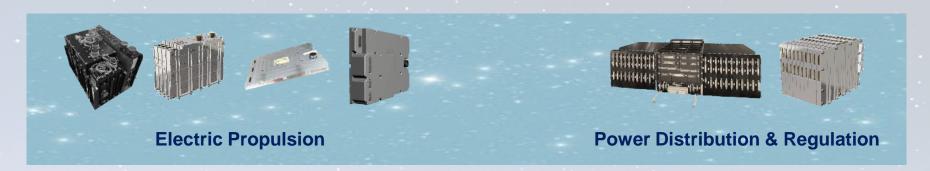


DEFENCE AND SPACE


DEFENCE AND SPACE

Section 1 (not applicable in France, please go to section 3)				
This document contains Technical Information :				
Yes 128 No □				
If No to section1: please complete Section 2				
If Yes to section1: please complete Section 3 as applicable				
Section 2 (not applicable in France, please go to section 3)				
I confirm the document does not contain Technical Information and is « Not-Technical »				
Name:				
Date:				
Section 3				
3a. National and EU regulations Export Control Assessment				
This document has been assessed against applicable export control regulations in				
■ France Germany Spain UK Cher				
☑ and does not contains Controlled Technology¹ and is therefore « Not Listed / Not Controlled »				
and contains Controlled Technology with export control classification				
□ <u>Note</u> : Any transfer of this document in part or in whole must be made in accordance with the appropriate export control regulations. Prior to any transfer outside of the responsible legal entity, confirmation of an applicable				
export licence or authorisation must be obtained from the local Export Control Officer (ECO).				
3b. US (ITAR/EAR) Export Control Assessment				
This document does not contains US origin Technical Data (Technology)				
☐ This document contains « Technology » which is controlled by the U.S government under [USML category number / ECCN] and which has been				
received by [Legal entity] under the authority of [Licence number / ITAR exemption / EAR licence exception / NLR]				
☐ This document contains technology which is designated as EAR99 (subject to EAR and not listed on the USML/CCL.)				
Note: Any re-export or re-transfer of this document in part or in whole must be made in accordance with the appropriate regulation (ITAR or EAR) and applicable authorization. If in any doubt please contact your local ECO.				
3c. Technical Rater Information				
This document has been assessed by the following Technical Rater :				
Assessed and classified by: A.MEGE				
Date classification completed: 2025-10-10				

Technology" is defined as any Information necessary for the design, development, production, use, operation, maintenance or repair of export controlled goods. Examples of such Information are blueprints, plans, diagrams, models, engineering designs, manuals, requirements specifications and instructions etc. If in any doubt please contact your local Export Control Officer (ECO)

Space Electronics portfolio

Power & Propulsion Units

Platform & Payload Processing Units

Sensors & Actuators

www.airbus.com/en/products-services/space/equipment

Motivations and stakes

On board processing for earth observation (Optical / Radar / ...IA):

- Computational Power: FPGA Cores + AI Engines + Software Framework
- Memory Throughput (IA)

Different applications -> various usage of the processing core

LEO Telecommunications / 5G:

- ADC/DAC Interfaces: Many High Speed Serial Links, 25Gbps+
- Computational Power: FPGA + AI Engines + Processor: > 90W dissipated by FPGA
- Routing Interfaces: PCle3x8 (co-processing), 10Gb & 100Gb Ethernet

Science:

Mass Correlators / Computational Power: FPGA + Internal FPGA Memories

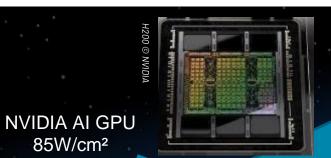
Hardware equipment with VERSAL

Real technical challenges:

- Power density heat dissipation
- Processing core supply: high current low voltage
- Data throughputs
- Technologies assembly & manufacturability (components pitches / high pin counts / PCB technologies ...)

Keeping the constraints of space design

- Conductive cooling
- Radiations
- Reliability
 - Etc...


