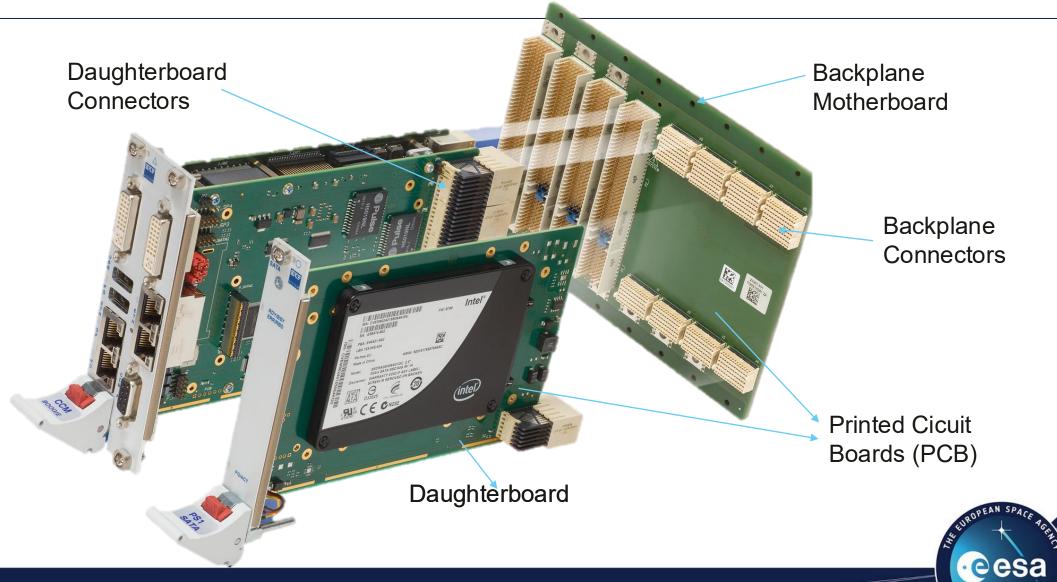

# **Background & Rationale**

Specification & Challenges

On-going Activities

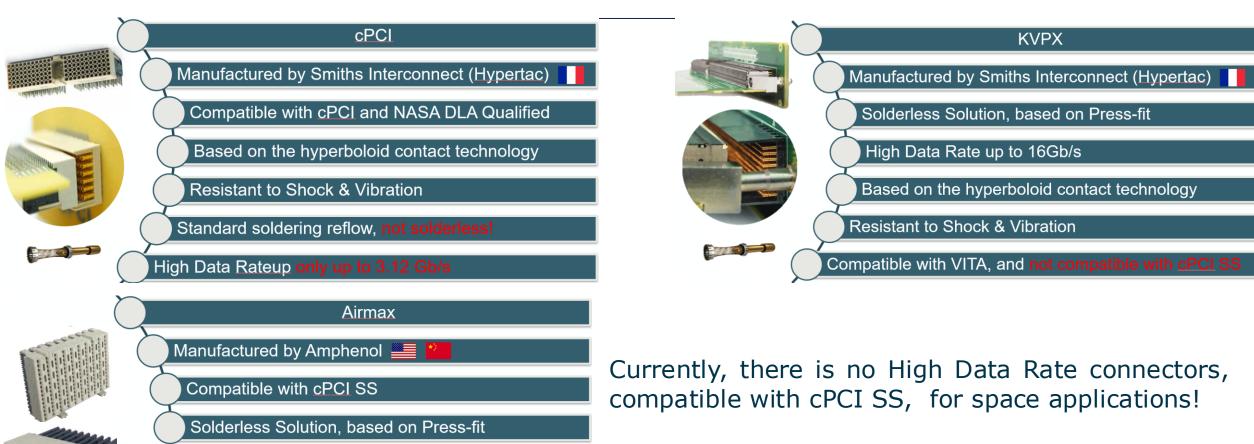
Conclusion






- The cPCI Serial Space (SS) was selected as the standard for ADHA workshop January 2020.
- cPCI SS allows for flexibility, modularity, interoperability and relatively price reduction compared to the level of performances.





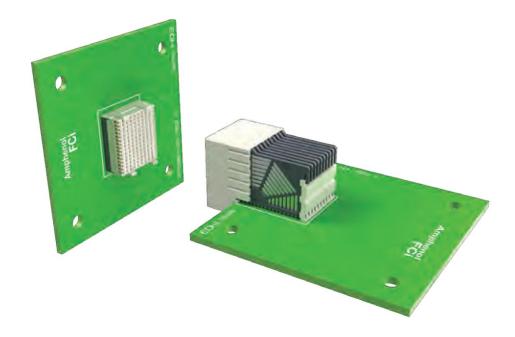





Specified up to 25 Gb/s

Low cost, but not proven in harsh environment




The current available space solutions are not

The current available space solutions are not compatible with cPCI SS (speed rate, layout, etc.).

esa



The only solution compatible with cPCI SS (and with high data rate) is a commercial solution, manufactured by Amphenol (manufactured in China) with no proper evaluation data!



Need to Develop and Qualify a Space-grade High Data Rate (25 Gb/s) Connectors compatible with cPCI SS for space applications





# Background & Rationale

# **Specification & Challenges**

On-going Activities

Conclusion



### **Specifications & Challenges**





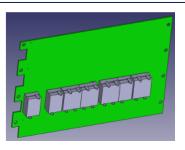
**AIRBUS** 

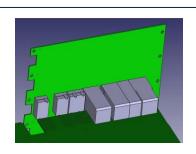
beyond gravity

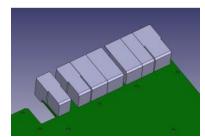




Specification Document :


cPCI Serial Connector for Space


|               | Name and Function                                | Date | Signature |
|---------------|--------------------------------------------------|------|-----------|
| Prepared by   | Christian LOPES-QUINTAS Application Engineer     |      |           |
| Verified by   | Hassan EL AABBAOUI<br>EEE Manager                |      |           |
| Approved by   | Simon RUSSEIL<br>Project Manager                 |      |           |
| Authorized by | Olivier QUEMARD Head of Equipment Support France |      |           |


| Document type | Nb WBS | Keywords |
|---------------|--------|----------|
|               |        |          |
|               |        |          |

This document and the information it contains are property of Airbus Defence and Space 5A and confidential. It shall not be used for any purpose other than those for which it we supplied. It shall not be reported of airbored for whole or in part) to any third party without ARRAINS DEFENCE AND SPACE orion without consent.

© Airbus Defence & Spar







esa

Main Challenges w.r.t. ADHA Specification:

- High Speed up to 25 Gb/s
- Solderless solutions (i.e. Press-fit)
- Operating Temperature: -55°C to 125°C
- No impedance change or discontinuity of **1ns** or longer duration during mechanical and thermal tests
- Current rating per contact: 2A

### **Specification & Challenges**

Known reliability issues related to the press-fit technologies:

#### Impedance discontinuities during mechanical tests

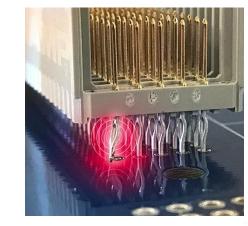
Low data press-fit connectors (Positronic) are being ESCC qualified for discontinuities smaller than 10 us during mechanical tests.

ADHA High data rate requires 1ns of discontinuity during mechanical

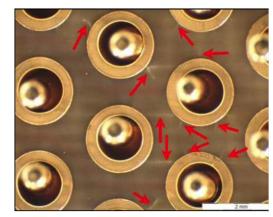
test.

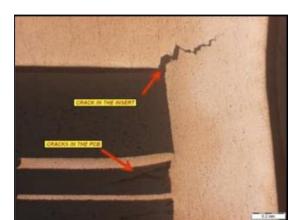


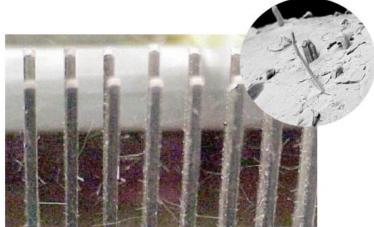



esa

No clamping mechanism (or additional screws) to hold the mated pair together. All the mechanical stress goes through the press-fit terminations. This leads to intermittent loss of connectivity during vibration or shock!


### **Specification & Challenges**


Known reliability issues related to the press-fit technologies:


- PCB Damage due to the fretting of the plating materials (corrosion wear) or cracks in PCB and pins materials, due to the relative movement of the press-fit pins inside the PCB.
- Growth of dendrites tin whiskers on pins with pure tin are also considered as delayed failures!











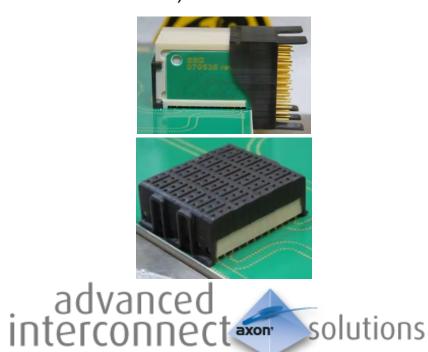
This leads to an increase in contact resistance, thus a drastic decrease of the data rate!



## Background & Rationale

Specification & Challenges

## **On-going Activities**


Conclusion




#### **ON-GOING ESA R&D ACTIVITIES**

- 1. **TDE**: Procurement and Reliability Assessment of High Data Rate Press-Fit cPCI SS connectors: AIRMAX VS (Amphenol) and HYPERBITS (Performance Interconnect) (ALTER TECHNOLOGY SPAIN)
- 2. **TDE**: Board to Board Interconnections for High Data Rate applications (AXON' cable)
- 3. **ARTES**: High Density Modular Electrical Interconnections for High Data Rate Applications (Performance Interconnect & ALTER TECHNOLOGY FRANCE)











### Background & Rationale

Specification & Challenges

# On-going Activities (I)

**TDE**: Procurement and Reliability Assessment of High Data Rate Press-Fit cPCI SS connectors: AIRMAX VS (Amphenol) and HYPERBITS (Performance Interconnect) (ALTER TECHNOLOGY SPAIN)

#### Conclusion



# Procurement and Reliability Assessment of High Data Rate Press-Fit cPCI SS connectors

| Contractor: ALTER TECHNOLOGY (Spain) |     |                  |               | ESA Budget      | 80 k€<br>+20k€ |  |
|--------------------------------------|-----|------------------|---------------|-----------------|----------------|--|
| Funding                              | TDE | Initial TRL: 2   | Target TRL: 4 | TO: Léo Farhat  |                |  |
| Start of activity: June 2022         |     | End of Activity: | March 2026    | Joaquín Jiménez |                |  |

#### **Background and justification:**

The current large increase of data traffic is causing the space sector to push for the development of communication standards that allow for higher data rates. ESA has recently funded a study on Advanced Data Handling Architecture (ADHA) in order to establish a versatile, compact, modular and scalable Data Handling System architecture using standardised building blocks. Unfortunately, there is currently no space grade High Data Rate (HDR) connectors compatible with cPCI SS. The only existing solution is a commercial connector, manufactured by Amphenol (USA), with no reliability assessment data.

