

XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

[Public]

Synthetic Aperture Radar Back-Projection

using Adaptive Intelligent Engines

in AMD Versal™ Adaptive SoCs

Mark Rollins

Enbedded Business Group,

Advanced Micro Devices

Ottawa, ON, Canada

mark.rollins@amd.com

Ken O’Neill

Embedded Business Group,

Advanced Micro Devices

San Jose, CA, USA

koneill@amd.com

Abstract— Synthetic Aperture Radar (SAR) [1] creates a 2D

or 3D image of stationary objects or landscapes from a moving

platform such as an airplane or spacecraft. The distance

travelled over the target by the platform creates a large

synthetic antenna aperture that mimics a much larger antenna

array yielding superior image resolution. Signal processing

combines coherently many radar pulses collected from multiple

platform positions above the target. Many algorithms exist to

perform SAR. The Back-Projection (BP) algorithm for SAR is

one of the easiest to understand. While the computational cost is

high, BP lends itself naturally to parallel processing [2] and finds

use in practical systems. This paper describes a reference design

for BP-based SAR on Very Long Instruction Word (VLIW)

vector processors in the form of the Adaptive Intelligent Engines

(AI Engines, AIE) embedded in the AMD Versal XQRVC1902

adaptive SoC, which is qualified for space flight. Using the

GOTCHA data set [1] with 586 radar pulses, the SAR engine

achieves ~2.5 frames per second for a 512×512 image with fewer

than 32 AIE tiles. With eight instances of the BP engine, the

design achieves close to 20 frames per second using around 217

AIE tiles in an AMD Versal VC1902 adaptive SoC.

The BP algorithm contains a half-dozen workloads with

different characteristics that are combined together into an

efficient data flow. The "GOTCHA Volumetric SAR Data Set"

was captured by the U.S. Air Force Sensor Data Management

System and is made available for public download. The

repository consists of SAR phase history data collected at X-

band with a 640 MHz bandwidth with full azimuth coverage at

8 different elevation angles with full polarization. The target

scene consists of many civilian vehicles and calibration targets.

Keywords—SAR, radar, Versal, Adaptive SoC

I. SYSTEM MODELING

We describe the development of the MATLAB system
model of the SAR Back-Projection algorithm implemented on
the Versal adaptive SoC AI Engines. The purpose of the
system model is three-fold:

1. Capture the ideal algorithm model and evaluate its
baseline system performance using the GOTCHA data set.

2. Identify the compute workloads required for the AI
Engine implementation.

3. Model any algorithmic imperfections induced by the
AI Engine solution and assess their performance impact.

We start with the baseline MATLAB model for SAR
published by Gorham & Moore in [2]. This model is well-
known and accepted in the SAR community and provides a
solid baseline, and also uses the GOTCHA data set for
comparison purposes..

A. Inner Loop Analysis

The inner loop of the system level MATLAB model as

outlined in [2] is shown in the following block code:

Line 1: data_o.r_vec = linspace(-data_o.Nfft/2,data_o.Nfft/2-1,

 data_o.Nfft)*data_o.maxWr/data_o.Nfft;

Line 2: % Loop through every pulse:

Line 3: for ii = 1 : data_o.Np

Line 4: % Form the range profile with zero padding added:

Line 5: rc = fftshift(ifft(data_o.phdata(:,ii),data_o.Nfft));

Line 6: % Calculate differential range for each pixel in the image (m):

Line 7: dist_sq = (data_o.AntX(ii)-data_o.x_mat).^2 + ...

Line 8: (data_o.AntY(ii)-data_o.y_mat).^2 + ...

Line 9: (data_o.AntZ(ii)-data_o.z_mat).^2;

Line 10: dR = sqrt(dist_sq) - data_o.R0(ii);

Line 11: % Calculate phase correction for image:

Line 12: phCorr = exp(1i*4*pi*data_o.minF(ii)/c*dR);

Line 13: % Determine which pixels fall within the range swath:

Line 14: I = find(and(dR > min(data_o.r_vec), dR < max(data_o.r_vec)));

Line 15: % Update the image using linear interpolation:

Line 16: dist_part = interp1(data_o.r_vec,rc,dR(I),'linear');

Line 17: data_o.im_final(I) = data_o.im_final(I) + dist_part .* phCorr(I);

Line 18: end % ii

This captures the full algorithmic processing for a single

radar pulse. The final SAR image is obtained by processing

a large number of radar pulses and combining them

coherently. The MATLAB model of the SAR BP algorithm

when run on the GOTCHA data set for the 40 degree

azimuth scenario outlined above yields an output image

shown in the paper. This matches very well to the reference

image shown in [2].

