
END-TO-END VESSEL SEGMENTATION FROM RAW SAR SIGNALS: A PRELIMINARY STUDY

EDHPC conference – October 16th, 2025

Author: Alessio Auddino

Co-authors: Roberto Del Prete (ESRIN), Federica Biancucci (TASI), Edoardo Montecchiani (TASI), Oreste Trematerra (TASI),

Gabriele Meoni (ESRIN), Nicolas Longépé (ESRIN).

TABLE OF CONTENTS

Introduction

- SAR technology: pro and cons
- EO and SOTA analysis
- Ship detection for maritime surveillance

Data Handling

- Tile extraction
- Pre-processing pipeline
- Morphological operations
- Data augmentation

Deep Learning (DL) Model

- Model architecture
- Metrics description
- Results and evaluation

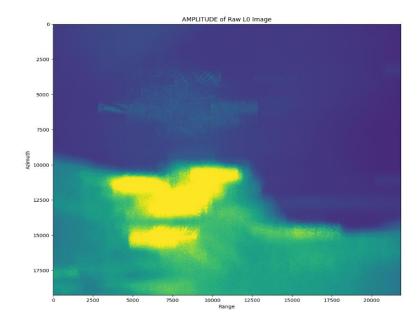
Conclusions & Future Work

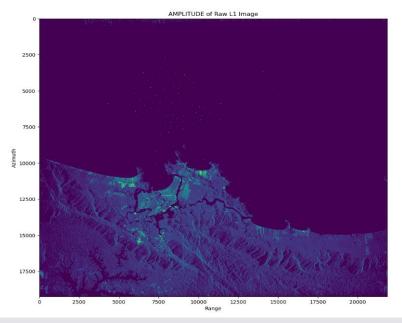
Next steps and challenges

SAR: PROS AND CONS

/// SAR (Synthetic Aperture Radar) is an imaging radar in C-band used for Earth Observation (EO) applications where electromagnetic waves are transmitted and backscattered echoes are recorded and combined to reconstruct the scene as in virtual aperture.

/// PROS

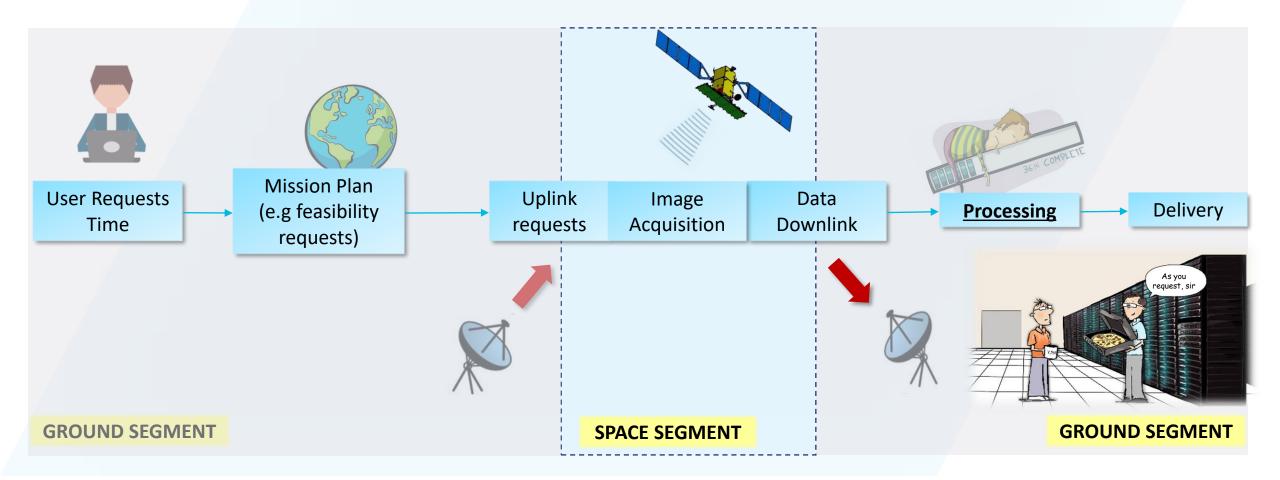

- Works under any weather and light conditions
- Easy to acquire
- Constantly updated through web portals