#### Objective(s):

The aim of this activity is double:

- 1 -to procure and assess the reliability of existing high data rate press-fit connectors compatible with cPCI SS: the commercial AirMax VS® cPCI-s manufactured by Amphenol (USA).
- 2- to support the development and assess the reliability of the HyperBits<sup>™</sup> S-FECT (Performance Interconnect, FR)

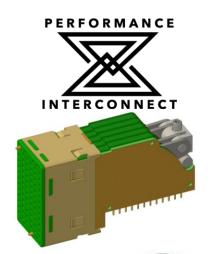
#### **Achievement and status:**

- AirMax VS® cPCI-s samples procured. Assembly of Hyperbits gen1: assembled solutions Q2 2023
- Test plan has been defined: DC electrical parameters under mechanical and thermal cycles with electrical continuity monitoring, mating & de-mating, life test (s-parameters, high and low temperature), construction analysis, outgassing.
- Final design and validation of test PCBs for mechanical testing and s-parameters testing.
- DC electrical parameters tested, outgassing performed, mechanical tests on-going (sine vibration).

#### **Benefits:**

• The advantages offered by solderless technology makes this the perfect baseline to develop High Data Rate connectors.

#### Next steps:


• S-parameters measurements

- Thermal cycles, mating & de-mating, life test
- Final Report expected in March 2026.

# ALTER TECHNOLOGY Amphenol

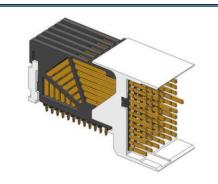








# Airmax VS (Amphenol): Assembly & Reliability Tests (Procurement)


10 samples HDR press-fit AirMax VS® cPCI-s 10052824-101LF Daughterboard 72-position, 6 column, 2 Walls, Right Angle

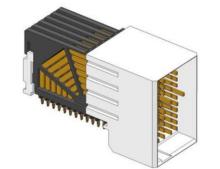
10 samples HDR press-fit AirMax VS® cPCI-s 10052825-101LF

Daughterboard **72**-position,6 column, 4 Walls, Right Angle

15 samples HDR press-fit AirMax VS® cPCI-s 10052829-101LF

Backplane **72**-position, 6 column, Vertical Receptacle




10 samples HDR press-fit AirMax VS® cPCI-s

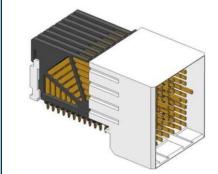
10052837-101LF

Daughterboard

96-position, 8 column,

2 Walls, Right Angle Header



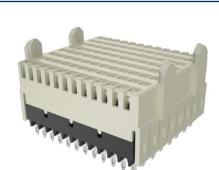

10 samples of HDR press-fit AirMax VS® cPCI-s

10052838-101LF

Daughterboard

**96**-position, 8 column,

4 walls, Right Angle

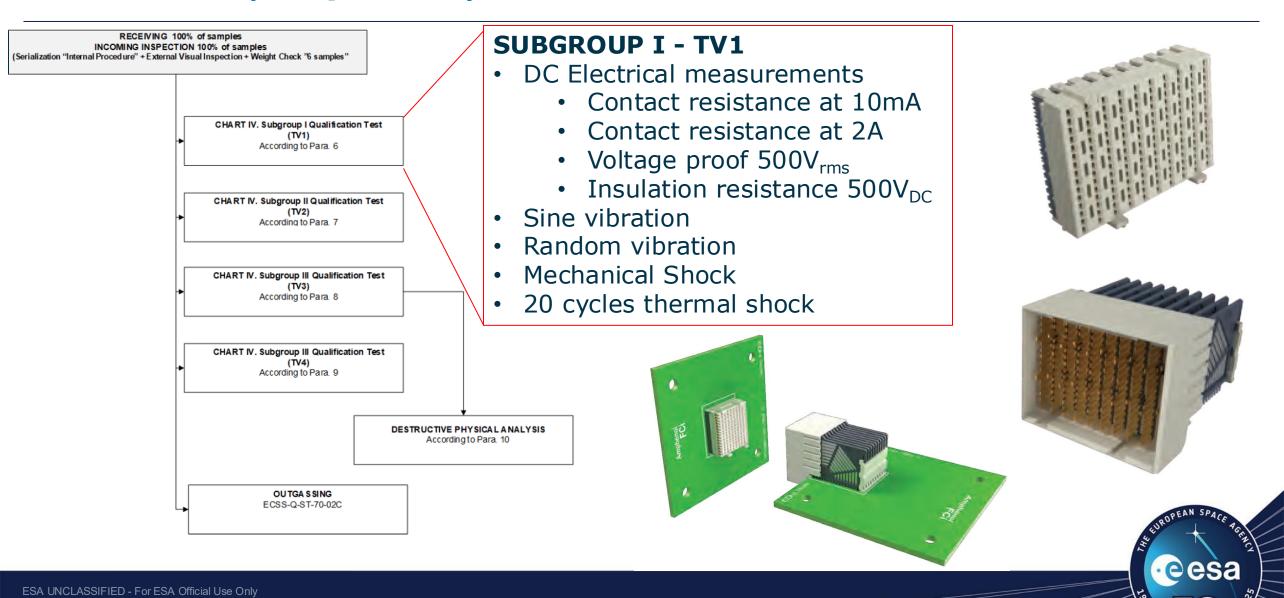



15 samples HDR press-fit AirMax VS® cPCI-s 10052842-101LF

Backplane,

96-position, 8 column,

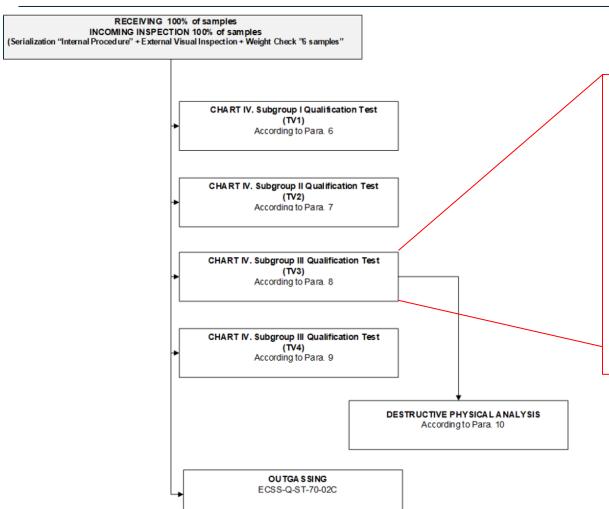
Vertical Receptacle




esa






## Airmax VS (Amphenol): Assembly & Reliability Tests: Test plan (I)



# Airmax VS (Amphenol): Assembly & Reliability Tests: Test plan (II)

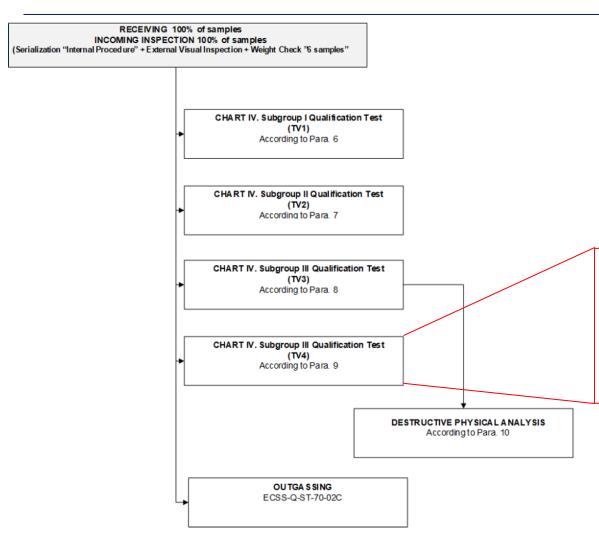


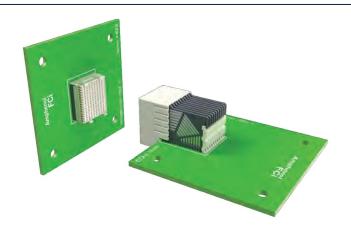
## Airmax VS (Amphenol): Assembly & Reliability Tests: Test plan (III)



#### **SUBGROUP III - TV3**

- RF measurements (at 25°C, -55°C, +125°C):
  - Insertion loss
  - Near-end cross talk
  - Far-end cross talk
  - Differential impedance
- Life test until 500h until 1000h until 2000h








### Airmax VS (Amphenol): Assembly & Reliability Tests: Test plan (IV)

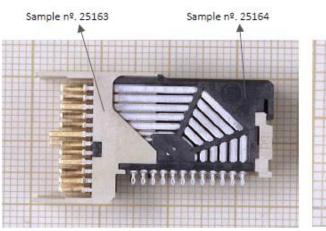




#### **SUBGROUP IV - TV4**

- DC Electrical measurements
- RF measurement (+125°C)
- 5 cycles overload test
   (1,5xrated current)



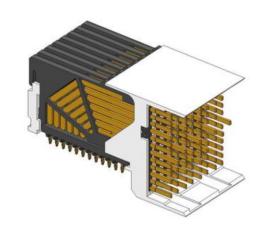




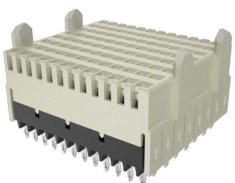

# Airmax VS(Amphenol): Assembly & Reliability Tests: Test results (I)

#### 1. Outgassing ECSS-Q-ST-70-02C

| Samples | Description                        | TML (%) | RML (%) | CVCM (%) |
|---------|------------------------------------|---------|---------|----------|
| 25163   | White plastic housing - Header     | 0,069   | 0,053   | 0,001    |
| 25164   | Black plastic housing - Header     | 0,074   | 0,058   | 0,003    |
|         |                                    |         |         |          |
| 25165   | White plastic housing - Receptacle | 0,072   | 0,047   | 0,001    |
|         |                                    |         |         |          |
| 25166   | Black plastic housing - Receptacle | 0,052   | 0,041   | 0,002    |




Sample nº. 25165 Sample nº. 25166


S/N 25 . PT:10052837-101LF

S/N 64 . PT:10052842-101LF

The samples tested are **compliant** with general limits of acceptance for material selection according to ECSS-Q-ST-70-02C: RML < 1,00%, CVCM < 0,10%.

