The processing board can store its model weights and processing

code in the off-chip DDR4 memory and load these into on-chip
memory caches as required.
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Memory mapping of an Al Algorithm

Al algorithms are typically memory bound, especially if a low latency

response is required

» Basic implementation stores all Model Weights

in 64kB AIE-ML attached memory
» Requires 2 AIE-ML blocks per LSTM layer
 Single model fits into 5 AIE-ML tiles
» Canincrease performance through
parallelization — 6 units will use most tiles and

88% peak performance

» Canincrease peak performance and lower
latency by parallelizing model further.

» Peak performance up to 97% of available
resource

+ But very limited number of models
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Memory mapping of an Al Algorithm

The number of models that can run concurrently is limited by memory

» External DDR4 on the board can support a very
high number of models

DDR4 Par
34 5 3 33

AIE-ML Tiles
. Performance will be limited by the memory AIE-ML Memory 21MB 169kB 1.6kB 35KB
bandwidth of 21GB/s
Shared Memory 17 0 0 0
* Result is that increasing parallelization does not [P
improve throughput and will increase latency
Shared Memory 3.7MB 0 0 0
+ Sequential scaling up using one thread but SIS
switching between many models will achieve m 4%6 5 3 (33)
the same rate, but will also increase latency in
proportion to the number of concurrent models. bk S 1 1 i
PLIO Outputs 8x28 1 1 11
« Can use less than 1% of the Array performance. =
(BFLOAT16) 2502 368 105 105
Latency (us) 0.6 8.1 89.1
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Memory mapping of an Al Algorithm

Shared Memory Tiles within the AIE-ML Array Can provide a Cache

* AIE-ML Array has a number of 512kB Shared
Memory Buffers (17 on VE2302)

5 3 3 24

« These can provide a Level 2 Cache betweenthe  [aadatiies

DDR4 and the Tile Processing

AIE-ML Memory 169kB 1.6kB 1.6kB 13kB
» Allow 30GB/s of data to be processed per Shared Memory o " 5 16
Shared Memory Tile (15 BFLOAT16 GMACs per  [:liEa EFIG))

Tile)
Shared Memory

) ) ) . 0 168kB 840kB 6.7MB
» This allows multiple models to be mapped into 1=
a single .tlle, to allow a TDM split of the 5 3 2 (24)
processing
PLIO Inputs 1 1 1 8
» This can also be parallelized W|th!n the limit of PLIO Outputs 1 1 ] 3
the number of memory cores available and the Deak CIMACS
number of AIE-ML Tiles (BFLOAT16) 368 30 30 240
Latency (ps) 0.6 2.8 14 14

« Allows a practical number of models to run (40)
with a reasonable device utilization (10% of # Models 1 1 5 40
peak performance)
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Memory mapping of an Al Algorithm

Are our models the correct size?

* The choice of model size came from reference
paper and popular models at the time

» Reference paper suggested smaller models
might be sufficient

» A simple pruning approach was used to
reduce the models from 80 neuron layers to
32 neuron layers. With the output layer
reduced to 1 neuron

» Evaluation of results showed numerical
differences in the prediction results, but not
enough to change the anomaly detection
result

* Pruning reduces the memory footprint
significantly allowing much higher throughput,
or potentially a higher number of models to be
supported.

» Additional Data Science and Training effort is
highly recommended to find optimal model
sizes
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Hardware Results
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Designs have been ported to the AMD VE2302 device rur]ninF on the ADM-VB630 Platform
A single sensor channel is plotted above comparing the simulation, the hardware run and the
actual sensor values. _

* The anomaly in the data can be seen around 4500 samples in.
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Hardware Results
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Zooming in shows that the models can track the sensor signal under normal conditions
But diverge when the anomaly occurs
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Hardware Results
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actual next sample shows a clear peak when the anomaly occurs.
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CONCLUSIONS

Adaptive SoC devices, such as the AMD Versal Al Edge parts
provide a practical platform for deploying Machine Learning
algorithms, such as LSTM-RNN models, useful in Satellite
i Sensor Anomaly Detection

il

O

real time operation. This impacts performance with
practical implementations requiring model parameter
storage in level 1 or level 2 cache, and not off-chip

E E The memory footprint of the models is critical in low-latency

The Versal Al Edge device’'s Shared Memory provides a

practical trade off supporting an acceptable number of
models at a capable rate. However, thoroughly assessing

1 model size and looking at options such as pruning may
reveal much higher performance solutions.
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