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Overview

Capture and analysis of telemetry data from the tens, hundreds or even thousands of on-board sensors can give a
good indication of satellite health and allow operators to act to mitigate the effect of imminent failure. Automating
this process and operating in real-time will improve the operator’s options and allow more timely action.

. Anomaly Detection and LSTM implementation

Architecture of an Adaptive SoC for Space Flight Missions

. Memory Mapping of an Al Algorithm

Simulation and Hardware Results

. Conclusions
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Anomaly Detection and LSTM Implementation

e Reference anomaly detection data comes from
research based on real mission data

* Models are trained on normal data to predict
future behaviour.

* Anomaly detected when model fails to track real
sensor behaviour

e Avoids problem of limited training data for
anomalous behaviour

 Anomaly can be detected with statistical
comparison algorithm, or even a simple
threshold.
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Anomaly Detection and LSTM Implementation

e LSTM Model is built of 2 LSTM layers, shown here
and a final dense output layer (just Matrix
Multiply)

e LSTM Layer is recurrent with internal feedback of
outputs and a forgetting factor.

e Core processing in layer is large matrix multiply,
combining new inputs and current output state

e Other processing in layer is less than 1% of the
computational load.
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Architecture of an Adaptive SoC for Space Flight

Architecture of the Versal Edge Adaptive SoC

 Scalar Engines
. gsslligggé\pplication Processor for high end Dual Core
 Dual Core Real-Time Processor for system level ﬁﬁggg@gg?
management
 Triple-Mode Redundant microcontrollers for platform
management, configuration control, system monitoring
and even scrubbing. Dual Core Al Pr?_%rge;::n;nn%ble
- Adaptable Engines Real-Time Engine DSP Engines
« Programmable Logic Array for user custom logic Processor Array
* Intelligent Engines
» AIE-ML Array for Al/ML and high performance signal
processing applications nIMBM
* Network on-chip et
- High speed packet switched backbone to connect up Managment
logic, IP, processors and memory Controller

 High-performance 10
» Hardened DDR4 Memory Controllers
« Very high performance serial transceivers

* Flexible General Purpose 10
MDe[r)nF\;?,y 32 Gb/s
Controller Transceivers
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Architecture of an Adaptive SoC for Space Flight

Architecture of the Versal AIE-ML Array

» The AIE-ML is an array of VLIW processing Tile

« Each Tile can achieve 73.6 GMACs performance with the
BFLOAT16 data type

» Each Tile has a local 64kB memory store

 Each tile can access the memory of 3 neighbouring tiles a full
rate

« Interconnect blocks are used to move data further around the
array.

* Interconnect streams can transfer data to/from the PL or the
NoC into and out of AIE-ML Tiles

« Interconnect streams can transfer data between Tiles that are
not neighbours

« Interconnect can transfer data between Shared Memory
512kB blocks and AIE-ML tiles

 Interconnect can transfer data between Shared Memory
512kB blocks and the PL or NoC interfaces.

eIALPHA DATA

4_.{“1;7“ _HEJ
4

y

A

> VLW

512kB
Memory

A
To PLINOC

P
To PUNOC

> - »| Interconnect |g »
ry e [y ¥
AIE-ML AIE-ML AlE-ML
VLW VLW vLw b
Processor Processor Processor
64kB B4kB 64KB
Memory Memory Memory
Y [ A
A v
» Interconnect
A .
AIE-ML AIE-ML AIE-ML
VLW VLW > VLW >
Processor Processor Processor
64kB 64kB 64KB
Memory Memory Memory
A A v
b In(amoE];f;bEmnecl Imeerb—b
4 v 4 k. b v
AIE-ML AIE-ML AIE-ML
< VLW VOW le—>
Processor Pracessor Processor
64kB 64kB 64kB
Memory Memory Memory

Interconnect

To PLINOC

EDHPC 2025 | 5



Architecture of an Adaptive SoC for Space Flight

Architecture of a 3U Space VPX reconfigurable flight computer

Config Watchdog
Flash

Memory
Module

The ADM-VB630 provides a development and reference platform for designs

)

that aim to use the XQR Grade AMD Versal Edge VE2302 for Space. g g%

i (Ofe) .gl A 4
One key feature of the board relevant to this presentation is the 8GB Space E Q% % ol ©
DDR4 memory bank that will be required to hold off-chip model data and other = = a =2 ¥
application code and data. & °el g
Data input from sensors to the processor can be achieved via GPIO, HSSIO, HPHY]
SpaceWire or CAN bus interfaces running across the VPX backplane from the
various sensors across the platform.
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Architecture of an Adaptive SoC for Space Flight

Mapping the application onto the hardware

The Anomaly Detection Application is a good fit for the Versal
Architecture

The programmable logic and |0 can capture and pre-process the
sensor data coming in from the backplane connections and pass it
to the model in real time.

This can be passed to the AIE-ML array to run the LSTM RNN
Models of the sensors.

The output predictions can be compared with the telemetry data in
the ARM sub-system, and an anomaly diagnosis made.

The processing board can store its model weights and processing

code in the off-chip DDR4 memory and load these into on-chip
memory caches as required.
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Memory mapping of an Al Algorithm

Al algorithms are typically memory bound, especially if a low latency
response is required

» Basic implementation stores all Model Weights
in 64kB AIE-ML attached memory

Resource VE2302 Single Model oxkar Lt Sxax
Models model
AIE-ML Tiles 34 5 30 11 33

* Requires 2 AIE-ML blocks per LSTM layer AIE-ML Memory 2.1MB 169kB 1.0MB 169kB 169kB

+ Single model fits into 5 AIE-ML tiles Shared Memory 17 3 9 0 0
Buffers (512kB)

+ Can increase performance through

parallelization — 6 units will use most tiles and Shared Memory 8.7MB 0 0 0 0

88% peak performance SIS
. 4x6 5 (30) (12) (33)
» Can increase peak performance and lower
latency by parallelizing model further. PLIO Inputs 28 ; 2 - .
PLIO Outputs 8x28 1 6 1 3
+ Peak performance up to 97% of available Peak GMACS
resource (BFLOAT16) 2502 368 2208 810 2430
L Latency (us) 0.6 0.6 0.27 0.27
 But very limited number of models
# Models 1 6 1 3
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Memory mapping of an Al Algorithm

The number of models that can run concurrently is limited by memory

» External DDR4 on the board can support a very
high number of models

DDR4 Par
34 5 3 33

AIE-ML Tiles
. Performance will be limited by the memory AIE-ML Memory 2.1MB 169kB 1.6kB 35KB
bandwidth of 21GB/s
Shared Memory
. . . o 17 0 0 0
* Result is that increasing parallelization does not LA P
improve throughput and will increase latency
. . _ SB:'tas'ed Memory 8.7MB 0 0 0
» Sequential scaling up using one thread but
switching between many models will achieve m 46 5 3 (33)
the same rate, but will also increase latency in
proportion to the number of concurrent models. m 6x12 1 1 1
PLIO Outputs 8x28 1 1 11
o,
» Canuse less than 1% of the Array performance.  F=aseeses r0s ses s s
(BFLOAT16) ' '
Latency (ps) 0.6 8.1 89.1
# Models 1 1 11
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Memory mapping of an Al Algorithm

Shared Memory Tiles within the AIE-ML Array Can provide a Cache

 AIE-ML Array has a number of 512kB Shared
Memory Buffers (17 on VE2302)

5 3 3 24

» These can provide a Level 2 Cache between the
DDR4 and the Tile Processing _— . . 13k8
» Allow 30GB/s of data to be processed per Shared Memory 0 5 5 1%
Shared Memory Tile (15 BFLOAT16 GMACs per  [:liiaErrli:)
Tile)
' . . st‘a’ed Y 0 168KkB 840kB 6.7MB
 This allows multiple models to be mapped into IS
a single tile, to allow a TDM split of the m 5 3 3 (24)
processing
+ This can also be parallelized within the limit of 4 4 1 8
the number of memory cores available and the Seak CIMAC
+ Allows a practical number of models to run (40) 06 28 1 1
with a reasonable device utilization (10% of 1 1 5 40

peak performance)
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Memory mapping of an Al Algorithm

Are our models the correct size?

e The choice of model size came from reference
paper and popular models at the time

+ Reference paper suggested smaller models
might be sufficient

» A simple pruning approach was used to
reduce the models from 80 neuron layers to
32 neuron layers. With the output layer
reduced to 1 neuron

« Evaluation of results showed numerical
differences in the prediction results, but not
enough to change the anomaly detection
result

* Pruning reduces the memory footprint
significantly allowing much higher throughput,
or potentially a higher number of models to be
supported.

 Additional Data Science and Training effort is
highly recommended to find optimal model
sizes
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Hardware Results
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Designs have been ported to the AMD VE2302 device rur]ninF on the ADM-VB630 Platform
A sm%Ie sensor channel is plotted above comparing the simulation, the hardware run and the
actual sensor values. _

 The anomaly in the data can be seen around 4500 samples in.
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Hardware Results
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Zooming in shows that the models can track the sensor signal under normal conditions
But diverge when the anomaly occurs
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Hardware Results

0.45

* Plotting the low pass filtered mean square difference between the model prediction and the

0.40

0.35

0.30 1

0.25 4

0.20 1

0.10 1

— HW

0

1000

2000

3000

4000

5000

6000

7000 8000

actual next sample shows a clear peak when the anomaly occurs.
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CONCLUSIONS

[T
LLLLL

Adaptive SoC devices, such as the AMD Versal Al Edge parts
provide a practical platform for deploying Machine Learning
algorithms, such as LSTM-RNN models, useful in Satellite
Sensor Anomaly Detection

The memory footprint of the models is critical in low-latency
real time operation. This impacts performance with
practical implementations requiring model parameter
storage in level 1 or level 2 cache, and not off-chip

The Versal Al Edge device’s Shared Memory provides a
practical trade off supporting an acceptable number of
models at a capable rate. However, thoroughly assessing
model size and looking at options such as pruning may
reveal much higher performance solutions.
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