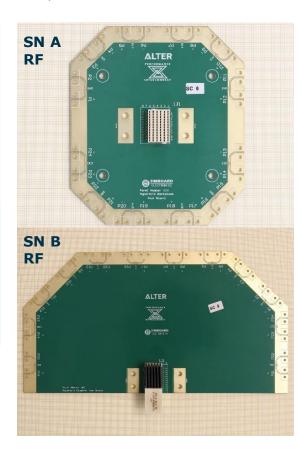


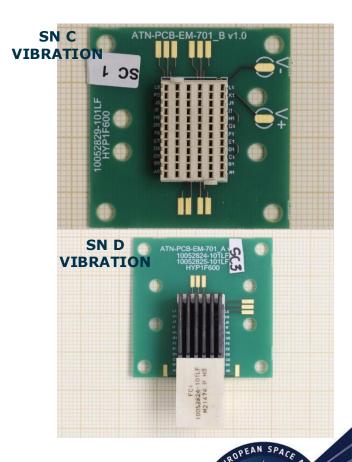




10052842-101LF




### Airmax VS(Amphenol): Assembly & Reliability Tests: Test results (II)


RF characterisation PCB, Mechanical characterisation PCB, Airmax connectors insertion

|              | Connector-PCB | Type of                       |            |                                                   |
|--------------|---------------|-------------------------------|------------|---------------------------------------------------|
| Connector SN | SN            | connector                     | Nº of Pins | PCB                                               |
| 54           | Α             | 10052829-101LF<br>Receptacle. | 72         | RF PCB (Back plane)                               |
| 4            | В             | 10052824-101LF<br>Header.     | 72         | RF PCB (Daughter)                                 |
| 53           | С             | 10052829-101LF<br>Receptacle. | 72         | Vibration PCB 10052829-<br>101LF                  |
| 34           | D             | 10052824-101LF<br>Header.     | 72         | Vibration PCB 10052824-<br>101LF & 10052825-101LF |
| 66           | E             | 10052842-101LF<br>Receptacle. | 96         | Vibration PCB10052842-<br>101LF                   |
| 36           | F             | 10052838-101LF<br>Header.     | 96         | Vibration PCB 10052837-<br>101LF & 10052838-101LF |
| 61           | G             | 10052842-101LF<br>Receptacle. | 96         | RF PCB (Back plane)                               |
| 24           | Н             | 10052838-101LF<br>Header.     | 96         | RF PCB (Daughter)                                 |

#### Successful insertion of 8 Airmax connectors:

- Four inserted in PCBs for vibration characterisation (SN C,D,E,F), plus other 4 connectors.
- Four inserted in PCBs for RF characterisation (SN A,B,G,H), plus other 4 connectors





eesa



# AirmaxVS (Amphenol): Assembly & Reliability Tests: Test results (III)

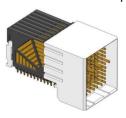
3. DC electrical measurements at room temperature: continuity verification, contact resistance, voltage

proof, insulation resistance

#### Samples to be submitted to mechanical testing

| Connector SN | Connector-PCB<br>SN | Type of connector                      | N° of Pins | РСВ                                               |
|--------------|---------------------|----------------------------------------|------------|---------------------------------------------------|
| 53           | С                   | 100528 <b>29</b> -101LF<br>Receptacle. | 72         | Vibration PCB 10052829-                           |
| 34           | D                   | 100528 <b>24</b> -101LF<br>Header.     | 72         | Vibration PCB 10052824-<br>101LF & 10052825-101LF |
| 66           | E                   | 100528 <b>42</b> -101LF<br>Receptacle. | 96         | Vibration PCB10052842-<br>101LF                   |
| 36           | F                   | 100528 <b>38</b> -101LF<br>Header.     | 96         | Vibration PCB 10052837-<br>101LF & 10052838-101LF |




SN C: 10052829-101LF Receptacle (72)



SN **D**: 100528**24**-101LF Header (72)



SN E: 10052842-101LF Receptacle (96)



SN **F**: 100528**38**-101LF Header (96)

#### DC Electrical measurements test results:

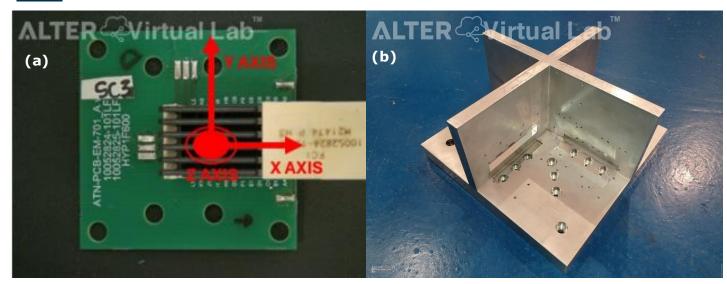
|    |                         |     |                                  |      | ITS |      |      |      |
|----|-------------------------|-----|----------------------------------|------|-----|------|------|------|
| N' | TEST                    |     | CONDITIONS                       | MIN  | MAX | UNIT | PASS | FAIL |
| 1  | Contact<br>Resistance   | RCL | Imeas = 10mA                     |      | 35  | mΩ   | 4    | 0    |
| 2  | Contact<br>Resistance   | RCR | Imeas = 2A                       |      | 20  | mΩ   | 4    | 0    |
| 3  | Voltage Proof           | IL  | Vmeas = 500Vrms, t = 5s (Note 3) | Note | e 3 |      | 4    | 0    |
| 4  | Insultaon<br>Resistance | Ri  | Vmeas = 500VDC, t = 60s (Note 4) | 1000 |     | MΩ   | 4    | 0    |

**Note 3**: No evidence of breakdown, flashover or excessive leakage current >0.5mA.

Electrical measurements performed in <u>4</u> mated connector pairs (<u>C</u> mated with <u>D</u> / <u>E</u> mated with <u>F</u>)

**Continuity verification:** Successful results.

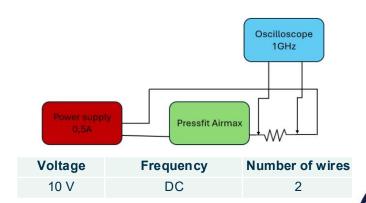
<u>Contact resistance, voltage proof, insulation</u> <u>resistance:</u> Successful results.


No anomalies were detected.



## AirmaxVS(Amphenol): Assembly & Reliability Tests: Test results (IV)

4. Sine vibration test: Axis definition, vibration tool & measurement conditions


# **Axis definition & vibration tool**



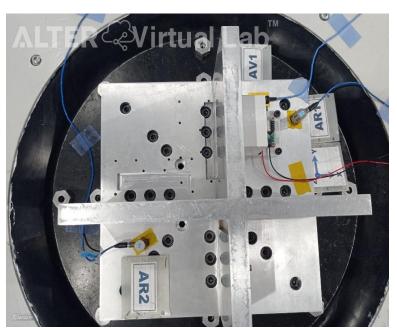
(a) Axis identification (SN D) and (b) vibration tool.

#### **EUT set up & Measurement conditions**

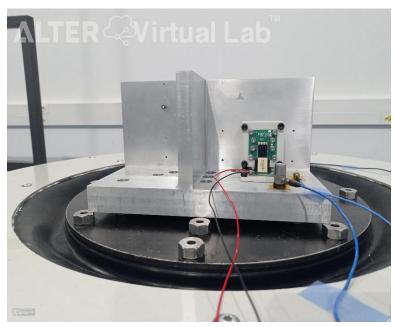
- ✓ Detection of 1 ns or longer duration discontinuity.
- ✓ Constant DC signal maintained through the contacts under test and + External resistor with magnitude significantly higher than the contacts resistance of the device under test.
  - Singal monitored with a digital scope with a minimum bandwidth of 1.0 GHz
- √ Threshold level and time period configured to be triggered if limits are exceeded.



esa


### Airmax VS(Amphenol): Assembly & Reliability Tests: Test results (V)

4. Sine vibration test: Set up


#### Set up



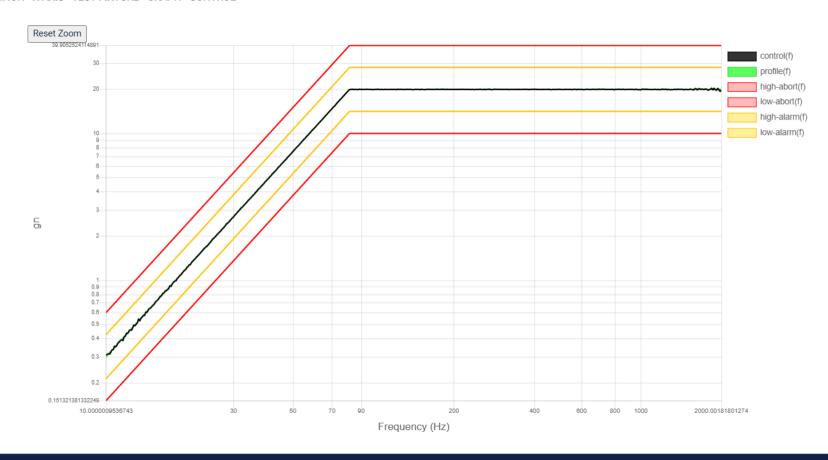
C-D mated connectors before assembly on the vibration test jig



Top view of the connectors assembled on the vibration test jig



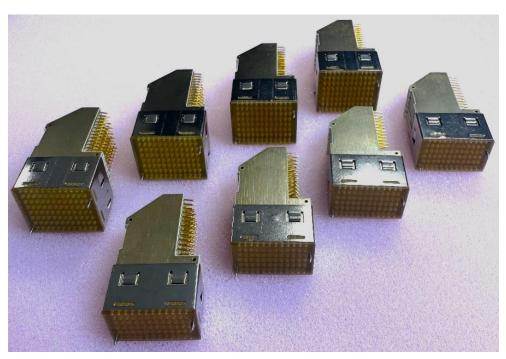
Front view of the connectors assembled on the vibration test jig


esa

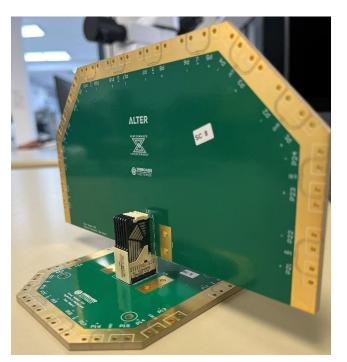
### Airmax (Amphenol): Assembly & Reliability Tests: Test results (VI)

4. Sine vibration test: Vibration conditions check (empty tooling)

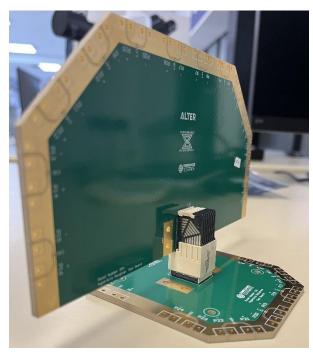
#### Vibration conditions check (empty tooling)


SINE VIBRATION - X AXIS - TEST FIXTURE - GRAPH - CONTROL




### Airmax (Amphenol): Assembly & Reliability Tests: Next steps (I)

#### **Next steps:**


S-parameters measurements and life test



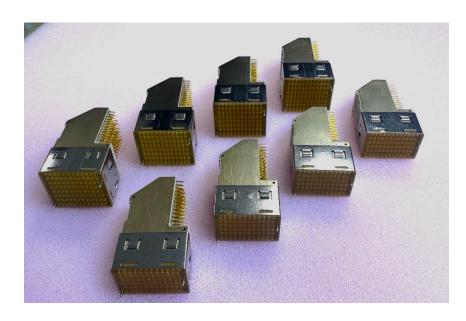
Hyperbits (Performance Interconnect)



AIRMAX VS A-B (72 pins)



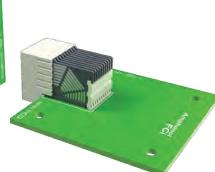
AIRMAX VS G-H (96 pins)


eesa


Inserted on RF PCB's for S-measurements of EAN SPA

### Airmax (Amphenol): Assembly & Reliability Tests: Next steps (II)

#### **Next steps:**


- Finish mechanical testing (random vibration, mechanical shock)
- Thermal shock test
- Mating & de-mating (endurance) test flow











Hyperbits (Performance Interconnect)

AIRMAX VS (Amphenol)



## Background & Rationale

Specification & Challenges

# On-going Activities (II)

**TDE**: Board to Board Interconnections for High Data Rate applications (AXON' cable)

Conclusion



### **Board to Board Interconnections for High Data Rate applications**

| Contractor: AXON | 'CABLE (FR) | ESA Budget     | 250 k€ +<br>275k€ |                          |           |
|------------------|-------------|----------------|-------------------|--------------------------|-----------|
| Funding          | TDE         | Initial TRL: 2 | Target TRL: 4     | TO: Léo Farhat - Joaquíi | n liménez |

End of Activity: 12 2026



#### **Background and justification:**

Start of activity: August 2023

To fulfil future Telecommunication payload mission needs, satellite manufacturers are fabricating digital and high power processing equipment with high speed signal performance, high speed and complex digital processing technologies. These are based on digital printed circuit boards (PCB) and new high density and high data interconnection technologies.