/// CONS

- Highly-dimensional complex data stored on-board
- Processing and transmission of observed data is expensive

/// Raw SAR data can be processed at many levels

- L0 products (aka decompressed)
- L1 products (aka focused)



EO AND STATE OF THE ART ANALYSIS

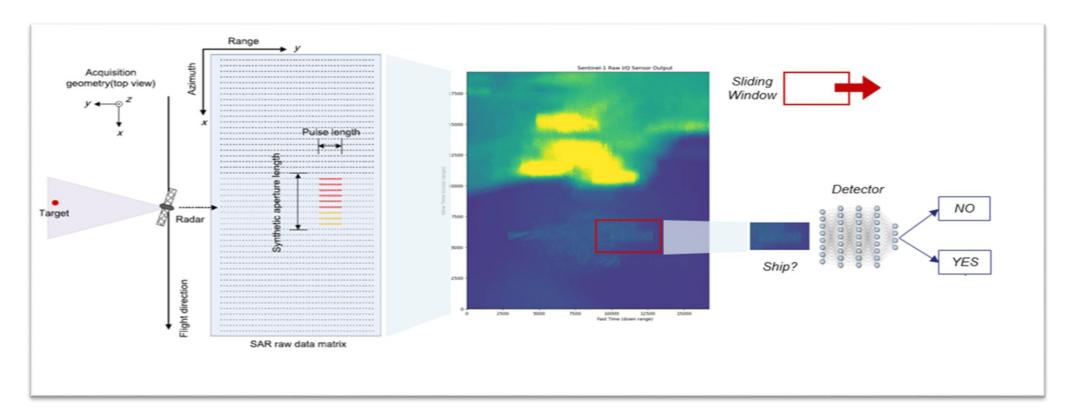
EO – Legacy Approach

End-to-end time from user requests to data delivery is composed by the different steps:

Date: 13/10/2025

Ref:

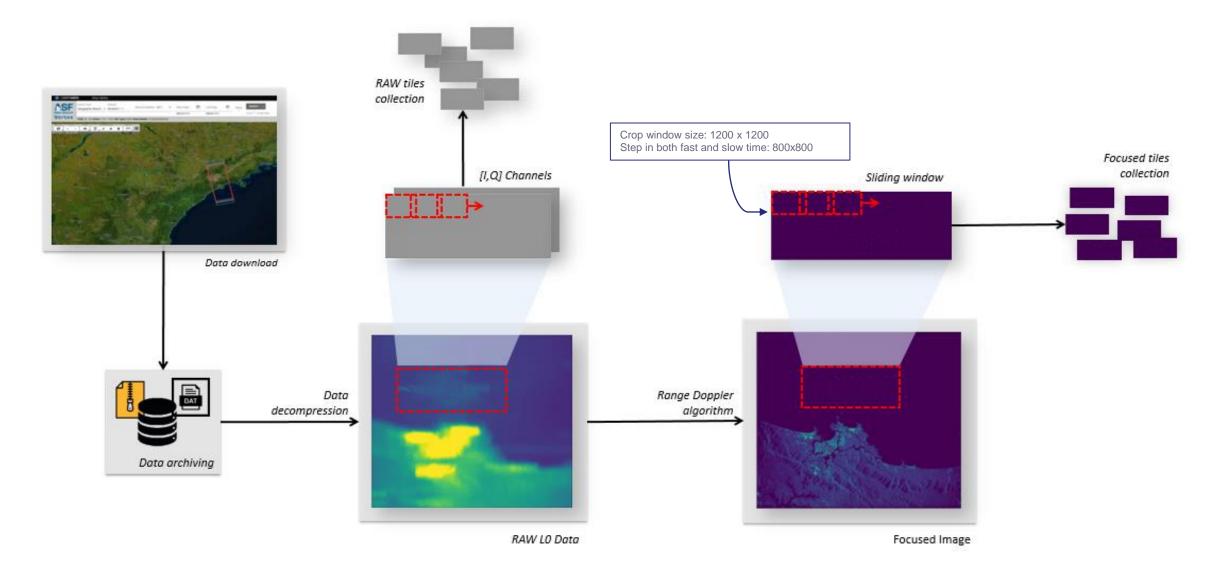
/// 4



SHIP DETECTION FOR MARITIME SURVEILLANCE

I Enhancing AI algorithms and NNs to optimize the process ON BOARD!

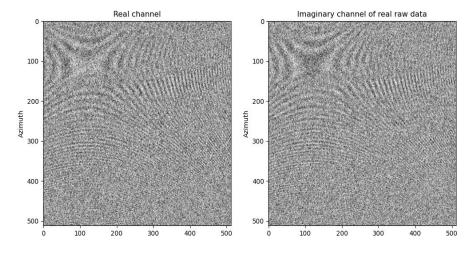
/// Use case:


- Detect and localize vessels from decompressed image in (almost) real time
- Exploit deep learning with sar technology in the context of Sentinel-1 mission

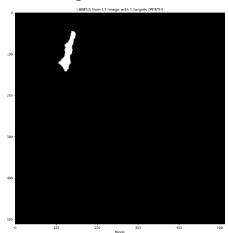
Date: 13/10/2025

THALES ALENIA SPACE CONFIDENTIAL

DATA HANDLING: TILE EXTRACTION & PROCESSING


Date: 13/10/2025

Ref:


DATA HANDLING: OVERVIEW ON PRE-PROCESSING

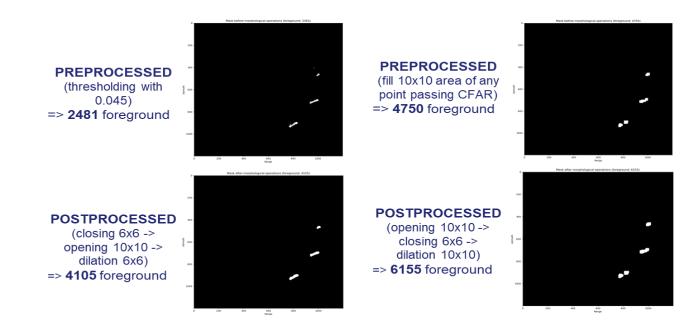
/// Finally, we have created input images and ground truth masks as follows:

• on decompressed image (2D inputs): channel split (I,Q) -> crop with sliding window

on <u>focused image (ground truth)</u>: CFAR -> thresholding -> ...

DATA HANDLING: MORPHOLOGICAL OPERATIONS

/// One major problem: CLASS IMBALANCE!


• The number of foregrounds is way much lower than the background, thus the model will struggle to recognize groups of pixels as target in the scene!

/// Morphological operations:

- **EROSION**: reduces size of targets in the binary image by removing pixels from the boundaries of the object.
- **DILATION**: increases size of targets in the binary image by adding pixels to the boundaries of the object.
- **OPENING**: combines erosion and dilation, is used to remove small portions from the image and fill small gaps in the objects.
- CLOSING: combines erosion and dilation, is used to remove small holes and connect small gaps between objects.

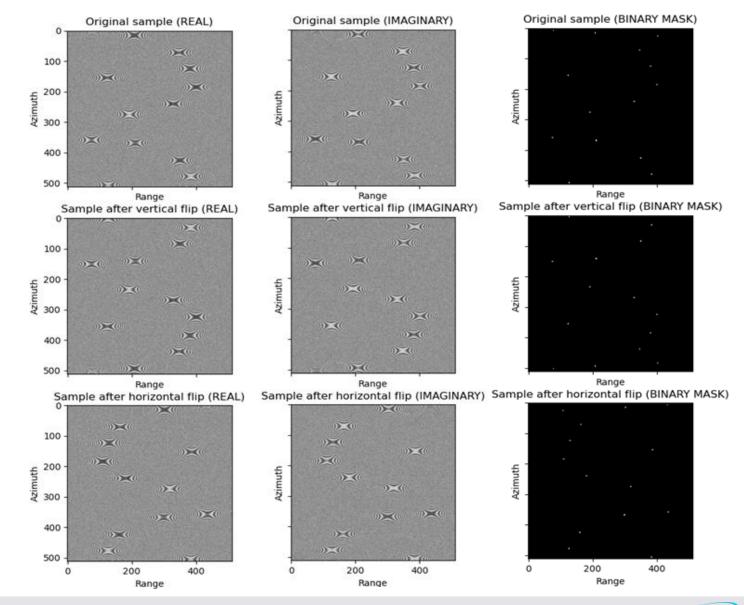
/// The following operations are applied:

- DILATION 6x6 -> CLOSING 10x10 -> EROSION 4x4 in preprocessing (dataset creation)
- EROSION 4x4 -> OPENING 6x6 -> CLOSING 10x10 -> DILATION 3x3 in postprocessing (reduce outliers prediction)

/// 8

Thales Alenia Space

DATA HANDLING: DATA AUGMENTATION


/// We apply the following transforms:

- Per-channel normalization
- Vertical flipping
- Horizontal flipping
- Resize at (512, 512)

/// Original samples are kept along with the transformed ones!

/// Final dataset size is tripled

/ From 1648 to 4944 samples

Date: 13/10/2025

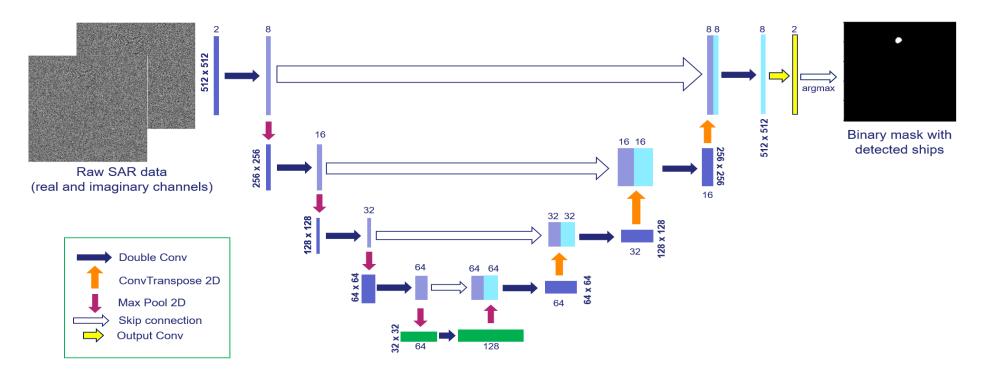
Ret:

/// 9

DL MODEL: DATASET CONSTRUCTION

Acquisitions are downloaded from ASF Data Search DAAC web portal

- 68 coastline acquisitions with different polarization and world-wide coverage
 - 34 over Houston (HH,S3), 14 over Guyana (VV,S3), 18 over Mauritania (VV,S3), 3 over Perth (HH,S5), 1 over San Paolo (HH,S3)
- / Extracted tiles: 1648, where:
 - 1394 from Houston (used for training), 105 from Guyana, 82 from Mauritania, 56 from San Paolo, 11 from Perth
- / Splitting after augmentation: 4182 for testing, 384 for validation, 126 for testing
- / 239 tiles from 8 acquisitions above Bangladesh coastline are used to validate the model on the edge



13/10/2025

Date:

DL MODEL: ARCHITECTURE & HYPERPARAMETERS

- **LOSS FUNCTION**: focal loss, α = proportion of foreground, γ = 2
- **OPTIMIZER:** AdamW with different configurations of learning rate and weight decay
 - Learning rates: $5e^{-4}$, $1e^{-4}$, $5e^{-5}$, $1e^{-5}$
 - Weight decays: $0.5e^{-4}$, $1e^{-4}$, $4e^{-5}$
 - Batch sizes: 4, 8, 16, 32
- /// Model hyperparameters must be optimized to learn effectively from real imagery!
 - Dropout lowered to 0.1
 - Adjust internal parameters (padding, kernel sizes)
 - Training phase lasting for 50 epochs

DL MODEL: METRICS

/// Weighted F1 score not precise -> <u>RELAXED F1 SCORE!</u>

$$F1_{rel} = \frac{2TP}{2TP + FP + FN}$$

<u>Starting from ground truth</u>, we compute structures and their center of mass. If a center of mass lies inside a blob in the prediction, it is considered as TP, otherwise it is considered as a TN. If some labels are not mapped in the prediction, consider them as FN.

/// Additional performance metrics: <u>IoU SCORE & DICE SCORE</u>

IoU score

$$IOU = \frac{\text{area of overlap}}{\text{area of union}} = \frac{}{}$$

Dice score

$$DSC = 2\frac{A \cap B}{A + B}$$

DL MODEL: QUANTITATIVE RESULTS (1)

- Top 5 model configs with depth 4
- We consider the **relaxed F1 score** as main value!

	Learning rate	Weight Decay	Batch size	Balanced Accuracy	Relaxed F1	Dice score	loU score
***************************************	$1e^{-4}$	0	8	.8852	.7502	.3138	.4558
*2	5e ⁻⁴	5e ⁻⁴	8	.8836	.7370	.3314	.4726
* 3 *	5e ⁻⁴	5e ⁻⁴	4	.8691	.7360	.3361	.4798
	1e ⁻⁴	0	32	.8619	.7328	.3670	.5074
	5e ⁻⁴	$4e^{-5}$	16	.8756	.7244	.3451	.4874

DL MODEL: QUANTITATIVE RESULTS (2)

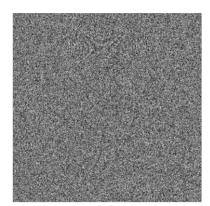
- Top 5 model configs with depth 5
- We consider the **relaxed F1 score** as main value!

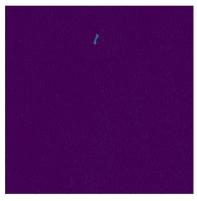
* 1
4
@

Learning rate	Weight decay	Batch size	Balanced Accuracy	Relaxed F1	Dice score	loU score
5e ⁻⁴	5e ⁻⁴	32	.8721	.7280	.3746	.5172
5e ⁻⁵	$1e^{-4}$	4	.8411	.7212	.3692	.5110
1e ⁻⁴	4e ⁻⁵	16	.8783	.7134	.3344	.4757
5e ⁻⁴	5e ⁻⁴	8	.8843	.7039	.3226	.4661
$1e^{-4}$	$4e^{-5}$	16	.8399	.6916	.3396	.4786

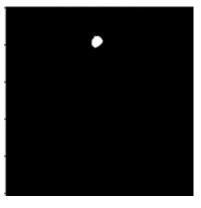
DL MODEL: QUANTITATIVE RESULTS (3)

- Top 5 model configs with depth 6
- We consider the **relaxed F1 score** as main value!

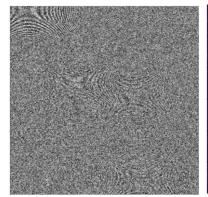

	Learning rate	Weight Decay	Batch size	Balanced Accuracy	Relaxed F1	Dice score	loU score
***************************************	$1e^{-4}$	0	8	.8349	.7258	.3889	.5271
*2	5e ⁻⁴	$4e^{-5}$	4	.8911	.6894	.3164	.4582
**************************************	1e ⁻⁴	$1e^{-4}$	4	.8677	.6888	.3579	.5019
	1e ⁻⁴	$5e^{-4}$	8	.8683	.6844	.3197	.4621
	5e ⁻⁵	$4e^{-5}$	4	.8753	.6798	.3245	.4654



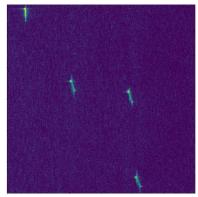
DL MODEL: QUALITATIVE RESULTS


SINGLE TARGET SCENARIO

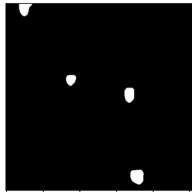
Decompressed input tile (real channel)