Technical challenges must be addressed for a flight usage of the Versal chip

Power density

VERSAL

20W/cm²

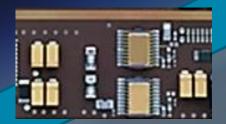
85W/cm²

Nuclear power plant 55W/cm²

Air fans, CC BY-SA 4.0 https://creativecommons.org/licenses/by-sa/4.0, via Wikimedia Commons Emmelie Callewaert, CC BY-SA 4.0 https://creativecommons.org/licenses/by-sa/4.0, via Wikimedia Commons

RTG4 2W/cm²

Current


VERSAL 100A+

20 phases, 40A+ per phase

RTG4 12A

2 Phases, 6A per phase

4 phases, 25A per phase GaN transistor

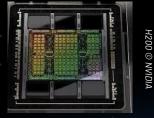
1406

J405

1305

~100 Mbit/s, 1995

SpaceWire


Data throughputs (per lane)

RTG4 3 Gbit/s, 2016

VERSAL 25 Gbit/s, 2020

H200 100 Gbit/s,2022

> **PCIE 7.0** 128 Gbit/s, 2025 (planned)

PCIE 6.0 64 Gbit/s, 2022

PCIE 5.0 32 Gbit/s, 2019

PCIE 4.0 16 Gbit/s, 2017

PCIE 3.0 8 Gbit/s, 2010

PCIE 2.0 4 Gbit/s, 2007

PCIE 1.0 2 Gbit/s, 2003

MIL-STD-1553

1 Mbit/s, 1975

Space I	Electronics
. A S	Space Products entity

Year	Project	Key Features	Innovations	Applications	View
2019- 2021	ZUP	Zynq UltraScale+ MPSoC • Modular extended 6U VPX format 2xFMC+ digital/mixed mezzanines	DDR4 introduction at 1,866Gsps High-speed links 10Gbps 16 Layers stack up (1156pin SoC)	TELEO ⁽¹⁾ GEO optical atmospheric feeder in-flight demonstrator (1): successful in-orbit	

Year	Project	Key Features	Innovations	Applications	View
2019- 2021	ZUP	Zynq UltraScale+ MPSoC • Modular extended 6U VPX format 2xFMC+ digital/mixed mezzanines	DDR4 introduction at 1,866Gsps High-speed links 10Gbps 16 Layers stack up (1156pin SoC)	TELEO ⁽¹⁾ GEO optical atmospheric feeder in-flight demonstrator (1): successful in-orbit	
2020- 2022	KUP	 KU060 Kintex UltraScale SEL and SEU protection Modular extended 6U VPX format 2xFMC+ digital/mixed mezzanines 	 HSSLs signal integrity simulations Backdrill introduction DDR4 tested at 2.4Gsps 22 Layers stack up (1517p SoC) 	Sunrise Laser LCT modem technology development Hi-side Hyperspectral compression demonstrator	

Year	Project	Key Features	Innovations	Applications	View
2019- 2021	ZUP	Zynq UltraScale+ MPSoC • Modular extended 6U VPX format 2xFMC+ digital/mixed mezzanines	 DDR4 introduction at 1,866Gsps High-speed links 10Gbps 16 Layers stack up (1156pin SoC) 	TELEO(1) GEO optical atmospheric feeder in-flight demonstrator (1): successful in-orbit	
2020- 2022	KUP	 KU060 Kintex UltraScale SEL and SEU protection Modular extended 6U VPX format 2xFMC+ digital/mixed mezzanines 	 HSSLs signal integrity simulations Backdrill introduction DDR4 tested at 2.4Gsps 22 Layers stack up (1517p SoC) 	Sunrise Laser LCT modem technology development Hi-side Hyperspectral compression demonstrator	
2023- 2026	VIP	 VERSAL SoC Ready for conduction cooled SEL and SEU protection 6U VPX format High-speed links: x16 @ 12Gbps+ on backplane 2x12 @ 25Gbps on 2xFMC+ Optical links 4x25Gbps 	 Advanced power and thermal management 90W@core and >150W at board 24 Layers stack up (2192 p on SoC) Intensive signal integrity simulations Power integrity simulations 	Technology demonstrator ⁽³⁾ Use cases and applications developments	Avieus S S S S S S S S S S S S S S S S S S S