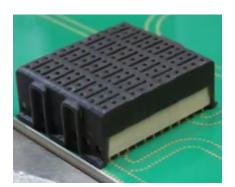
Solderless solutions based on press fit connectors, spring probes or S-FECT (Slide-Fit Electrical Contact Termination) technology, are being developed in order to validate reliability issues, especially the signal continuity during mechanical tests. These solutions are not designed for high data rate applications yet. This justifies the need for next-generation interconnect solutions capable to withstand space environment for high data rates.

#### Objective(s):

• To develop interconnection solutions based on innovative solderless technologies, that need to withstand future requirements in terms of High Data Rate (HDR), up to 56Gbps.

#### **Achievement and status:**

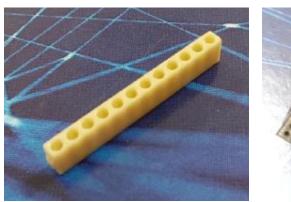
- Kick-off Aug 2023
- Literature review and user survey: identify customers' needs and confirm the performance levels to be specified in the technical specification. Critical assessment of existing connectors.
- Consolidated preference for connector design: HDR and power with few Mbit/s.
- Patent survey. Technical specification based on survey results updated. Back-up procurement to guarantee EM models manufactured. PDR Dec 2024, production of prototypes (including 3D printed housing), with two different materials and two variants: shielded and unshielded, due to customer urgent need.


Benefits: Availability of European connector for HDR for space applications.

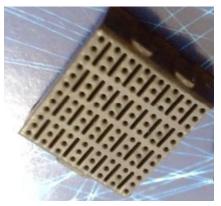
#### **Next steps**

• Improved molded samples production for mechanical tests.

• Evaluation Test Plan to be defined: test sequence on contacts, test set-up definition, tool-machining.






# **AXON' CABLE: CONNECTOR PROTOTYPE MANUFACTURING (I)**

#### Backplane connector

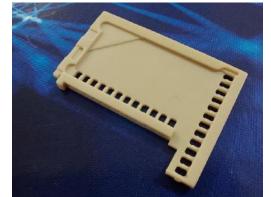


Machined frame

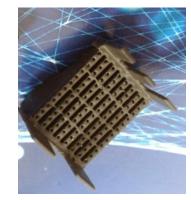


3D printed housing




4-slot socket contact - closed press-fit AXON' P/N: CONTACT130255B




Daughter board connector



**PCBs** 

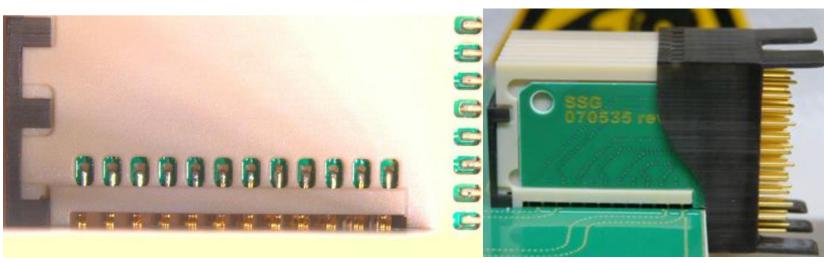


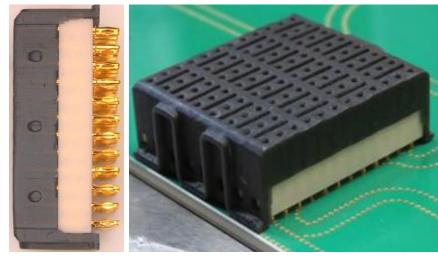
Machined frame



3D printed housing

eesa





Machined pin contacts



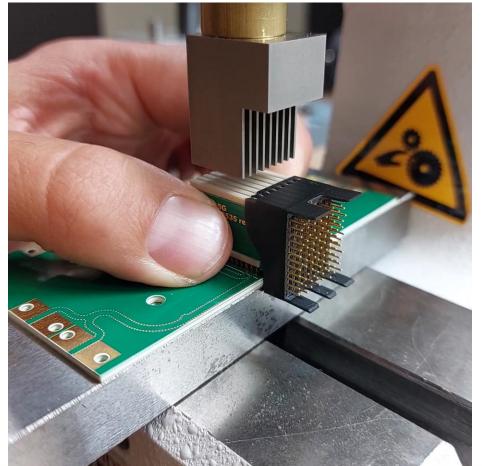
Metal sheet press-fit

### **AXON' CABLE: CONNECTOR PROTOTYPE MANUFACTURING (II)**





Daugther board connector prototype


Back-plane connector prototype

- These are the first prototypes manufactured, due to customer urgent need.
- Two types of materials used due to time constraint: one material for machined frames (white colour), one different material for housing (3D printed, black colour)
- Systematical improvement of these connector prototypes is already planned.

# **AXON' CABLE: PROTOTYPE CONNECTOR MANUFACTURING (III)**



Insertion tool manufactured by AXON (manual press)
No damage on connector prototype frames or PCB



esa

### **AXON': CONNECTOR PROTOTYPE ELECTRICAL CHARACTERISATION (I)**

- Two types of connector prototypes characterised:
  - Unshielded prototype connector
  - Shielded prototype connector daughter board (to try improve crosstalk, and decrease impedance)
- Two types of test results:
  - Contribution of connector prototype and PCB ("embedded")
  - Connector prototype contribution only ("de-embedded")
- DC tests performed: line resistance, insulation, voltage proof
- RF tests performed:
  - high data rate
  - insertion loss
  - near-end cross talk
  - far-end, cross-talk
  - differential impedance



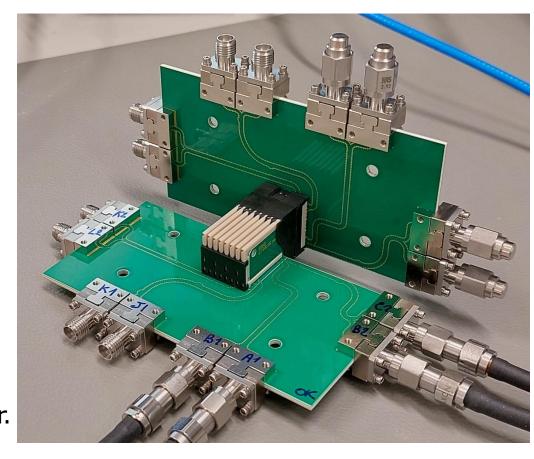




#### **AXON': CONNECTOR PROTOTYPE ELECTRICAL CHARACTERISATION (II)**

Table 1: Connector cabling

|   | Table 1. Connector cabing |     |   |     |     |   |     |     |   |     |     |   |     |
|---|---------------------------|-----|---|-----|-----|---|-----|-----|---|-----|-----|---|-----|
|   |                           | Α   | В | С   | D   | Е | F   | G   | Н | I   | J   | K | L   |
| Γ | 08                        | GND | + | -   |
|   | 07                        | +   | - | GND |
|   | 06                        | GND | + | -   | GND | + | 1   | GND | + | -   | GND | + | -   |
|   | 05                        | +   | - | GND |
|   | 04                        | GND | + | -   |
|   | 03                        | +   | - | GND | +   | 1 | GND | +   | - | GND | +   | - | GND |
|   | 02                        | GND | + | -   |
|   | 01                        | +   | - | GND |


Table 2: Connector cabling versus VNA ports 1,2,3,4

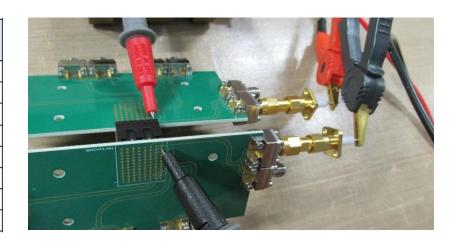
| VNA Port | PCB Daughter      | PCB Backplane     |
|----------|-------------------|-------------------|
| 1        | J1 / L2 / A1 / C2 |                   |
| 2        |                   | K2 / B1 / B2 / K1 |
| 3        | K1 / K2 / B1 / B2 |                   |
| 4        |                   | L2 / J1 / A1 / C2 |
|          |                   |                   |

#### Test PCBs:

Lines J1, K1, K2, and L2 are *longest* lines on PCB connector.

Lines A1, B1, B2 and C2 are the *shortest* lines on PCB connector.