B. SAR Back Projection Compute Workloads

Analysis of the MATLAB code helps to identify the various

compute workloads for the SAR BP algorithm as follows:

• Line 5: The algorithm requires an IFFT that is applied to the

radar phase pulse data. A single transform is computed per

radar pulse. Its output is used to update all pixels in the target

image.

[Public]

• Line 7: A squared distance measure is computed between

the antenna platform (AX,AY,AZ) and every position (x,y,z)

in the target scene.

• Line 10: The differential distance dR is computed as the

difference between the target distance and the range to the

scene center R0. This requires a sqrt() and subtraction

operation for every pixel in the target image.

• Line 12: A complex-valued phase correction term is

computed as the output of a complex exp() function. Its input

argument is the differential distance dR scaled by a number

of the radar parameters, π, Fmin and c, the speed of light.

Once again, these computations must be performed for every

pixel in the target image.

• Line 14: This indexing check ensures no computed

distances fall outside the radar range. This may be avoided in

practice by careful dimensioning of the solution parameters.

• Line 16: A one-dimensional linear interpolation is made

between the differential distance dR based on the radar range

profile rc computed by the IFFT.

• Line 17: Finally, each pixel in the target image is updated

by adding the complex-valued product of the phase correction

term and the interpolated differential distance.

Based on the analysis above, the following AI Engine kernels

are identified to service the overall set of compute workloads:

• ifft() -- implement the IFFT transform

• diff3dsq() -- compute the 3D squared distance

• sqrt() -- compute the square root of the squared distance

• dR_comp() -- compute the difference between target

distance and the range to scene center

• fmod_floor() -- reduce the input argument to exp() modulo

2π (may not be obvious without the discussion below)

• expjx() -- compute the complex exponential function

• interp1() -- interpolate the differential distance against the

fixed radar grid

• bp_update() -- update the SAR target image using the phase

correction and distance terms.

Note that all AI Engine kernels will use single-precision

floating-point data types, as they then may target the

vectorized floating-point data path for the AIE architecture to

yield good performance.

Early prototyping work validates the performance of these

algorithm variants in the context of the MATLAB system

model using Vitis Functional Simulation. These results are

summarized in a functional block diagram of the computation

engine for SAR BP implemented using AI Engines, shown in

Fig. 1 below.

Fig. 1. SAR back projection engine block diagram

II. SYSTEM PARTITIONING

The performance of this new BP algorithm was evaluated

using the system model context with AMD Vitis Functional

Simulation of some early AI Engine implementation models.

Having confirmed the system performance is acceptable, we

then describe the system partitioning work to identify a

feasible architecture, data flow, and kernel partitioning that

leads to a workable design with attractive performance

characteristics and cost effective resource profile.

A. System Parameters and Performance Targets

A first system partitioning step identifies the system
parameters to which the SAR BP engine will be designed,
shown in Table I below. These are influenced strongly by the
GOTCHA data set proposed for evaluating the system
performance. These parameters drive the overall system
performance and cost of the solution. The computational
complexity of the algorithm is O(N3) for N×N pixel images.
The workload scales linearly with the number of radar pulses
to be combined coherently. The IFFT cost varies as (N⋅log
(N)) and can require a large memory footprint.

TABLE I. SAR System Parameters

Parameter Value Notes

Image Width × Height 512 × 512
Pixels

Square image

Number of Pulses 586 Pulses For 5 azimuth angles

Target Throughput 1 GOP/sec Rate of per-pixel back
projection operations

IFFT Transform Size 2048 Points Based on system model

Final Frame Rate 6.5 fps All pulses accumulated

Per-Pulse Frame Rate 3820 fps For a single pulse

Image Storage in DDR 2 MB Assume 8B per pixel

IFFT Transform rate 3820 Hz One transform per radar
pulse

IFFT Sampling rate 8 Msps Assume streaming solution

Total Number of
AI Engines

TBD Requires prototyping

B. AI Engine Prototyping

All required compute workloads were identified during
system modeling and validated in terms of their algorithmic
performance, and must be quantified for their throughput
performance and resource requirements. Results of
prototyping are listed here and summarized in Table II below.

• A library block was used to prototype ifft4k() quickly. This

requires 11 tiles. It's likely the smaller ifft2k() design will

require half as many tiles, so including this larger design will

build margin into our resource estimate.

• No prototype was build for the dR_comp() kernel as it

represented a simple subtraction workload that should yield

excellent performance. A guess of 3 tiles resources is used to

align with the larger memory footprint found in the other

prototyped kernels. This introduces some additional margin

to reduce risk.

