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Introduction

Spacecraft must continuously monitor subsystem health
Limited downlink capacity delays ground-based analysis
Traditional Out-of-Limits (OOL) alarms are insufficient for:

Anomalous behavior can occur within normal operating ranges
Real-time detection without ground station dependency
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Mission Context

Originally trained on MEX data as HERA data were not available (2023 Research)
Now transitioning to HERA mission data (launched October 2024)
Implemented for LEON 3 radiation-tolerant processor

Research Evolution
This presentation builds on top of the previous research with MEX data and provides
insights regarding the data transition to HERA mission.
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HERA Dataset

Available Data
First 4 months of HERA flight (Oct 2024 -
Feb 2025)
Reaction Wheel subsystem: 4 wheels
Variables per wheel: current, torque, speed,
internal & external temperatures
Measurement interval: 16 seconds

Key Challenges
External temperature missing in first month
Temperature influenced by current/torque
Operational command spikes in data
No real anomalies available

HERA Reaction Wheel Data
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Variable Selection

Temperature Exclusion
External influences on temperature readings
Missing data in the first month
High correlation with current/torque measurements

Final Dataset
3 variables per wheel: current, torque, speed
4 wheels total
12 channels for anomaly detection
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Window Function & Dataset Configuration

Window Function
Needed to utilize sequential data
Sampling: Every 40th measurement (16s × 40 = 640s)
Subsequence length: 36 (≈6 hours at 640s intervals)

Data dimension: 36×12 (4 wheels × 3 variables each)
36 samples chosen experimentally (yielding
best results)

Dataset Configuration
Training: 100,000 samples
Validation: 20,000 samples
Testing: 20,000 samples

Typical Local Patterns with Spikes
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Evaluation Strategy

Synthetic Anomalies
Linear Trend (added to 1 or 2 variables)
Random noise (added to 1 or 2 variables)

Detection Challenge
High false positive risk on legitimate commands
Solution: Reweighting strategy (Boosting-Inspired Approach)
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Reweighting Results

Iterative Reweighting Strategy
1 Run initial model on entire nominal dataset
2 Identify high-scoring subsequences
3 Preferentially include them in retraining

Performance Before vs After Reweighting
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Model Performance - MEX
Two-Stage Approach

Siamese AE + KNN clear winner
Problem with two-stage approach:

Siamese AE is supervised only (need to create anomalies before training)
Does not offer connected computational graphs
No unified objective

Single-Stage Models
Unsupervised learning
Gradient computation
XAI opportunities

→ For HERA data we move to single-stage models
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Model Performance - MEX Results

MEX Model Comparison
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Model Performance - HERA

Results
Two-stage: Siamese still works best
Single-stage: CSBSVDD wins

HERA Model Comparison
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Deep SVDD Anomaly Tests

Test Cases
test_lt1/2: Linear trend added to 1 or 2
variable(s)

test_rn1/2: Random noise added to 1 or
2 variable(s)

Outcomes
Anomalies affecting two variables are
typically easier to detect

Random noise on single variable (test_rn1)
most challenging

High accuracy due to nominal samples
heavily outnumbering anomalous

CSBSVDD Anomaly Detection Results
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Uncertainty Quantification (UQ)

Considered but not implemented
Dropout: Not supported by TFLM (TensorFlow Lite for Microcontrollers)
Ensemble methods: Computationally heavy, complicated to decide which model to
trust
Data augmentation: Computationally heavy, complicated for data with no
anomalies/labels

Implemented
Element-wise confidence: Likelihood of consistent predictions under data
variations
Inductive Conformal Anomaly Detection: P-values computed to determine if
predictions fall into expected distribution (online/offline approach)
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Anomaly Prediction Strategies

Three Outputs
Model prediction
Element-wise confidence
Conformal prediction

Decision Strategies
Reckless: Both detector and
conformal predictor agree
Cautious: Either low confidence or
detector/conformal signals anomaly

Evaluation
7 artificial anomalies: dropout, correlation
break, spike, drift, static noise, dynamic
noise, channel saturation
Cautious methods improve recall by
reducing false negatives (at cost of higher
false positives)
Reflects expected trade-off between
sensitivity and specificity
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UQ Performance Results

Confusion Matrix
Performance Metrics
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LEON3 Integration Challenges

Technical Challenges
Models trained in JAX+Flax can be exported to TensorFlow format and run in
TFLite but cannot run in TFLite for microcontrollers (TFLM)
Big endian support issues on LEON - byte swapping needed

Solution: New Patch Delivered
Leverages TFLM’s memory management classes
Ensures compatibility with latest TFLM versions
Maintains strict static memory allocation
Offline byte swapping - no runtime resource consumption
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Memory Footprint

Benchmark Evaluation
Minimal demo running inference on LEON3
Memory footprint highly influenced by model operations (kernels)
TensorFlow arena: Only 15.78 KB required
SVDD inference faster than Siamese network from previous research

Time Breakdown
Memory Footprint
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Future Improvements

Use data for multiple different subsystems (not only reaction wheels)
Increase number of variables for each subsystem
Focus on explainability (was not possible in latent space of two-stage model)
Deploy it on HERA’s second core
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Contact

Lukas Malek

Huld s.r.o.

lukas.malek@huld.io
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