#### **AXON': ELECTRICAL CHARACTERISATION (III) DC LINE RESISTANCE**

Table 1: results for the unshielded connector Table 2: results for the shielded connector

| PCB<br>Daughter | PCB<br>Backplane | R0<br>(mOhms) |
|-----------------|------------------|---------------|
| A1              | A1               | 63.3          |
| B1              | B1               | 61.8          |
| B2              | B2               | 52.4          |
| C2              | C2               | 52.7          |
| J1              | J1               | 107           |
| K1              | K1               | 109           |
| K2              | K2               | 119           |
| L2              | L2               | 121           |

| PCB<br>Daughter | PCB<br>Backplane | R0<br>(mOhms) |
|-----------------|------------------|---------------|
| A1              | A1               | 66.2          |
| B1              | B1               | 63.5          |
| B2              | B2               | 63.8          |
| C2              | C2               | 63.9          |
| J1              | J1               | 106           |
| K1              | K1               | 108           |
| K2              | K2               | 139           |
| L2              | L2               | 141           |



-B2 & C2 close to  $52m\Omega$  and A1 & B1 close to  $63m\Omega$ :  $\Delta = 21\%$ 

-J1 & K1 close to  $108m\Omega$  and K2 & L2 close to 120 m $\Omega$ :  $\Delta$ = 11%

-B1, B2 & B3 close to  $63m\Omega$  and A1 close to  $66m\Omega$ :  $\Delta = 5\%$ 

-J1 & K1 close to  $107m\Omega$  and K2 & L2 close to  $140m\ \Omega$  :  $\Delta$ = 31%

Variability on DC-resistance probably caused by irregular thickness of the line PCB layers

esa

### **AXON': ELECTRICAL CHARACTERISATION (IV) VOLTAGE PROOF, INSULATION**

| Measured poles | DWV under<br>600Vrms | Insulation under<br>500Vdc |
|----------------|----------------------|----------------------------|
| A1 & B1        | <2mA                 | >1000MΩ                    |
| A1+B1 & GND    | <2mA                 | >1000MΩ                    |
| B2 & C2        | <2mA                 | >1000MΩ                    |
| B2+C2 & GND    | <2mA                 | >1000MΩ                    |
| J1 & K1        | <2mA                 | >1000MΩ                    |
| J1+K1 & GND    | <2mA                 | >1000MΩ                    |
| K2 & L2        | <2mA                 | >1000MΩ                    |
| K2+L2 & GND    | <2mA                 | >1000MΩ                    |

| Measured poles | DWV under<br>600Vrms | Insulation under<br>500Vdc |
|----------------|----------------------|----------------------------|
| A1 & B1        | <2mA                 | >1000MΩ                    |
| A1+B1 & GND    | <2mA                 | >1000MΩ                    |
| B2 & C2        | <2mA                 | >1000MΩ                    |
| B2+C2 & GND    | <2mA                 | >1000MΩ                    |
| J1 & K1        | <2mA                 | >1000MΩ                    |
| J1+K1 & GND    | <2mA                 | >1000MΩ                    |
| K2 & L2        | <2mA                 | >1000MΩ                    |
| K2+L2 & GND    | <2mA                 | >1000MΩ                    |

unshielded connector

shielded connector

esa

Tests results are successful!



# **AXON': RF PARAMETERS (I) DATA RATE**

### Connector&PCB contribution ("embedded")

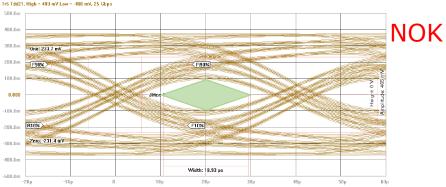
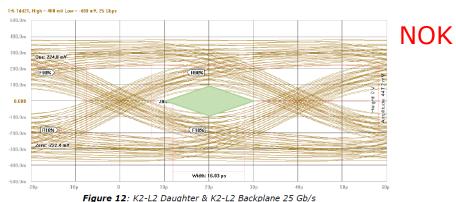




Figure 10: K1-J1 Daughter & K1-J1 Backplane 25 Gb/s



- All configurations at 12.5 Gb/s pass the test
- For configurations at 25 Gb/s the signal fails

### Connector contribution only ("de-embedded")

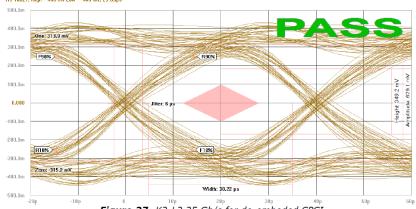
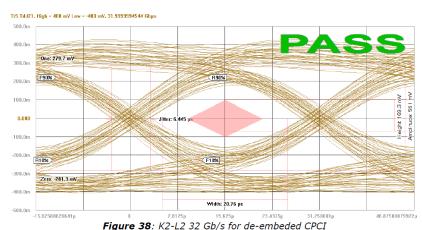




Figure 37: K2-L2 25 Gb/s for de-embeded CPCI

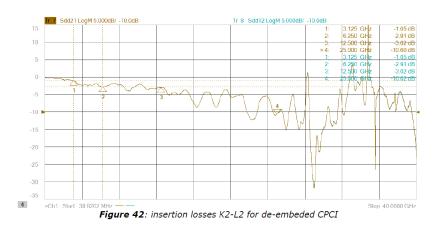


12.5, 25 and 32Gb/s pass the test!

esa

Similar results for shielded or unshielded variants

# **AXON': RF PARAMETERS (II) INSERTION LOSS**


### Connector&PCB contribution



For each configuration, the insertion losses:

- 2 dB for 3.125 GHz
- 5 dB for 6.25 GHz
- 8 dB for 12.5 GHz

### Connector contribution only ("de-embedded")



For each configuration, the insertion losses:

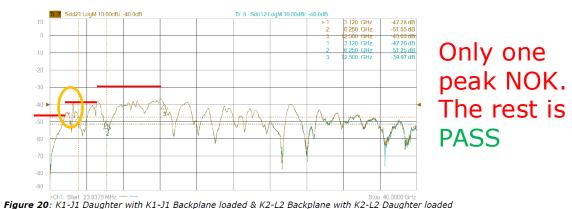
- 0.7 dB for 3.125 GHz
- 2 dB for 6.25 GHz
- 3 dB for 12.5 GHz

Similar results for shielded or unshielded variants

For 3.125GHz, results are PASS






### **AXON': RF PARAMETERS (III) NEAR/FAR END X-TALK**

**PASS** 



Figure 18: K1-J1 Daughter with K1-J1 Backplane loaded & K2-L2 Daughter with K2-L2 Backplane loaded

### Near-end unshieldeded



**igure 20**: K1-J1 Daughter with K1-J1 Backpiane loaded & K2-L2 Backpiane with K2-L2 Daugh

### Far-end unshieldeded

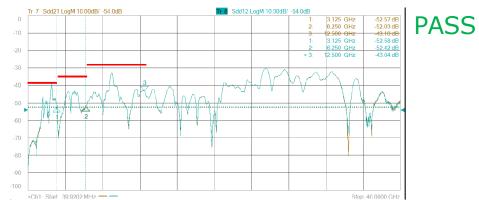
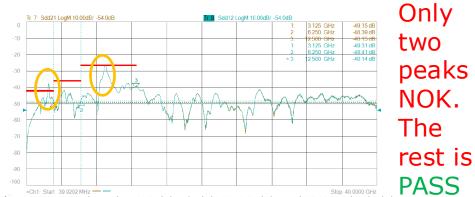
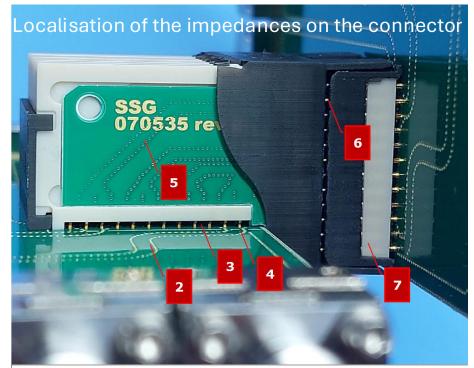



Figure 56: K1-J1 Daughter with K1-J1 Backplane loaded & K2-L2 Daughter with K2-L2 Backplane loaded for shielded CPCI

### Near-end shieldeded





Figure 58: K1-J1 Daughter with K1-J1 Backplane loaded & K2-L2 Backplane with K2-L2 Daughter loaded for shielded CPCI

Far-end shieldeded

Similar results for shielded or unshielded variants



### **AXON': RF PARAMETERS (V) DIFFERENTIAL IMPEDANCE**





- 1-2.92mm PCB connector connection
- 2-Test PCB transmission line (skew compensation)
- 3-Bonding PCB-PCB
- 4- Daughter connector pressfit / through hole
- 5-Daughter connector internal PCB transmission line
- 6- Daughter connector male contact
- 7- Female contact + Backplane connector pressfit / through hole

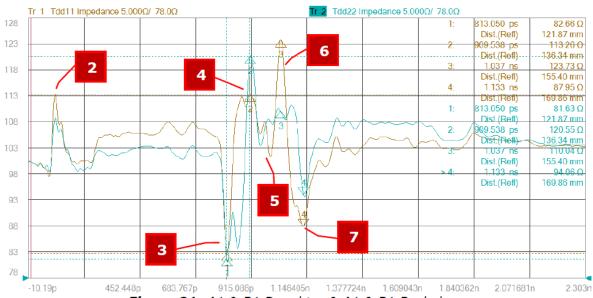



Figure 21: A1 & B1 Daughter & A1 & B1 Backplane

NOK

Similar results for shielded or unshielded variants



# **AXON': RF PARAMETERS (VI) SUMMARY**

| Tests                                                            |              | Targets      |             |                | Result      | esults |              |  |
|------------------------------------------------------------------|--------------|--------------|-------------|----------------|-------------|--------|--------------|--|
| High speed data rate unshielded variant                          |              |              | 12.5 Gb/    | s              | 25          | 5 Gb/s |              |  |
| (input signal 800 mVpp)                                          |              |              |             | OK             |             |        | NOK          |  |
| High speed data rate de-embedded<br>unshielded variant           |              |              |             | 12.5 Gb/       | s           | 25     | 5 Gb/s       |  |
| (input signal 800 mVpp)                                          |              | ceFibre ma   |             | OK<br>12.5 Gb/ |             | 21     | OK<br>5 Gb/s |  |
| High speed data rate shielded variant<br>(input signal 800 mVpp) | 200 m        | V diff peak- | peak        | 0K             | 5           |        | NOK          |  |
| High speed data rate shielded variant                            |              |              |             | 12.5 Gb/       | s           | 25     | 5 Gb/s       |  |
| and de-embedded<br>(input signal 800 mVpp)                       |              |              |             | ОК             |             |        | ОК           |  |
| Insertion losses                                                 | 3.125<br>GHz | 6.25<br>GHz  | 12.5<br>GHz | 3.125<br>GHz   | 6.25<br>GHz |        | 12.5<br>GHz  |  |
| A1-B1 unshielded variant                                         |              |              |             | -2.42 dB       | -5.89       | dB     | -8.87 dB     |  |
| A1-B1 de-embedded unshielded variant                             |              |              |             | -0.71          | -2.7        | 4      | -3.37        |  |
| A1-B1 shielded variant                                           |              |              |             | -2.46          | -5.5        | 5      | -8.12        |  |
| A1-B1 shielded and de-embedded                                   |              |              |             | -0.86          | -2.7        | 8      | -2.32        |  |
| K1-J1 unshielded variant                                         |              |              |             | -2.34          | -4.97       |        | -8.3         |  |
| K1-J1 de-embedded unshielded variant                             |              |              |             | -0.73          | -2          |        | -3.88        |  |
| K1-J1 shielded variant                                           |              |              |             | -2.59          | -5.19       |        | -10.09       |  |
| K1-J1 shielded and de-embedded                                   | -1 dB        | -1.5 dB      | 2 48        | -1             | -2.:        |        | -4.18        |  |
| B2-C2 unshielded variant                                         | -1 ap        | -1.5 UD      | -2 dB       | -2.37          | -4.9        | 5      | -9.13        |  |
| B2-C2 de-embedded unshielded variant                             |              |              |             | -0.68          | -2.0        | 9      | -3.81        |  |
| B2-C2 shielded variant                                           |              |              |             | -2.49          | -4.5        | 5      | -8.9         |  |
| B2-C2 shielded and de-embedded                                   |              |              |             | -0.97          | -1.6        | 4      | -2.32        |  |
| K2-L2 unshielded variant                                         |              |              |             | -2.78          | -5.8        | 5      | -8.21        |  |
| K2-L2 de-embedded unshielded variant                             |              |              |             | -1.05          | -2.9        | 1      | -3.02        |  |
| K2-L2 shielded variant                                           |              |              |             | -2.51          | -5.2        | 4      | -8.22        |  |
| K2-L2 shielded and de-embedded                                   |              |              |             | -0.91          | -2.3        | 1      | -2.38        |  |

