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Abstract— Synthetic Aperture Radar (SAR) [1] creates a 2D 

or 3D image of stationary objects or landscapes from a moving 

platform such as an airplane or spacecraft. The distance 

travelled over the target by the platform creates a large 

synthetic antenna aperture that mimics a much larger antenna 

array yielding superior image resolution. Signal processing 

combines coherently many radar pulses collected from multiple 

platform positions above the target. Many algorithms exist to 

perform SAR. The Back-Projection (BP) algorithm for SAR is 

one of the easiest to understand. While the computational cost is 

high, BP lends itself naturally to parallel processing [2] and finds 

use in practical systems. This paper describes a reference design 

for BP-based SAR on Very Long Instruction Word (VLIW) 

vector processors in the form of the Adaptive Intelligent Engines 

(AI Engines, AIE) embedded in the AMD Versal XQRVC1902 

adaptive SoC, which is qualified for space flight. Using the 

GOTCHA data set [1] with 586 radar pulses, the SAR engine 

achieves ~2.5 frames per second for a 512×512 image with fewer 

than 32 AIE tiles. With eight instances of the BP engine, the 

design achieves close to 20 frames per second using around 217 

AIE tiles in an AMD Versal VC1902 adaptive SoC. 

The BP algorithm contains a half-dozen workloads with 

different characteristics that are combined together into an 

efficient data flow. The "GOTCHA Volumetric SAR Data Set" 

was captured by the U.S. Air Force Sensor Data Management 

System and is made available for public download. The 

repository consists of SAR phase history data collected at X-

band with a 640 MHz bandwidth with full azimuth coverage at 

8 different elevation angles with full polarization. The target 

scene consists of many civilian vehicles and calibration targets. 
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I. SYSTEM MODELING 

We describe the development of the MATLAB system 
model of the SAR Back-Projection algorithm implemented on 
the Versal adaptive SoC AI Engines. The purpose of the 
system model is three-fold: 

1. Capture the ideal algorithm model and evaluate its 
baseline system performance using the GOTCHA data set. 

2. Identify the compute workloads required for the AI 
Engine implementation. 

3. Model any algorithmic imperfections induced by the 
AI Engine solution and assess their performance impact. 

We start with the baseline MATLAB model for SAR 
published by Gorham & Moore in [2]. This model is well-
known and accepted in the SAR community and provides a 
solid baseline, and also uses the GOTCHA data set for 
comparison purposes.. 

A. Inner Loop Analysis 

The inner loop of the system level MATLAB model as 

outlined in [2] is shown in the following block code: 

 
Line  1:  data_o.r_vec = linspace(-data_o.Nfft/2,data_o.Nfft/2-1, 

       data_o.Nfft)*data_o.maxWr/data_o.Nfft; 

Line  2:  % Loop through every pulse: 

Line  3:    for ii = 1 :  data_o.Np 

Line  4:      % Form the range profile with zero padding added: 

Line  5:      rc = fftshift(ifft(data_o.phdata(:,ii),data_o.Nfft)); 

Line  6:      % Calculate differential range for each pixel in the image (m): 

Line  7:      dist_sq = (data_o.AntX(ii)-data_o.x_mat).^2 + ... 

Line  8:                (data_o.AntY(ii)-data_o.y_mat).^2 + ... 

Line  9:                (data_o.AntZ(ii)-data_o.z_mat).^2; 

Line 10:      dR = sqrt(dist_sq) - data_o.R0(ii);  

Line 11:      % Calculate phase correction for image:  

Line 12:      phCorr = exp(1i*4*pi*data_o.minF(ii)/c*dR); 

Line 13:      % Determine which pixels fall within the range swath: 

Line 14:      I = find(and(dR > min(data_o.r_vec), dR < max(data_o.r_vec))); 

Line 15:      % Update the image using linear interpolation: 

Line 16:      dist_part = interp1(data_o.r_vec,rc,dR(I),'linear'); 

Line 17:      data_o.im_final(I) = data_o.im_final(I) + dist_part .* phCorr(I); 

Line 18:   end % ii 

 

This captures the full algorithmic processing for a single 

radar pulse. The final SAR image is obtained by processing 

a large number of radar pulses and combining them 

coherently. The MATLAB model of the SAR BP algorithm 

when run on the GOTCHA data set for the 40 degree 

azimuth scenario outlined above yields an output image 

shown in the paper. This matches very well to the reference 

image shown in [2]. 