• The sqrt_lib(), cos_lib() and sin_lib() kernels use library

blocks for quick prototyping.

https://gitenterprise.xilinx.com/mrollins/Vitis-Tutorials/blob/SAR_PLIO/AI_Engine_Development/AIE/Design_Tutorials/21-Back-Projection-SAR/images/bp-engine-block-diagram.png

[Public]

• The interp1() kernel was not prototyped because it is

anticipated to use the underlying library block

implementation with some custom coding to manage

asynchronous buffers. Here it's performance and resources

are based on the library blocks.

TABLE II. BP Engine Resource Requirements

Kernel Throughput
(Mbps)

AIE Tiles
Used

Notes

ifft4k() 180 11 Trim to 5 tiles for 2K-pt

diff3dsq() 433 2

dR_comp() no proto 3 Estimate # tiles

sqrt_lib() 420 2 Library

fmod_floor() 375 1 Need to optimize

cos_lib() 420 3 Library

sin_lib() 420 3 Library

interp1() 420 4
Estimate based on
Library

bp_update() 620 2

Overall 400 31 Target 4 x 8 array

C. Projected System Throuput

Given the proposed architecture of a single SAR BP engine

as a 4×8 rectangular array of tiles capable of achieving ~400

Msps pixel-by-pixel throughput, these assumptions can be

used to investigate the capability of larger solutions using

several identical instances of this baseline engine. Each

engine instance could be assigned its own portion of the target

output image to realize a linear scaling in throughput

capacity. The baseline engine achieves a system frame rate of

2.6 fps. A design with 8 engine instances can achieve a

system frame rate of 20.8 fps in principle.

D. Back Projection for SAR on AI Engines

The SAR BP engine is built using Versal AI Engines. A

single BP engine instance provides a complete

implementation of the SAR BP algorithm. Multiple instances

of the engine may be used to increase throughput by

partitioning a non-overlapping portion of the target image to

each engine instance. This is considered later in the paper. All

compute workloads are partitioned to the AI Engine array.

Details of implementation are described in the paper. The

graph view for the SAR BP engine is shown in Fig. 2.

Fig.2. Graph View of SAR BP Engine using AI Engines

E. Resource Utilization, Throughput and Latency

The AI Engine resources for the SAR BP engine are shown

in Table III below. The design uses 14 tiles for compute and

26 tiles overall for compute and buffering. Throughput and

latency are assessed. An approximate frame rate is calculated

to be 2.6 frames per second, which is very close to the frame

rate predicted during system partitioning. The latency of the

design can be considered as the time required for processing

the full target image less the upload time assuming the image

is produced as new IFFT radar pulses are streamed into the

engine. In this case, the latency includes that of the IFFT

processing plus the time required to process all the radar

pulses. This amounts to approximately 390ms for a full

complement of 586 radar pulses.

TABLE III. AI Engine Resource Utilization

(Single Engine Design)

Tiles used for Kernels, Buffers or Nets 30 of 400 (7.5%)

Tiles used for AI Engine Kernels 14 of 400 (3.5%)

Tiles used for Buffers 26 of 400 (6.5%)

Tiles used for Stream Interconnect 17 of 400 (4.3%)

GMIO Input Channel Usage 1 of 32

GMIO Output Channel usage 0 of 32

PLIO Input Channel Usage 1 of 312

PLIO Output Channel Usage 1 of 234

DMA FIFO Buffers 0

Interface Channels used for ADF Input / Output 3

Interface Channels used for Trace Data 0

F. Hardware

The single engine version of the design is run in hardware on

an AMD VCK190 evaluation board. Each of the AI Engine

kernels shown in the system block diagram are assessed for

performance and device utilization.

G. Final SAR BP Engine Performance

Figures 3 and 4 below compare the performance of the final

AI Engine implementation with the ideal MATLAB baseline

when run on the GOTCHA data set with a total of 586 radar

pulses. This run illustrates the final performance with all the

implementation artifacts. Quality of results indicated by the

Structural Similarity Index Measure (SSIM) [3] metric has a

value of 0.9965 and the Peak Signal to Noise (PSNR) has a

https://gitenterprise.xilinx.com/mrollins/Vitis-Tutorials/blob/SAR_PLIO/AI_Engine_Development/AIE/Design_Tutorials/21-Back-Projection-SAR/images/bp-engine-graph-view.png

[Public]

value of 74.1 dB. These compare favorably to the early results

computed during system modeling.

