Tip & Cue AIS-Assisted Gaussian Process Regression for Ship Dynamics Modeling and Cognitive SAR Tasking

Matteo Sartoni¹, Max Ghiglione², Davide Patrone² Andrea Pietropaolo³, Carlo Ciancarelli³ and Giuseppe Notarstefano¹

Department of Electrical, Electronic, and Information Engineering Alma Mater Studiorum Università di Bologna¹

European Space Agency²

Thales Alenia Space³

matteo.sartoni3@unibo.it

Motivations and Challenges

Motivations

- Maritime surveillance as application scenario for Cognitive SAR design
- AIS data for vessel selection and trajectory fitting
- Tip & Cue enables extended monitoring period

Motivations and Challenges

Motivations

- Maritime surveillance as application scenario for Cognitive SAR design
- AIS data for vessel selection and trajectory fitting
- Tip & Cue enables extended monitoring period

Challenge

 Fit vessel track with sparse AIS messages and observability gap

Tip & Cue Framework

Tip & Cue involves cooperation among satellites

- Leader satellite selectes Area of Interest (*Tip*)
- Follower satellite focuses on selected area (Cue)
- Surveillance and emergency response applications

Tip & Cue Framework

Tip & Cue involves cooperation among satellites

- Leader satellite selectes Area of Interest (*Tip*)
- Follower satellite focuses on selected area (Cue)
- Surveillance and emergency response applications

Pros: Extended monitoring of target of Interest *Cons:* Non-observability period of target of Interest

Received AIS data to fit overall trajectory

AIS Data

AIS data are

- Provided by cooperative vessels to share their status
- Divided into static and kinematic informations

Static data: fixed information over time (vessel type, country of origin...) Kinematic data: information that may change over time

AIS Data

AIS data are

- Provided by cooperative vessels to share their status
- Divided into static and kinematic informations

Static data: fixed information over time (vessel type, country of origin...) Kinematic data: information that may change over time

Kinematic AIS data useful for trajectory fitting

ID	UNIX Times- tamp	Longitude	Latitude	Heading	Speed	Course
2f0f2613	1524381344000ms	23.6deg	37.96deg	167deg	0kn	167deg

Gaussian Process: collection of variables, any finite number of which have a joint Gaussian distribution

A GP is completely define by its *mean function* m(x) and *kernel* k(x, x')

$$f(x) \sim GP(m(x), k(x, x'))$$

with

$$m(x) = \mathbf{E}[f(x)]$$

 $k(x, x') = \mathbf{E}[(f(x) - m(x))(f(x') - m(x'))]$

Gaussian Process: collection of variables, any finite number of which have a joint Gaussian distribution

A GP is completely define by its mean function m(x) and kernel k(x,x')

$$f(x) \sim GP(m(x), k(x, x'))$$

with

$$m(x) = \mathbf{E}[f(x)]$$

 $k(x, x') = \mathbf{E}[(f(x) - m(x))(f(x') - m(x'))]$

The function f(x), in this work, is the longitude and latitude time evolution

Gaussian Process Regression: a supervised learning problem

- Training dataset $D = \{X, y\}$: feature X (time instants) and label y (longitude / latitude)
- Goal: predict output f^* for new features X^*

Gaussian Process Regression: a supervised learning problem

- Training dataset $D = \{X, y\}$: feature X (time instants) and label y (longitude / latitude)
- Goal: predict output f^* for new features X^*

Output f^{\star} obtained by maximizing the Log-Marginal-Likelihood and with distribution

$$f^{\star} \mid X, y, X^{\star} \sim \mathcal{N}(\mu^{\star}, \sigma^{\star 2})$$

where, for unseen time instant X:

- μ^* mean value of longitude/latitude
- σ^* associated standard deviation

Simulation Set-Up

Leader and Follower spacecrafts

- AIS observability of 300s each
- Non-observability period of 500s between the two acquisitions
- Leader sends AIS messages via inter-satellite link

Simulation Set-Up

Leader and Follower spacecrafts

- AIS observability of 300s each
- Non-observability period of 500s between the two acquisitions
- Leader sends AIS messages via inter-satellite link

AIS dataset provided by 1

- Freely available, real ground-based AIS dataset
- · Only vessels with speed at least of 3kn and sending messages for at least 1100s considered
- ullet Only 25% of available data used to simulate data packet loss

¹Tritsarolis, A., Kontoulis, Y., & Theodoridis, Y. (2022). The Piraeus AIS dataset for large-scale maritime data analytics. Data in brief, 40, 107782.