Year	Project	Key Features	Innovations	Applications	View
2019- 2021	ZUP	Zynq UltraScale+ MPSoC • Modular extended 6U VPX format 2xFMC+ digital/mixed mezzanines	DDR4 introduction at 1,866Gsps High-speed links 10Gbps 16 Layers stack up (1156pin SoC)	TELEO ⁽¹⁾ GEO optical atmospheric feeder in-flight demonstrator (1): successful in-orbit	
2020- 2022	KUP	KU060 Kintex UltraScale • SEL and SEU protection • Modular extended 6U VPX format 2xFMC+ digital/mixed mezzanines	 HSSLs signal integrity simulations Backdrill introduction DDR4 tested at 2.4Gsps 22 Layers stack up (1517p SoC) 	Sunrise Laser LCT modem technology development Hi-side Hyperspectral compression demonstrator	
2023- 2026	VIP	VERSAL SoC Ready for conduction cooled • SEL and SEU protection 6U VPX format High-speed links: x16 @ 12Gbps+ on backplane 2x12 @ 25Gbps on 2xFMC+ Optical links 4x25Gbps	 Advanced power and thermal management 90W@core and >150W at board 24 Layers stack up (2192 p on SoC) Intensive signal integrity simulations Power integrity simulations 	Technology demonstrator ⁽³⁾ Use cases and applications developments	Augus S.
2024-	VHIPER	VERSAL SoC 1xFMC+ connector Conduction cooled Rad-Tolerant	Radiation hardened power solution	Earth Observation Science Telecom / Optical Coms modems	

VIP Board technology demonstrator

Modular Format extended 6U VPX

> 90W available on the FPGA

HSSL links

Backplane:

- Connector VPX RT3
- x16 @ 16Gbps+ (target)

FMC+: 2x12 @ 25Gbps (target)


Backdrill, microvias

Memory DDR4, 2 banks:

2GBytes DDR4 with ECC, >2.4Gbps x (64bits + 8 bits ECC) 2GBytes DDR4 with ECC, >2.4Gbps x (64bits + 8 bits ECC)

Optical links

module 4x25 Gbps TX/RX

VIP Board technology demonstrator

FMC2 slot

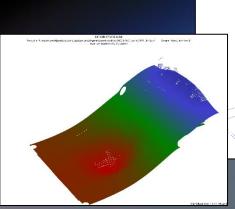
Ethernet (GbE)

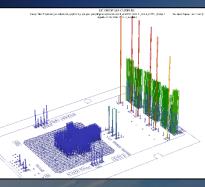
VPX interface (Power, std IO, High speed)

Commercial Point Of Load

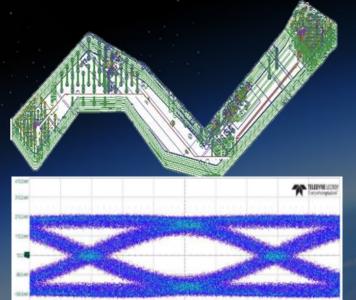
Versal

DDR BK0

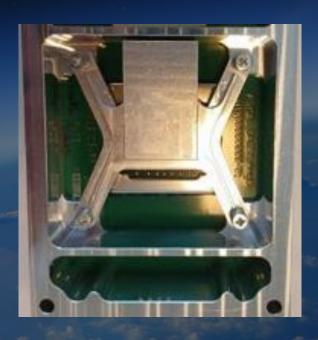

DDR BK1


De-risking activities

Versal assembly prototyping (Report & X-rays)