 

B. SAR Back Projection Compute Workloads 

Analysis of the MATLAB code helps to identify the various 

compute workloads for the SAR BP algorithm as follows: 

 

• Line 5: The algorithm requires an IFFT that is applied to the 

radar phase pulse data. A single transform is computed per 

radar pulse. Its output is used to update all pixels in the target 

image. 
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• Line 7: A squared distance measure is computed between 

the antenna platform (AX,AY,AZ) and every position (x,y,z) 

in the target scene. 

• Line 10: The differential distance dR is computed as the 

difference between the target distance and the range to the 

scene center R0. This requires a sqrt() and subtraction 

operation for every pixel in the target image. 

• Line 12: A complex-valued phase correction term is 

computed as the output of a complex exp() function. Its input 

argument is the differential distance dR scaled by a number 

of the radar parameters, π, Fmin and c, the speed of light. 

Once again, these computations must be performed for every 

pixel in the target image. 

• Line 14: This indexing check ensures no computed 

distances fall outside the radar range. This may be avoided in 

practice by careful dimensioning of the solution parameters. 

• Line 16: A one-dimensional linear interpolation is made 

between the differential distance dR based on the radar range 

profile rc computed by the IFFT. 

• Line 17: Finally, each pixel in the target image is updated 

by adding the complex-valued product of the phase correction 

term and the interpolated differential distance. 

 

Based on the analysis above, the following AI Engine kernels 

are identified to service the overall set of compute workloads: 

• ifft() -- implement the IFFT transform 

• diff3dsq() -- compute the 3D squared distance 

• sqrt() -- compute the square root of the squared distance 

• dR_comp() -- compute the difference between target 

distance and the range to scene center 

• fmod_floor() -- reduce the input argument to exp() modulo 

2π (may not be obvious without the discussion below) 

• expjx() -- compute the complex exponential function 

• interp1() -- interpolate the differential distance against the 

fixed radar grid 

• bp_update() -- update the SAR target image using the phase 

correction and distance terms. 

Note that all AI Engine kernels will use single-precision 

floating-point data types, as they then may target the 

vectorized floating-point data path for the AIE architecture to 

yield good performance. 

 

Early prototyping work validates the performance of these 

algorithm variants in the context of the MATLAB system 

model using Vitis Functional Simulation. These results are 

summarized in a functional block diagram of the computation 

engine for SAR BP implemented using AI Engines, shown in 

Fig. 1 below. 

Fig. 1. SAR back projection engine block diagram 

II. SYSTEM PARTITIONING 

The performance of this new BP algorithm was evaluated 

using the system model context with AMD Vitis Functional 

Simulation of some early AI Engine implementation models. 

Having confirmed the system performance is acceptable, we 

then describe the system partitioning work to identify a 

feasible architecture, data flow, and kernel partitioning that 

leads to a workable design with attractive performance 

characteristics and cost effective resource profile. 

A. System Parameters and Performance Targets 

A first system partitioning step identifies the system 
parameters to which the SAR BP engine will be designed, 
shown in Table I below. These are influenced strongly by the 
GOTCHA data set proposed for evaluating the system 
performance. These parameters drive the overall system 
performance and cost of the solution. The computational 
complexity of the algorithm is O(N3) for N×N pixel images. 
The workload scales linearly with the number of radar pulses 
to be combined coherently. The IFFT cost varies as (N⋅log 
(N)) and can require a large memory footprint. 

TABLE I. SAR System Parameters 

Parameter Value Notes 

Image Width × Height 512 × 512 
Pixels 

Square image 

Number of  Pulses 586 Pulses For 5 azimuth angles 

Target Throughput 1 GOP/sec Rate of per-pixel back 
projection operations 

IFFT Transform Size 2048 Points Based on system model 

Final Frame Rate 6.5 fps All pulses accumulated 

Per-Pulse Frame Rate 3820 fps For a single pulse 

Image Storage in DDR 2 MB Assume 8B per pixel 

IFFT Transform rate 3820 Hz One transform per radar 
pulse 

IFFT Sampling rate 8 Msps Assume streaming solution 

Total Number of  
AI Engines 

TBD Requires prototyping 

 

B. AI Engine Prototyping 

All required compute workloads were identified during 
system modeling and validated in terms of their algorithmic 
performance, and must be quantified for their throughput 
performance and resource requirements. Results of 
prototyping are listed here and summarized in Table II below.  

• A library block was used to prototype ifft4k() quickly. This 

requires 11 tiles. It's likely the smaller ifft2k() design will 

require half as many tiles, so including this larger design will 

build margin into our resource estimate. 