Simulation Set-Up

Leader and Follower spacecrafts

- AIS observability of 300s each
- Non-observability period of 500s between the two acquisitions
- Leader sends AIS messages via inter-satellite link

AIS dataset provided by 1

- Freely available, real ground-based AIS dataset
- Only vessels with speed at least of 3kn and sending messages for at least 1100s considered
- Only 25% of available data used to simulate data packet loss

Kernel employed: sum of Radial Basis Function and Dot Product

$$k(x, x') = k_{rbf}(x, x') + k_{dp}(x, x') = \sigma_f^2 \exp\left(\frac{-\|x - x'\|^2}{2l^2}\right) + \sigma_0^2 x \cdot x'$$

where GPR learns the legnth scale l and the variances σ_f^2 and σ_0^2

 $^{^1}$ Tritsarolis, A., Kontoulis, Y., & Theodoridis, Y. (2022). The Piraeus AIS dataset for large-scale maritime data analytics. Data in brief, 40, 107782.

Results - Mean Absolute Error

Fitting quality on both longitude and latitude evaluted in terms of Mean Absolute Error

$$\mathrm{MAE} = \sum_{n=0}^{N_{\mathrm{trajectories}}} \frac{|p_{\mathrm{fit}} - p_{\mathrm{true}}|}{n_{\mathrm{samples}}}$$

Results - Mean Absolute Error

Fitting quality on both longitude and latitude evaluted in terms of Mean Absolute Error

$$\mathrm{MAE} = \sum_{n=0}^{N_{\mathrm{trajectories}}} \frac{|p_{\mathrm{fit}} - p_{\mathrm{true}}|}{n_{\mathrm{samples}}}$$

	MAE Longitude	MAE Latitude	
Test Set	0.00124deg	0.00102deg	
Non-Obs Test Set	0.00167deg	0.00138deg	

Results - Confidence Interval

Fitted output y^* lies in *Confidence Interval* if

$$y^{\star} \in [\mu^{\star} - \alpha \sigma^{\star}, \mu^{\star} + \alpha \sigma^{\star}]$$

where α depends on selected C.I.

Higher C.I.

- Higher α , e.g, larger interval
- More test points are contained within the C.I.

Results - Confidence Interval

Fitted output y^* lies in *Confidence Interval* if

$$y^{\star} \in [\mu^{\star} - \alpha \sigma^{\star}, \mu^{\star} + \alpha \sigma^{\star}]$$

where α depends on selected C.I.

Higher C.I.

- Higher α , e.g, larger interval
- More test points are contained within the C.I.

	Longitude Test Data	Latitude Test Data
99%	88.19%	92.79%
95%	82.49%	87.28%
90%	77.80%	82.71%

- Zynq UltraScale+ and Versal Edge FPGAs
- ZCU102 and VE2303 development kits
- VE2302 outperforms ZCU102

- Zynq UltraScale+ and Versal Edge FPGAs
- ZCU102 and VE2303 development kits
- VE2302 outperforms ZCU102

FPGA	Inferences	Vessel tracked in 5min
VE2302	15.66	56.61
ZCU102	9.91	35.65

- Zynq UltraScale+ and Versal Edge FPGAs
- ZCU102 and VE2303 development kits
- VE2302 outperforms ZCU102

FPGA	Inferences	Vessel tracked in 5min
VE2302	15.66	56.61
ZCU102	9.91	35.65

- Zynq UltraScale+ and Versal Edge FPGAs
- ZCU102 and VE2303 development kits
- VE2302 outperforms ZCU102

FPGA	Inferences	Vessel tracked in 5min
VE2302	15.66	56.61
ZCU102	9.91	35.65

Conclusions

Tip & Cue as maritime surveillance set-up

Gaussian Process Regression applied to AIS data fitting

Fitting results in terms of Mean Absolute Error and Confidence Interval

Algorithm porting on two space-qualified FPGAs