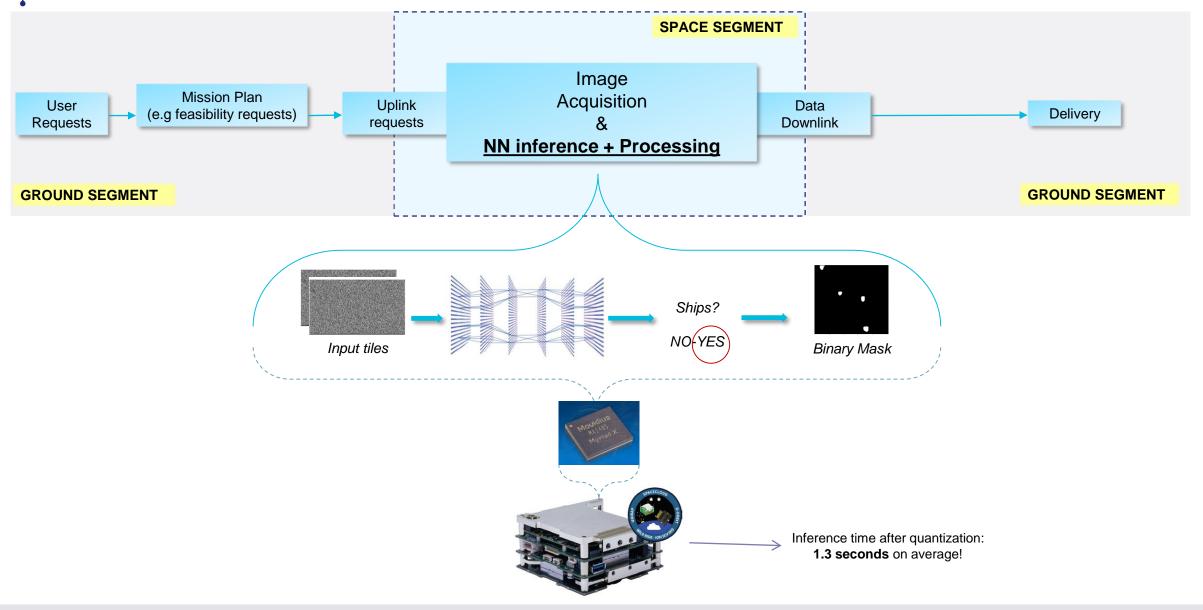
Focused patch (ground truth)



Model output (prediction)

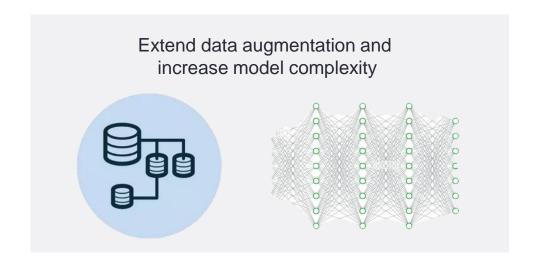

MULTIPLE TARGET SCENARIO

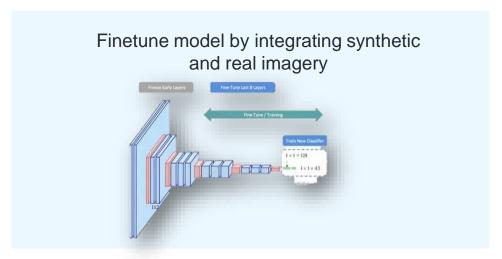
Decompressed input tile (real channel)

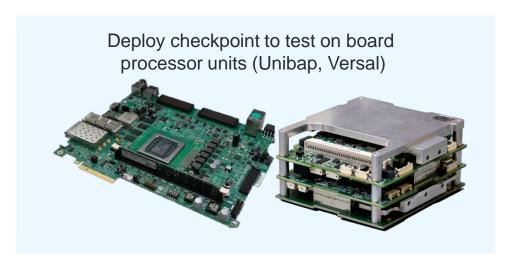


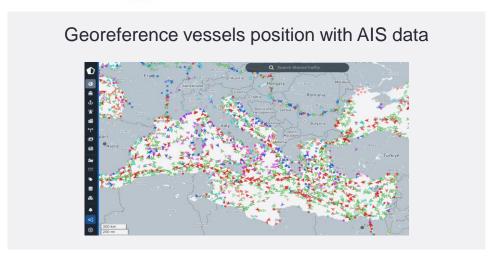
Focused patch (ground truth)

Model output (prediction)


RECAP OF END-TO-END PIPELINE




Date: 13/10/2025



CONCLUSIONS & FUTURE WORKS

Date: 13/10/2025

Ref:

/// 18

/// 19

Template: 83230347-DOC-TAS-EN-006

PROPRIETARY INFORMATION
© 2019 Thales Alenia Space

Thales Alenia Space OPEN

Thales Alenia

*This / Leaverto corpsey

Space