Fig. 3. Image results compared to MATLAB model

Fig. 4. Quality of results compared to MATLAB model

III. MULTIPLE ENGINE DESIGN AND HIGHER THROUPUT

An 8-engine design has been developed by stepping and
repeating the single engine design described above. It achieves
approximately 8X throughput improvement by splitting the
target SAR image into eight pieces, and instantiating eight
separate engines to process each piece in parallel. The design
is constructed with eight identical graphs. There is no separate
top-level wrapper graph here. This makes the design extension
quite easy but does consume more device resources than
strictly required. The 8-engine design has been implemented
in hardware on an AMD VCK190 evaluation board. The final
throughput has been recorded at 19.3 frames per second. This
is only slightly lower than 8X times the frame rate achieved
with the single engine.

TABLE IV. AI Engine Resource Utilization

(8-Engine Design)

Tiles used for Kernels, Buffers or Nets 193 of 400 (48.3%)

Tiles used for AI Engine Kernels 112 of 400 (28.0%)

Tiles used for Buffers 208 of 400 (52.0%)

Tiles used for Stream Interconnect 92 of 400 (23.0%)

GMIO Input Channel Usage 8 of 32

GMIO Output Channel usage 0 of 32

PLIO Input Channel Usage 8 of 312

PLIO Output Channel Usage 8 of 234

DMA FIFO Buffers 0

Interface Channels used for ADF Input / Output 24

Interface Channels used for Trace Data 0

A. Opportunities for Optimization

The 8-engine design was achieved quickly by instantiating

the single engine design repeatedly. This creates a few

opportunities for optimization:

• Each engine is using its own IFFT engine to transform the

radar pulse. In reality, this operation is common to all engines

and could be done with a single IFFT graph. The output of

that common graph could then be broadcast to all 8 engines.

This would save seven instances of 6 tiles or approximately

40 tiles. It will also remove 7 GMIOs from the design which

will dramatically reduce the bandwidth required by the

internal Network on Chip (NoC) to deliver the radar pulses to

the AI Engine array from DDR.

• Constructing an 8-engine design with a single IFFT would

require some code restructuring since routing the IFFT graph

output to all engines would require a new top-level graph.

This complicates the "Stamp & Repeat" approach to

placement but would be manageable.

• The consumption of internal memory can in principle be

reduced by partitioning the image buffers to external DDR

memory instead of the internal memory, allowing the internal

memory to be used for other functions. In this case, the radar

processing would require eight GMIO pairs, one pair for each

engine. The data flow would proceed from DDR, streaming

the input image to each engine over the NoC to the AIE array,

updating each image segment by its engine, then streaming

the output image back to DDR over the NoC. This would

remove all PL resources from the design -- a significant

[Public]

savings and simplification. The DDR buffer design needs to

be optimized to maximize the burst bandwidth available to

each engine.

IV. CONCLUSION

This paper presents a detailed design of a Back-Projection

engine for Synthetic Aperture Radar using VLIW vector

processors in the AMD Versal adaptive SoC architecture.

Using the GOTCHA data set with 586 radar pulses, the

design achieves ~2.5 frames per second for a 512×512 target

image with fewer than 32 AI Engine tiles. Eight instances of

the engine achieve nearly an 8-fold increase in throughput.

Full device-level designs for both the single engine and 8-

engine versions of the design are available as a reference for

designers who are seeking to integrate on-orbit SAR back-

projection processing into a single integrated circuit,

achieving unprecedented levels of integration and

reconfigurability for such an application. The paper also

explores opportunities for further design optimization to

more efficiently use the available programmable logic

resources of the target adaptive SoC, and subsequently reduce

power consumption.

REFERENCES

[1] U.S. Air Force, "GOTCHA Volumetric SAR Data Set", U.S. Air Force

Sensor Data Management System.J. Clerk Maxwell, A Treatise on
Electricity and Magnetism, 3rd ed., vol. 2. Oxford: Clarendon, 1892,
pp.68–73.

[2] L.A. Gorham & L.J. Moore, "SAR Image Formation Toolbox for
MATLAB", SPIE Defense, Security, and Sensing, Orlando, FL, 2010.

[3] Wikipedia, "Structural Similarity Index Measure".

[4] AMD Tutorial on SAR Back Projection
https://github.com/Xilinx/Vitis-
Tutorials/tree/2025.1/AI_Engine_Development/AIE/Design_Tutorials
/21-Back-Projection-SAR

https://github.com/Xilinx/Vitis-Tutorials/tree/2025.1/AI_Engine_Development/AIE/Design_Tutorials/21-Back-Projection-SAR
https://github.com/Xilinx/Vitis-Tutorials/tree/2025.1/AI_Engine_Development/AIE/Design_Tutorials/21-Back-Projection-SAR
https://github.com/Xilinx/Vitis-Tutorials/tree/2025.1/AI_Engine_Development/AIE/Design_Tutorials/21-Back-Projection-SAR