| Tests                                     |              | Targ     | ets           |             |          | Resul | lts |         |       |
|-------------------------------------------|--------------|----------|---------------|-------------|----------|-------|-----|---------|-------|
| Near end signal crosstalk                 | 3.125<br>GHz | 6.<br>Gl | 25<br>Hz      | G12.5<br>Hz | 3.125 Hz | 6.25  | Hz  | 12.5 Hz |       |
| A1-B1 / B2-C2 unshielded variant          |              |          |               |             | - 45.3   | - 52  | .9  | - 38.7  |       |
| A1-B1 / B2-C2 shielded variant            | -39 dB       | -34      | dB            | -29 dB      | -44.8    | -36   | .8  | -36.5   |       |
| K1-J1 / K2-L2 unshielded variant          |              |          |               |             | -45.2    | -56   | .1  | -41.9   |       |
| K1-J1 / K2-L2 shielded variant            |              |          |               |             | -39      | -43   | .2  | -32.9   |       |
| Far end signal crosstalk                  | 3.125 Hz     | 6.25     | 5 Hz          | 12.5 Hz     | 3.125 Hz | 6.25  | Hz  | 12.5 Hz |       |
| A1-B1 / B2-C2 unshielded variant          |              |          |               |             | - 45     | - 49  | .3  | - 39    |       |
| A1-B1 / B2-C2 shielded variant            | -42 dB       | 24       | -34 dB -26 dB | 40          | 26 4D    | -41.4 | -36 | .6      | -32.3 |
| K1-J1 / K2-L2 unshielded variant          | -42 db       | -34      |               | -47.3       | -51      | .3    | -39 |         |       |
| K1-J1 / K2-L2 shielded variant            |              |          |               |             | -38.5    | -41   | .8  | -26.4   |       |
| Differential impedance unshielded variant | min          |          |               | max         | min      |       | max |         |       |
| TDR (40GHz BW, rise/fall time ≤ 17.5 ps)  | 90 Ω         |          |               | 110 Ω       | 82 Ω     |       | 1   | .30 Ω   |       |
| Differential impedance shielded variant   | min          |          |               | max         | min      |       | max |         |       |
| TDR (40GHz BW, rise/fall time ≤ 17.5 ps)  | 90 Ω         |          | :             | 110 Ω       | 80 Ω     |       | 1   | .19 Ω   |       |

Data rate: PASS

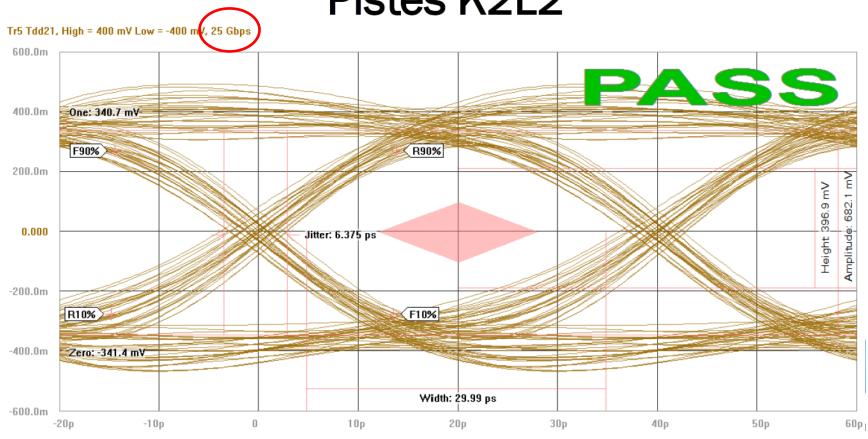
Insertion loss: PASS at 3.125GHz

Near-end cross-talk: PASS

• Far-end cross-talk: PASS <u>unshielded</u> variant

• Differential impedence: NOK

Very promising results for


prototypes!





# **AXON': RF PARAMETERS (VII) COMPARISON WITH AIRMAX VS**









### **AXON': CONCLUSIONS / NEXT STEPS**

### CONCLUSIONS

- Decision to manufacture these two-material prototypes only to fulfil urgent customer needs.
- Digital transmission is ensured with margin a bit more over 12.5GHz (equivalent to 25Gb/s) with a NRZ baseband signal,
   which exceeds ADHA needs.
- These are very promising results. It is planned to systematically improve these prototype connectors.
- The few non-conformances concern mainly the insertion losses above 3.125GHz and differential impedance.
- Shield between the frames => light impedance improvement but not big changes.

### **NEXT STEPS:**

- Prototype connector planned improvements:
  - Manufacturing process upgraded to have molded connectors, with one material only.
  - Improve internal PCBs.
  - Pin surface treatment.
- TRR estimated for June 2026, with evaluation test plan.
- Production of samples for mechanical testing, test set-up definition and test flow performance.



# Background & Rationale

Specification & Challenges

# On-going Activities (III)

**ARTES**:High Density Modular Electrical Interconnections for High Data Rate Applications (Performance Interconnect & ALTER TECHNOLOGY FRANCE)

### Conclusion



# Development of High Density Modular Electrical Interconnections for High Data Rate Applications

| Contractor: ALTER (FR) | R TECHNOLOGY (FR),         | ESA Budget     | 500 k€        |                 |  |  |  |
|------------------------|----------------------------|----------------|---------------|-----------------|--|--|--|
| Funding                | ARTES AT                   | Initial TRL: 3 | Target TRL: 6 | TO: Léo Farhat  |  |  |  |
| Start of activity: 1   | start of activity: 12 2023 |                | 07 2026       | Joaquín Jiménez |  |  |  |

### **Background and justification:**

Urgent need to develop backplane high data rate interconnections compatible with compact PCI Serial Space (cPCI SS) standard. This is capable of routing data between processing modules of on-board computers. Backplane connectors are critical components to enable high speed interconnections.

Currently, there are no European solutions able to reach 25 Gbit/s to 50 Gbit/s. Engineering models of modular backplane high density connectors compatible with cPCI serial space standards will be designed, manufactured and tested for use in high data rate space applications. Additionally, the focus of the activity will be to achieve at least 25 Gbit/s data rate.

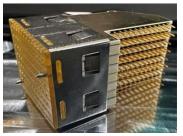
#### Objective(s):

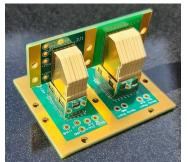
The objective of this activity is to design, develop and test engineering models of modular backplane high density connectors for high data rate space applications, compatible with cPCI serial space standard.

- enabling routing of more than 120 channels
- achieve an interface bit rate of at least 25 Gbit/s, with a goal of 56Gb/s for long-term missions.

#### **Achievement and status:**

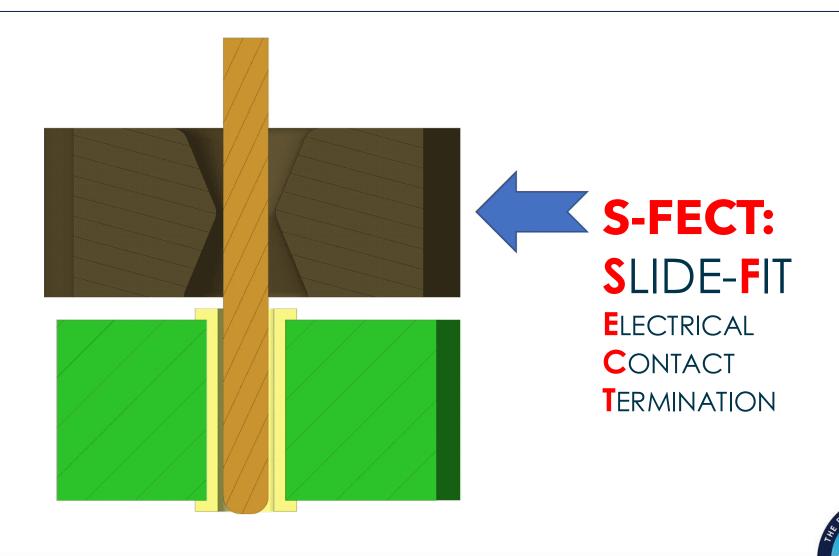
- ITT was issued in Q3 2022. No support from delegation. ITT re-issued to get support from National Delegation.
- Contract signed with ALTER (FR) and Performance Interconnect (FR) on 12/12/2023.
- Kick-off held in January 2024, finalized technical specification.
- Version 2 of the connectors created (Gen2HYP) to have EM models available: prototypes manufactured and characterisation done.


#### **Benefits:**


• European provider of interconnections for High Data Rate applications for space applications.

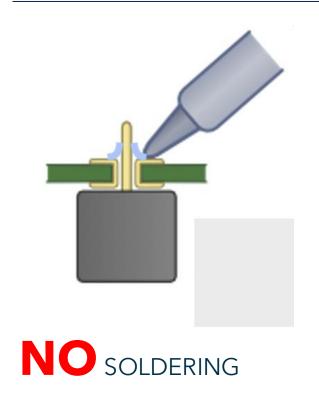
### Next steps:

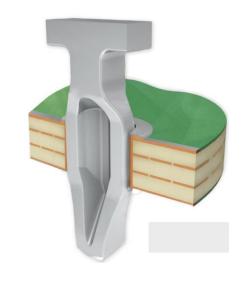
- CDR+MRR Nov 2025
- Reliability tests: electrical validation (high frequency measurements), mechanical validation (vibration, shock), thermal cycles.



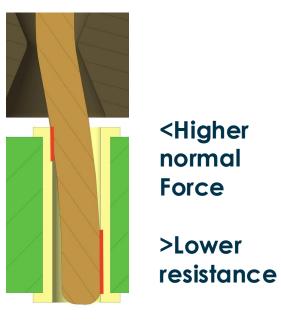






# **HYPERBITS: S-FECT (I)**




esa

# **HYPERBITS: S-FECT (II)**





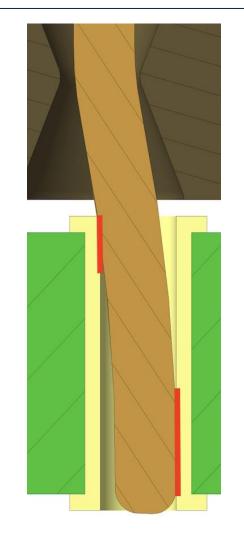






Contacts slide and operate in elastic deformation

esa


### **HYPERBITS: S-FECT (III)**



External Pressure Element Technology

Already qualified to

Mil - 39029 GSFC-311 ESCC-3401



# S-FECT

### **Technology**

Similar mechanism of operation BUT...

