

On-orbit data processing utilizing FPGA-accelerated deep learning models

Filip Novoselnik, Marko Mamić, Ante Renić, Filip Gembec, Ivica Skokić

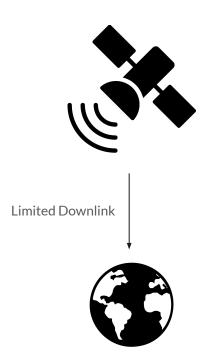
EDHPC 2025, 13 - 17 October, Elche, Spain

Agenda

- 1. Motivation & Challenges
- 2. SDK Overview
- 3. Model Deployment
- 4. Applications & Results
- 5. Data Processing Unit
- 6. IP Cores
- 7. Missions & Roadmap

Challenges

High-resolution sensors


Even small satellites can generate terabytes of imagery, quickly exceeding onboard storage capacity.

Downlink bottlenecks

Limited bandwidth creates a growing gap between data acquisition and data return.

Lost value

Critical data is often delayed or discarded, reducing mission responsiveness and impact.

Onboard processing

Save bandwidth. Cut costs. Enable autonomy.

Efficient bandwidth use

Prioritize and downlink only what matters, drastically reducing data volume.

Lower mission costs

Minimize ground segment load, shorten analysis cycles, and reduce operational expenses.

Autonomous Operations

Enable real-time onboard decision-making for time-critical events.

Faster, Smarter Missions

Deliver insights directly from orbit — not hours or days later.

Why FPGAs

Inherent limitations

Selecting the right hardware for on-orbit AI requires balancing high throughput with a constrained power budget

CPU

Not parallel enough for high performance

GPU

High parallelization performance

Prohibitive power consumption for some satellites

FPGA

Custom parallelism

Low power consumption

Reconfigurable

Space heritage

End-to-end SDK Pipeline

Deployment of AI models

This requires domain knowledge from both the data science domain and hardware engineering with emphasis on FPGA development. It's a multi-step process that represents a significant knowledge barrier for satellite developers, requiring specialists in both fields.

Supported models and hardware

Supported FPGAs

AMD Zynq 7000 series

AMD Zynq UltraScale+ MPSoC

AMD UltraScale

AMD 7 Series

Supported AI/ML models

Classification

ResNet - CNN with residual connections

Segmentation

ResNet/UNet, FCN – pixel-wise mapping

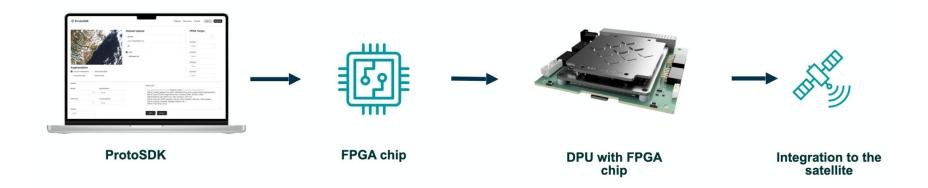
Object Detection

YOLO, SSD – real-time multi-scale detection

Super-Resolution

ESPCN – efficient image upscaling

Lightweight Models

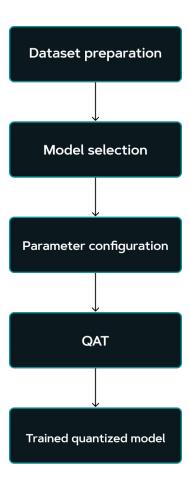

MobileNet – optimized for low-power compute

SDK

SDK is a low-code software framework for deployment of AI models on FPGAs.

Data Processing Unit (DPU)

Data Processing Unit runs AI models onboard and enables seamless integration of AI capabilities into satellite systems.