Power Integrity



High-Speed Links 3D PCB Signal Integrity Simulation

Thermal Dissipation Mechanical Mockup

De-risking activities

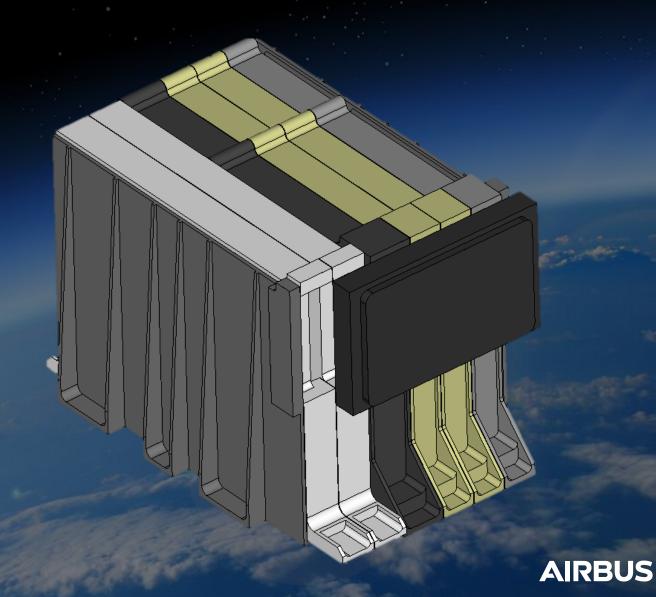
EM Board New Space Components GaN Technology Transistors

Output: 800 mV, 100A+

Tested at:

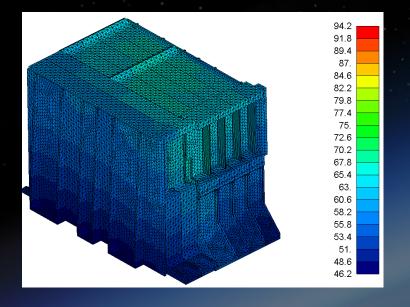
Continuous: 100A, 80W DC

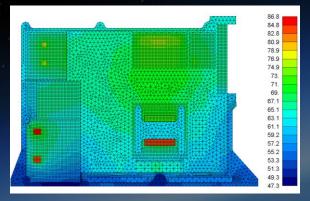
• Transients: +25A, 200ns rise/fall time



VHIPER: An operational product EM

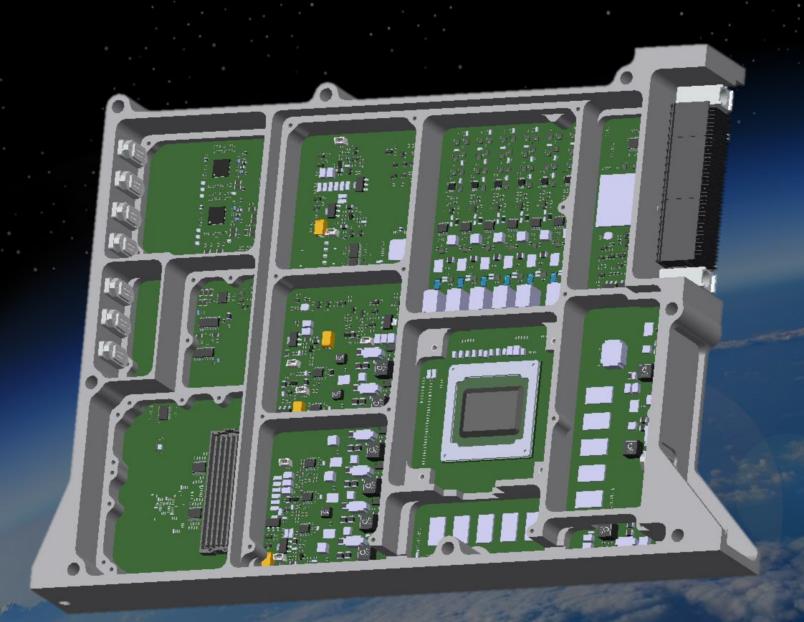
Derived from


- VIP demonstration
 - De-risking activities


Preparing 1st Versal-based EM product

VHIPER EM preparation

Detailed thermal bord and equipment architecture



Boards layout

VHIPER EM preparation

a u 0