< Higher normal Force and > Lower

> Lower resistance

Connects directly to PCB



# **HYPERBITS: ADVANTAGES (I)**

### Press-fit versus S-FECT

S-FECT™ Technology



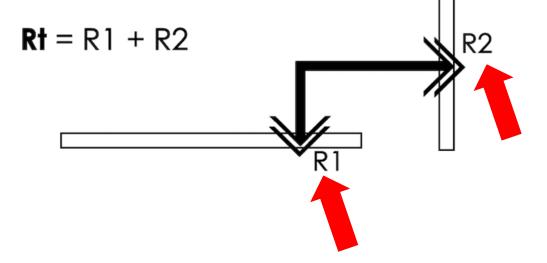
1-part connector system 
■ reduced cost simple installation

No special assembly tooling required

NO Deformation of contacts + NO Damage to PCB =

- Reusable PCB +
- Reusable Connector




## **HYPERBITS: ADVANTAGES (II)**

### Press-fit versus S-FECT

S-FECT™ **Technology** 

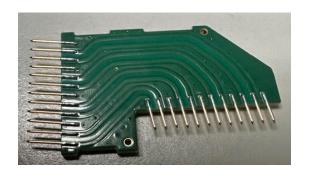
1-part connector system

Total resistance PCB to PCB:

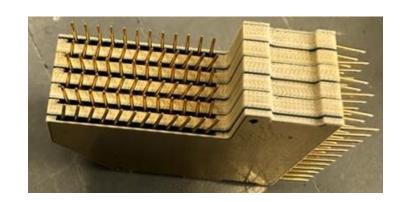


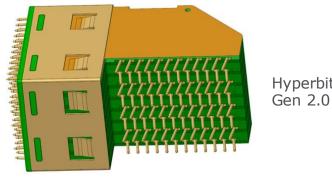
- reduced cost
- simple installation

HYPERBITS™


 $R1 = R2 \le 5m\Omega$ 

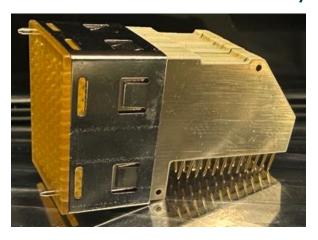



esa


### **HYPERBITS Gen 2.0: CONNECTOR MANUFACTURING**

A- Pin soldered on wafer



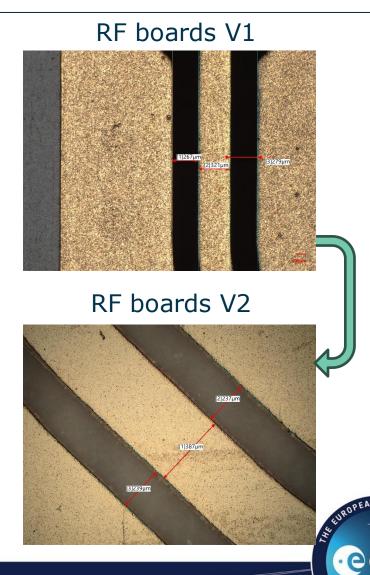

**B- PCB Connector Assembly** 



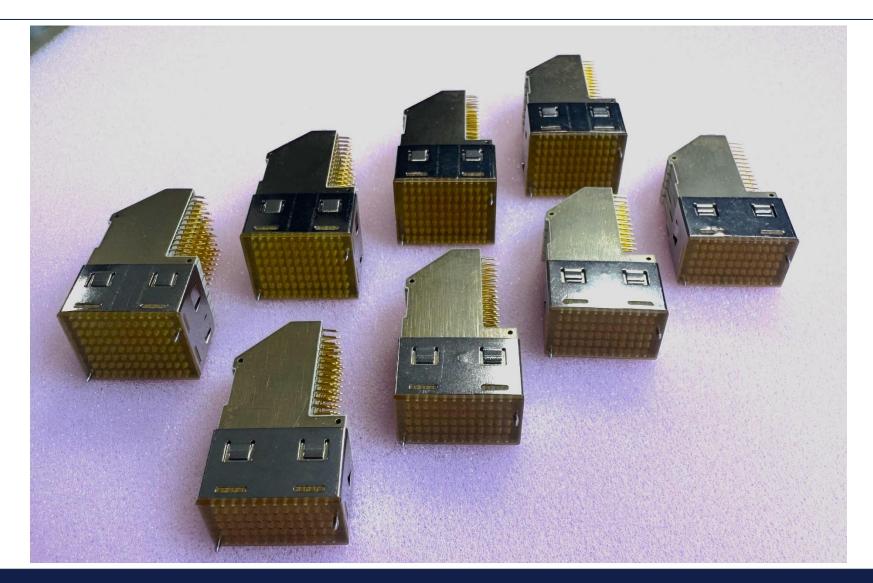


Hyperbits

C- Slide Shield Assembly



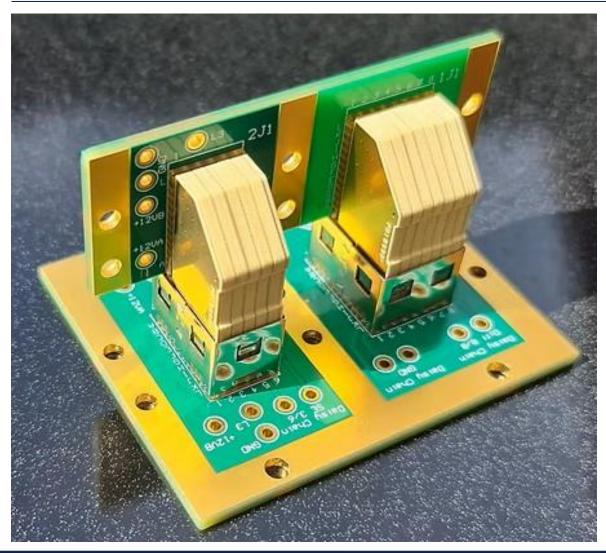




### **HYPERBITS Gen 2.0: TEST PCBs**

- V1: on test boards for RF measurements (Backplane and Daughter Card), tracks and insulation were not respected
- → RF impedance not respected.
- → V2: new RF boards were manufactured; Tracks dimensions and isolation requirements are now respected.






### **HYPERBITS Gen 2.0**



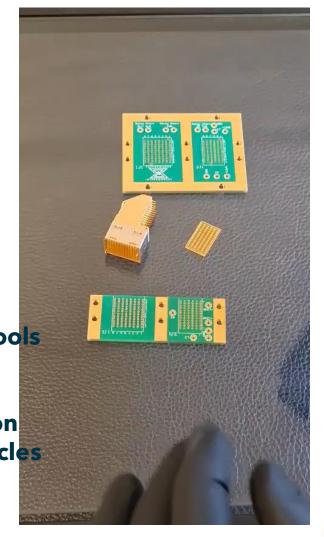




### **HYPERBITS Gen 2.0: CONNECTOR ASSEMBLY**



Repairability:


PCB reusable
Connector reusable

**Blindmating:** 

Directly into the backplane

Zero specialty tools

Zero jet effect
Zero deformation
Zero loose particles
Zero inspection



esa

# **CHARACTERISATION HYPERBITS Gen 2.0 (I)**

- FMEA: Design & Process Critical Design and Process WP2 June 24 WP3 Critical Testing Parameters 30 connecteurs - B range ° Pre-Series Assembly Reliabililty Assessment **ESA Validation** Volume Assembly
- Design FMEA and Process FMEA to define critical parameters for reliability testing (Electrical, Mechanical, Temperature, Insertions etc.)
  - Internal Alter Technology and Performance Interconnect prototypes assembly 5x parts + 5x parts

#### Mechanical validation 5x 2x parts

- External Visual Inspection
- PCB Insertion
- External Visual Inspection
- Contact resistance (RCL PCB to PCB)
- o Daisy-chain measurements.
- o Sine Vibration (no random vibration)
  - Sweep frequency: 10 2000 -10Hz
  - Cycle Period: 30 minutes
  - Amplitude: 1,5mm / 20g whichever is less.
  - Axis per Cycle: 3 mutual perpendicular direction
  - contact disturbance detection (1µs)
- o External Visual Inspection to check any crack or Failure
- o Daisy-chain measurements
- o Mechanical Shock
  - Shape of Shock: Half Sine
  - Acceleration: 50 g
  - Pulse duration: 11 ms
  - N° of Shock per test: 3
  - Axis per Test: 3 (mutual perpendicular direction)
  - contact disturbance detection (1µs)
  - External Visual Inspection
  - Daisy-chain measurements
  - o Contact resistance (RCL PCB to PCB)
  - o 5x Thermal Shock
    - -55 °C (+0, -10)
- ≥10 min
- 125 °C (+15, -0)
- ≥10 min
- External Visual Inspection
- o Daisy-chain measurements
- Contact resistance (RCL PCB to PCB)
- Insulation Resistance 500Vdc
- Voltage Proof Withstanding voltage 750 Vrms

#### Electrical validation 5x parts

- External Visual Inspection
- PCB Insertion
- External Visual Inspection
- High Frequency measurements

| NI O |                                                  | CONDITIONS             |                            | LIN | LIMITS |      |  |                |  |     |    |
|------|--------------------------------------------------|------------------------|----------------------------|-----|--------|------|--|----------------|--|-----|----|
| N.º  |                                                  | TEST                   |                            |     | MAX.   | UNIT |  |                |  |     |    |
| 1    | Z <sub>diff</sub>                                | Differential impedance | Between two adjacent pins. | 95  | 105    | Ohm  |  |                |  |     |    |
|      |                                                  |                        | Up to 3.12 GHz             |     | 1      | dB   |  |                |  |     |    |
| 2    | IL                                               | Insertion loss         | Up to 6.25 GHz             | -   | 1.5    | dB   |  |                |  |     |    |
|      |                                                  |                        | Up to 12.5 GHz             |     | 2      | dB   |  |                |  |     |    |
|      |                                                  |                        |                            |     |        | 0    |  | Up to 3.12 GHz |  | -39 | dB |
| 3    | Xtalknear                                        | Cross talk             | Up to 6.25 GHz             | -   | -34    | dB   |  |                |  |     |    |
|      |                                                  | (Near end pins)        | Up to 12.5 GHz             |     | -29    | dB   |  |                |  |     |    |
|      |                                                  | 0                      | Up to 3.12 GHz             | -   | -42    | dB   |  |                |  |     |    |
| 4    | 4 Xtalk <sub>tar</sub> Cross talk Up to 6.25 GHz | Up to 6.25 GHz         | -                          | -34 | dB     |      |  |                |  |     |    |
|      | (Far end pins)                                   | Up to 12.5 GHz         |                            | -26 | dB     |      |  |                |  |     |    |