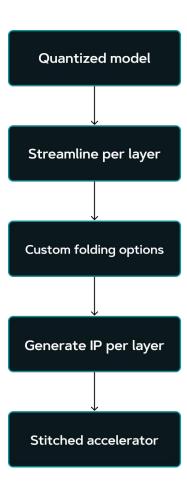


Model training and quantization

- Core functional block of the SDK
- Parse user configuration
- Augment dataset
- Select model architecture
- QAT
- Exports into QONNX
- Creates necessary input artifacts

Output

Creates a QONNX neural network ready for further transformations

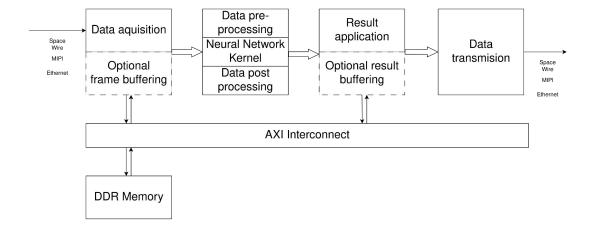


Custom FINN pipeline

- Manages transformation Model to accelerator
- Converts quantized network into streaming dataflow
- Creates distinct IP blocks for each layer
- Modifications allow for custom resource utilization
- Individual IPs are stitched together to form accelerator core
- The core is designed to be added to integration templates

Output

Accelerator core ready to be added to integration template

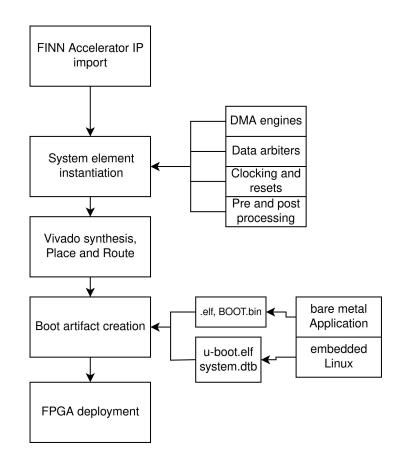

Integration templates

Templates define:

- External DDR memory
- AXI-based interconnects
- DMA engines and peripherals
- CPU firmware or Linux runtime

Prepared for:

- Zynq UltraScale+ SoCs
- Standalone FPGAs with soft CPUs



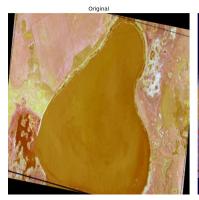
Integration process

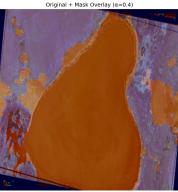
- TCL-driven Vivado scripts
- Automates:
 - Import of kernel
 - DMA and AXI instantiation
 - Device-specific mappings
 - Control and data interfaces
 - Synthesis
 - Implementation
 - Bitstream export
- No GUI interaction needed

Result

Ready bitstream and hardware description

Use cases overview

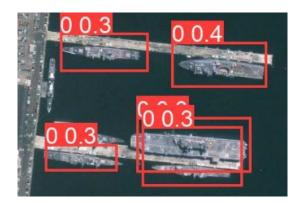

Water body segmentation


Description

U-Net trained on a custom dataset made from Copernicus data.

Quantization level

- 8-bit weights
- 8-bit activations


Ship detection

Description

YOLOv3-tiny trained on ShipRSImageNet dataset, the classes were modified to fit only ship class.

Quantization level

- 8-bit weights
- 4-bit weights

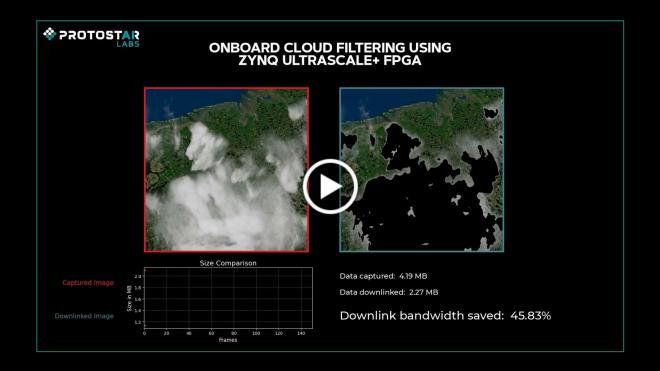
Results and discussion

Water body implementation

- Post-implementation
- Default resource utilization strategy
- Can be further improved by custom folding

DEVICE	LUT	SRL	FF	BRAM_36K	BRAM_18K	URAM	DSP
ZCU104	112,157	616	63,162	20	2	0	103
KV260	112,728	609	63,897	20	0	0	103

Input


Segmentation

Protostar Labs' DPU (KV260)

ZCU104

Other use cases

Data Processing Unit

Key Features

Onboard AI Capabilities

Run Al models onboard for real-time inference and detection.

Low-Power, High-Performance

Optimized for efficient processing in compact, power-limited platforms.