• No prototype was build for the dR_comp() kernel as it 

represented a simple subtraction workload that should yield 

excellent performance. A guess of 3 tiles resources is used to 

align with the larger memory footprint found in the other 

prototyped kernels. This introduces some additional margin 

to reduce risk. 

• The sqrt_lib(), cos_lib() and sin_lib() kernels use library 

blocks for quick prototyping. 

 

https://gitenterprise.xilinx.com/mrollins/Vitis-Tutorials/blob/SAR_PLIO/AI_Engine_Development/AIE/Design_Tutorials/21-Back-Projection-SAR/images/bp-engine-block-diagram.png
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• The interp1() kernel was not prototyped because it is 

anticipated to use the underlying library block 

implementation with some custom coding to manage 

asynchronous buffers. Here it's performance and resources 

are based on the library blocks. 

 

 

 

 
TABLE II. BP Engine Resource Requirements 

Kernel Throughput 
(Mbps) 

AIE Tiles 
Used 

Notes 

ifft4k() 180 11 Trim to 5 tiles for 2K-pt 

diff3dsq() 433 2  

dR_comp() no proto 3 Estimate # tiles 

sqrt_lib() 420 2 Library 

fmod_floor() 375 1 Need to optimize 

cos_lib() 420 3 Library 

sin_lib() 420 3 Library 

interp1() 420 4 
Estimate based on 
Library 

bp_update() 620 2  

Overall 400 31 Target 4 x 8 array 

 

C. Projected System Throuput 

Given the proposed architecture of a single SAR BP engine 

as a 4×8 rectangular array of tiles capable of achieving ~400 

Msps pixel-by-pixel throughput, these assumptions can be 

used to investigate the capability of larger solutions using 

several identical instances of this baseline engine. Each 

engine instance could be assigned its own portion of the target 

output image to realize a linear scaling in throughput 

capacity. The baseline engine achieves a system frame rate of 

2.6 fps. A design with 8 engine instances can achieve a 

system frame rate of 20.8 fps in principle. 

 

D. Back Projection for SAR on AI Engines 

The SAR BP engine is built using Versal AI Engines. A 

single BP engine instance provides a complete 

implementation of the SAR BP algorithm. Multiple instances 

of the engine may be used to increase throughput by 

partitioning a non-overlapping portion of the target image to 

each engine instance. This is considered later in the paper. All 

compute workloads are partitioned to the AI Engine array. 

Details of implementation are described in the paper. The 

graph view for the SAR BP engine is shown in Fig. 2. 

 

 
Fig.2. Graph View of SAR BP Engine using AI Engines 

 

E. Resource Utilization, Throughput and Latency 

The AI Engine resources for the SAR BP engine are shown 

in Table III below. The design uses 14 tiles for compute and 

26 tiles overall for compute and buffering. Throughput and 

latency are assessed. An approximate frame rate is calculated 

to be 2.6 frames per second, which is very close to the frame 

rate predicted during system partitioning. The latency of the 

design can be considered as the time required for processing 

the full target image less the upload time assuming the image 

is produced as new IFFT radar pulses are streamed into the 

engine. In this case, the latency includes that of the IFFT 

processing plus the time required to process all the radar 

pulses. This amounts to approximately 390ms for a full 

complement of 586 radar pulses. 

 

TABLE III. AI Engine Resource Utilization 

(Single Engine Design) 

 
Tiles used for Kernels, Buffers or Nets 30 of 400 (7.5%) 

Tiles used for AI Engine Kernels 14 of 400 (3.5%) 

Tiles used for Buffers 26 of 400 (6.5%) 

Tiles used for Stream Interconnect 17 of 400 (4.3%) 

GMIO Input Channel Usage 1 of 32 

GMIO Output Channel usage 0 of 32 

PLIO Input Channel Usage 1 of 312 

PLIO Output Channel Usage 1 of 234 

DMA FIFO Buffers 0 

Interface Channels used for ADF Input / Output 3 

Interface Channels used for Trace Data 0 

 

F. Hardware 

The single engine version of the design is run in hardware on 

an AMD VCK190 evaluation board. Each of the AI Engine 

kernels shown in the system block diagram are assessed for 

performance and device utilization. 

 

G. Final SAR BP Engine Performance 

Figures 3 and 4 below compare the performance of the final 

AI Engine implementation with the ideal MATLAB baseline 

when run on the GOTCHA data set with a total of 586 radar 

pulses. This run illustrates the final performance with all the 

implementation artifacts. Quality of results indicated by the 

Structural Similarity Index Measure (SSIM) [3] metric has a 

value of 0.9965 and the Peak Signal to Noise (PSNR) has a 

https://gitenterprise.xilinx.com/mrollins/Vitis-Tutorials/blob/SAR_PLIO/AI_Engine_Development/AIE/Design_Tutorials/21-Back-Projection-SAR/images/bp-engine-graph-view.png
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value of 74.1 dB. These compare favorably to the early results 

computed during system modeling. 

 

 
 

Fig. 3. Image results compared to MATLAB model 

 
 

 

 
Fig. 4. Quality of results compared to MATLAB model 

 

III. MULTIPLE ENGINE DESIGN AND HIGHER THROUPUT 

An 8-engine design has been developed by stepping and 
repeating the single engine design described above. It achieves 
approximately 8X throughput improvement by splitting the 
target SAR image into eight pieces, and instantiating eight 
separate engines to process each piece in parallel. The design 
is constructed with eight identical graphs. There is no separate 
top-level wrapper graph here. This makes the design extension 
quite easy but does consume more device resources than 
strictly required. The 8-engine design has been implemented 
in hardware on an AMD VCK190 evaluation board. The final 
throughput has been recorded at 19.3 frames per second. This 
is only slightly lower than 8X times the frame rate achieved 
with the single engine. 

 

TABLE IV. AI Engine Resource Utilization  

(8-Engine Design) 

 
Tiles used for Kernels, Buffers or Nets 193 of 400 (48.3%) 

Tiles used for AI Engine Kernels 112 of 400 (28.0%) 

Tiles used for Buffers 208 of 400 (52.0%) 

Tiles used for Stream Interconnect 92 of 400 (23.0%) 

GMIO Input Channel Usage 8 of 32 

GMIO Output Channel usage 0 of 32 

PLIO Input Channel Usage 8 of 312 

PLIO Output Channel Usage 8 of 234 

DMA FIFO Buffers 0 

Interface Channels used for ADF Input / Output 24 

Interface Channels used for Trace Data 0 

 
  

 

A. Opportunities for Optimization 

The 8-engine design was achieved quickly by instantiating 

the single engine design repeatedly. This creates a few 

opportunities for optimization: 

 

• Each engine is using its own IFFT engine to transform the 

radar pulse. In reality, this operation is common to all engines 

and could be done with a single IFFT graph. The output of 

that common graph could then be broadcast to all 8 engines. 

This would save seven instances of 6 tiles or  approximately 

40 tiles. It will also remove 7 GMIOs from the design which 

will dramatically reduce the bandwidth required by the 

internal Network on Chip (NoC) to deliver the radar pulses to 

the AI Engine array from DDR. 

• Constructing an 8-engine design with a single IFFT would 

require some code restructuring since routing the IFFT graph 

output to all engines would require a new top-level graph. 

This complicates the "Stamp & Repeat" approach to 

placement but would be manageable. 

• The consumption of internal memory can in principle be 

reduced by partitioning the image buffers to external DDR 

memory instead of the internal memory, allowing the internal 

memory to be used for other functions. In this case, the radar 

processing would require eight GMIO pairs, one pair for each 

engine. The data flow would proceed from DDR, streaming 

the input image to each engine over the NoC to the AIE array, 

updating each image segment by its engine, then streaming 

the output image back to DDR over the NoC. This would 

remove all PL resources from the design -- a significant 
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savings and simplification. The DDR buffer design needs to 

be optimized to maximize the burst bandwidth available to 

each engine. 

 

IV. CONCLUSION 

This paper presents a detailed design of a Back-Projection 

engine for Synthetic Aperture Radar using VLIW vector 

processors in the AMD Versal adaptive SoC architecture. 

Using the GOTCHA data set with 586 radar pulses, the 

design achieves ~2.5 frames per second for a 512×512 target 

image with fewer than 32 AI Engine tiles. Eight instances of 

the engine achieve nearly an 8-fold increase in throughput. 

Full device-level designs for both the single engine and 8-

engine versions of the design are available as a reference for 

designers who are seeking to integrate on-orbit SAR back-

projection processing into a single integrated circuit, 

achieving unprecedented levels of integration and 

reconfigurability for such an application. The paper also 

explores opportunities for further design optimization to 

more efficiently use the available programmable logic 

resources of the target adaptive SoC, and subsequently reduce 

power consumption. 
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