#### TABLE III: ELECTRICAL MEASUREMENTS AT ROOM TEMPERATURE

| N.º | DESCRIPTION                                     | SYMBOL         | TEST METHOD                              | CONDITIONS                   | LIMI           | TS           | UNIT |
|-----|-------------------------------------------------|----------------|------------------------------------------|------------------------------|----------------|--------------|------|
| N.º | DESCRIPTION                                     | SYMBOL         | TEST METHOD                              | (TAMB=23 ±3 °C)              | MIN.           | MAX          | UNII |
| 1   | Low Level Contact Resistance<br>(Note 1)        | Rcl            | ESCC 3401,<br>Para. 9.1.1.3              | ±10mA                        | 20<br>(Note    |              | mΩ   |
| 2   | Rated Current Contact<br>Resistance<br>(Note 1) | Rcr            | ESCC 3401,<br>Para. 9.1.1.3              | 2A                           | 20<br>(Note 2) |              | mΩ   |
| 3   | Voltage Proof Leakage<br>Current                | l <sub>L</sub> | MIL-DTL-28748<br>Para. 4.7.5<br>(Note 4) | Rated Voltage:<br>750V RMS   | <br>(Note 3)   | <br>(Note 3) |      |
| 4   | Insulation Resistance                           | Ri             | MIL-DTL-28748<br>Para. 4.7.4<br>(Note 4) | 500 V ± 50 V<br>(60 seconds) | 1000           |              | ΜΩ   |

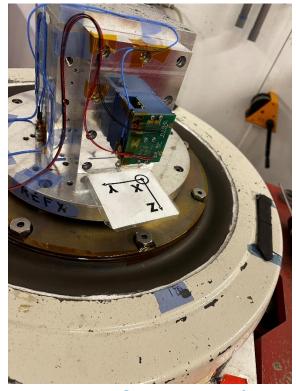
#### Pass No-Pass status

- o Pass Go to WP4
- No-pass Explore PCB design, BOM sub parts, material, connector mounting process. Start again prototypes assembly prior to ESA qual.








### **CHARACTERISATION HYPERBITS Gen 2.0 (II)**

Shocks and Vibrations environment



General view of vibration test set-up

Shocks and Vibrations X position example



Close-up view of contact disturbance detection system

esa

Results: No contact disturbance detected during shocks and vibrations sequence

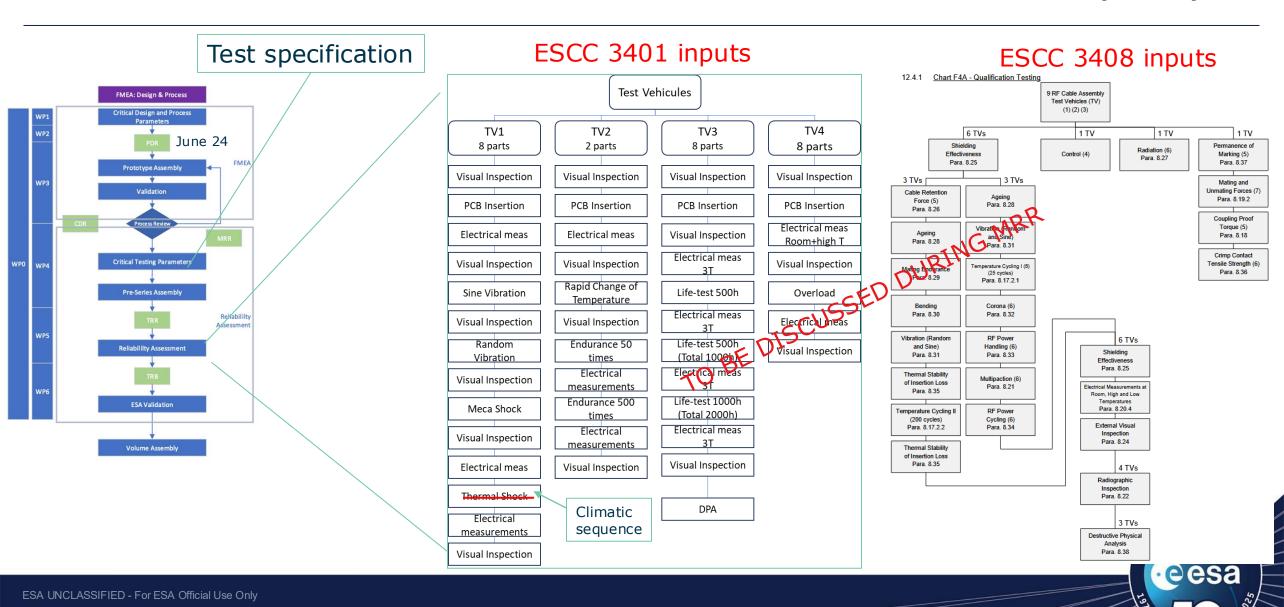
### **CHARACTERISATION HYPERBITS Gen 2.0 (III)**

Rdaisy-Chain 8-Rows = 1.66 Ohm all along testing (including  $2 \times 1.5$  m cable) Rdaisy-Chain 6-Rows (only 2 rows) = 0.41 Ohm all along testing (including  $2 \times 1.5$  m cable)

RCL PCB to PCB before and after Vib and shocks [mOhm]

|   | 1  | 2  | 3  | 4  | 5  | 6  | 7  | 8  |
|---|----|----|----|----|----|----|----|----|
| Α | 25 | 19 | 25 | 17 | 25 | 19 | 24 | 16 |
| В | 27 | 28 | 26 | 25 | 28 | 26 | 26 | 25 |
| С | 20 | 28 | 24 | 27 | 22 | 27 | 18 | 26 |
| D | 30 | 23 | 28 | 25 | 29 | 22 | 28 | 18 |
| Е | 31 | 29 | 31 | 32 | 32 | 32 | 28 | 28 |
| F | 21 | 30 | 24 | 33 | 20 | 31 | 18 | 28 |
| G | 33 | 20 | 33 | 22 | 30 | 22 | 31 | 18 |
| Н | 30 | 35 | 32 | 36 | 34 | 32 | 32 | 28 |
| I | 17 | 37 | 21 | 37 | 20 | 34 | 18 | 30 |
| J | 31 | 20 | 33 | 19 | 34 | 20 | 32 | 19 |
| K | 33 | 37 | 33 | 36 | 35 | 38 | 32 | 31 |
| L | 16 | 37 | 18 | 45 | 17 | 37 | 16 | 31 |

|   | 1  | 2  | 3  | 4  | 5  | 6  |
|---|----|----|----|----|----|----|
| Α | 26 | 19 | 25 | 11 | 25 | 19 |
| В | 14 | 11 | 12 | 12 | 12 | 11 |
| С | 16 | 25 | 11 | 28 | 19 | 26 |
| D | 15 | 18 | 11 | 21 | 20 | 19 |
| Е | 15 | 29 | 11 | 30 | 21 | 21 |
| F | 13 | 12 | 11 | 35 | 17 | 21 |
| G | 17 | 20 | 11 | 67 | 22 | 19 |
| Н | 16 | 31 | 11 | 28 | 22 | 22 |
| 1 | 15 | 33 | 12 | 28 | 17 | 23 |
| J | 15 | 16 | 11 | 27 | 33 | 26 |
| K | 17 | 11 | 12 | 14 | 13 | 13 |
| L | 22 | 33 | 19 | 15 | 17 | 42 |


- Very good contact resistance values
- No significant drift observed all along test sequence

### RCL PCB to PCB after TC [mOhm]

|   | 1  | 2  | 3  | 4  | 5  | 6  | 7  | 8  |
|---|----|----|----|----|----|----|----|----|
| Α | 25 | 17 | 24 | 17 | 23 | 17 | 22 | 17 |
| В | 25 | 25 | 24 | 24 | 28 | 24 | 22 | 30 |
| С | 17 | 25 | 21 | 27 | 20 | 25 | 15 | 34 |
| D | 28 | 23 | 25 | 25 | 28 | 17 | 25 | 16 |
| Е | 27 | 29 | 27 | 30 | 29 | 24 | 25 | 30 |
| F | 20 | 29 | 17 | 27 | 17 | 27 | 16 | 31 |
| G | 33 | 19 | 27 | 17 | 28 | 20 | 26 | 19 |
| Н | 32 | 29 | 28 | 31 | 30 | 27 | 30 | 27 |
| I | 18 | 21 | 17 | 33 | 18 | 29 | 16 | 29 |
| J | 33 | 18 | 30 | 17 | 30 | 18 | 29 | 17 |
| K | 33 | 32 | 31 | 33 | 31 | 33 | 29 | 30 |
| L | 16 | 35 | 17 | 33 | 15 | 27 | 15 | 31 |

|   | 1  | 2  | 3  | 4  | 5  | 6  |
|---|----|----|----|----|----|----|
| Α | 24 | 15 | 23 | 9  | 23 | 17 |
| В | 8  | 9  | 9  | 10 | 10 | 10 |
| С | 11 | 23 | 9  | 27 | 17 | 25 |
| D | 11 | 15 | 9  | 19 | 18 | 18 |
| Е | 11 | 24 | 10 | 21 | 19 | 19 |
| F | 10 | 9  | 9  | 21 | 16 | 20 |
| G | 11 | 15 | 9  | 21 | 21 | 18 |
| Н | 10 | 28 | 9  | 23 | 20 | 21 |
| I | 11 | 28 | 9  | 24 | 17 | 23 |
| J | 11 | 16 | 9  | 22 | 31 | 23 |
| K | 8  | 9  | 9  | 10 | 10 | 11 |
| L | 15 | 31 | 16 | 10 | 17 | 38 |

# **NEXT STEPS: RELIABILITY ASSESSMENT TEST FLOW (TBD)**



# Background & Rationale

Specification & Challenges

On-going Activities

### Conclusion



### CONCLUSIONS

- 1. **TDE**: Procurement and Reliability Assessment of High Data Rate Press-Fit cPCI SS connectors, ALTER TECHNOLOGY SPAIN: :
  - Existing commercial solution Airmax, Amphenol (China).
  - New and innovative solution Hyperbits, Performance Interconnect (France).
  - -Mechanical testing and RF measurements about to start.
- 2. **TDE**: Board to Board Interconnections for High Data Rate applications (AXON' cable)
  - Prototypes manufactured, electrical characterisation done, data rate values exceed customer needs.

eesa

- Molded EMs to be manufactured by June 2026, mechanical tests to be performed.
- 3. ARTES: High Density Modular Electrical Interconnections for High Data Rate Applications (Performance Interconnect & ALTER TECHNOLOGY FRANCE)
  - Prototypes manufactured, DC-electrical characterisation and mechanical testing done.
  - RF measurements to be done, full reliability assessment to be defined and performed.
- Lessons learned already identified in the three activities: assembly process, manufacturing steps, test PCBs procurement.



# **Space Passive Component Days (SPCD)**

### First announcement: SAVE THE DATE!



### 6TH SPACE PASSIVE COMPONENT DAYS - SPCD 2026

13-16 October 2026 | ESA/ESTEC Noordwijk, The Netherlands



www.spcd.space

SPACE PASSIVE COMPONENT DAYS