Modular and Standardized

PC/104 form factor for easy CubeSat integration and stacking.

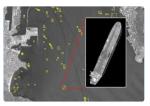
FPGA Acceleration

Kria K26 (Zynq UltraScale+) enables software-defined hardware acceleration.

Designed for SmallSat-class platforms, the unit supports CAN, I²C, SPI, LVDS, and RS-232 interfaces. Fully compatible with the SDK, it enables fast, low-friction deployment of AI models to FPGA hardware.

Data Processing Unit

Technical Specifications


Feature	Value				
FPGA Device	AMD Zynq UltraScale+ MPSoC				
Dimensions	94 x 89 mm (Fits PC/104 standard)				
Interfaces	CAN, I2C, SPI, LVDS, RS232				
Connectors	PC/104 4×26 stackable connector 4× PMOD connectors JTAG header 2× 15-pin CSI camera connectors 14 PIN MOLEX UART debug connector				
Other Features	Micro SD card slot 4× boot mode selector switches 12V active cooling with PWM control				
Power Supply	12V @ 3A via 5.5 x 2.1 mm barrel jack				
Power Consumption	~9-14 W				

Use Cases

Cloud Segmentation

Super Resolution

Object Detection

Object Classification

Anomaly Detection

In-Orbit Inspection

FPGA IP Cores

IP Core Portfolio

Video Processing

- Video Fault Supervisor (VFS): Monitors integrity of input/output video streams
- Video Image Resize (VIR): Resizes video to target resolutions

Data Handling

- Data Encryption (DENC): Secure transmission over untrusted media
- Image Data Compression (IDC): Reduces bandwidth/storage with selectable algorithms
- SpaceWire (SWire): Standard-compliant LVDS data transfer protocol

Image Intelligence

- Cloud Segmentation (CloudSeg): Identifies clouds in orbital imagery
- Object Detection (OD): Detects mission-relevant objects in imagery
- Change Detection (CD): Highlights differences across consecutive frames

Space Missions

ESA OPS-SAT Space Mission

Goal

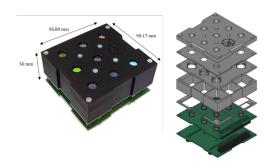
The goal of this mission was to port our proprietary algorithms for **anomaly detection** to the onboard FPGA (Field Programmable Gate Array) and run the algorithms on the OPS-SAT telemetry data.

Solution

Porting the needed algorithms to their VHDL equivalents for the onboard **Intel Cyclone V** and feeding the needed data to the FPGA using ARM.

Current developments

- FPGA-based Anomaly Detection
- On-Orbit FPGA Reconfiguration
- Real-Time Telemetry Analysis


Current Status - COMPLETED

Space Missions

LPCM: Light pollution characterization from the Low Earth Orbit

Goal

To address the issue of light pollution by designing and developing a **satellite module to monitor light emissions** from the Earth. We are building a satellite module equipped with **single-pixel detectors** for analyzing light sources from LEO.

Solution

Protostar Labs is responsible for **electronics design and onboard software**. Besides that, we are developing a **mission planning and execution** software.

Current developments

- hardware development and verification underway
- onboard software progressing with adaptive control features

Current Status - IN PROGRESS

Space Missions

esa

ChROmosphere Monitoring InStrument (CROMIS)

Goal

Provide reliable **space weather monitoring** to support satellites, astronauts, GNSS, and power grid operations. The onboard processing of solar images will be handled by the **SDK and DPU**.

Solution

A dedicated **H** α space telescope delivering full-disk, high-resolution, high-cadence solar images. Continuous, publicly available data stream for both scientific and commercial applications.

Expected Results

- enhanced space weather forecasting services for government, industry, and operators
- positioned as the first Croatian space science instrument,
 boosting technological capability and integration into ESA

Current Status - IN PROGRESS

About Us

2019 50+ 24

Founded Projects Team Members

- Croatian space tech company, based in Osijek
- Expertise: onboard data processing systems, fault-tolerant electronics, optical payloads, AI/ML
- Our vision is to pioneer Croatian technology in space and other critical industries on Earth

Thank you for your attention! Questions?

Protostar Labs d.o.o.

www.protostar.ai

Belišće/Osijek, Croatia

hello@protostar.ai

Follow us:

