LEOSG: : RFSoC Based Navigation Payload Signal Generator Demonstrator for a Future LEO-PNT System

David González Arjona dgarjona@gmv.com

Giovanni Brajato gbrajato@gmv.com
Rubén Domingo Torrijos rdomingo@gmv.com
David Sanz Villalón david.sanz.villalon@gmv.com
Arturo Pérez García arturo.perez.garcia@gmv.com
Umberto Vargas umberto.vargas@gmv.com
Maria Manzano Jurado mmanzano@gmv.com
Max Ghiglione max.qhiqlione@esa.int

Contents

Introduction

Background

Roadmap

Innovation aspects

Environmental assessment

Conclusions and future work

GMV: A global technology group

Multinational technology group.

Founded Private capital

+3,500 employees

Engineering, development and integration of systems, software, hardware, specialized products and services

1984

Headquarters in Spain (Madrid).

Subsidiaries in 12 countries (ops in 70+)

Roots tied to the Space and Defence industry

Aeronautics, Space, Defense & Security, Cybersecurity, Intelligent Transport Systems, Healthcare, Banking & finances, and ICT industries

Space

Aeronautics

Defense & Security

Telecommunication

Cybersecurity

Intelligent Transport Systems

Healthcare

Public Sector and Corporate ICT

Banking & Finances

GMV Space Technological Leadership

#1 WorldwideSatellite Control
Center provider to
commercial telecom
operators.

Primary SST technology and Operation Centers

Space Segment GNC technology leader On-board Autonomy On-board SW Space Equipment

Test Facilities

Prime role in European GNSS Systems and its safety critical systems (EGNOS and Galileo)

Leading European Space Robotics technology, growing Microelectronics, HW Avionics and Technology Transfer

Excellence in
Flight Dynamics,
Mission Analysis,
E2E Simulators,
E0 Data
Processing and
downstream
geospatial services

Introduction

LEO-PNT constellations

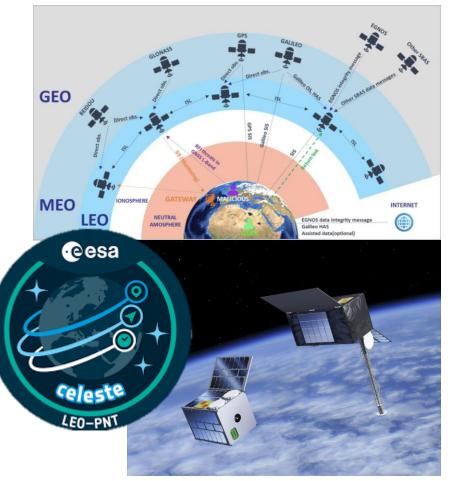
Low Latency

Reduced signal travel time compared to MEO/GEO systems.

Higher Bandwidth

Supports more data-intensive applications.

Stronger Signal Power


Improved link budget and robustness.

Reduced Noise

Better signal-to-noise ratio for navigation.

Improved Accuracy

Enhanced positioning performance for PNT services

Traditional SDR vs RFSoC Architecture

Traditional navigation uses SDRs and analog circuits, while RFSoC integrates digital and analog components in one chip.

Traditional SDR Approach	RFSoC-Based Architecture
Separate FPGA/SoC + external DAC/ADC modules	Integrated DACs/ADCs on the same silicon as FPGA and CPU
Requires additional analog circuits (mixers, PLLs)	Direct RF output up to 6 GHz (no external upconversion)
Higher size, weight, and power (SWaP)	Lower SWaP and footprint
Increased design complexity and latency	Real-time signal parameter reconfiguration, reduced latency and interface overhead
Limited real-time reconfigurability	Real-time signal parameter reconfiguration

LEOSG EM Signal Generator

Core Platform:

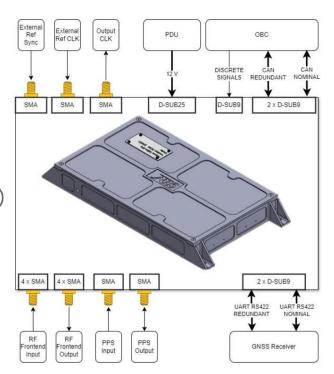
Xilinx Zynq UltraScale+ RFSoC (ZU48DR)

Key Features:

- Integrated DACs/ADCs for direct RF output up to 6 GHz.
- Real-time reconfigurability for emerging signals and modulations.
- On-board monitoring and error mitigation mechanisms.

Architecture Highlights:

- Processing System (ARM cores) for control and telemetry.
- Programmable Logic with Versatile Signal Generator (VSG)
 IP
- Embedded RF data converters and high-stability clock subsystem.


Flexibility:

Supports L-band, S-band, and configurable for UHF.

TRL Goal:

From EM (TRL6) toward EQM/FM (TRL8).

High-performance RF signal generator for LEO-PNT navigation payload signal generation.

Background

Overview of SING Project

Purpose:

• Demonstrate a single-chip GNSS signal generator for E1, E5, and E6 bands.

Platform:

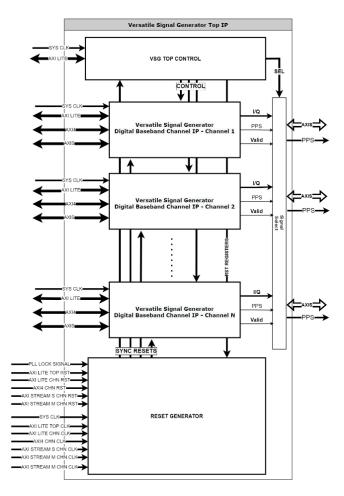
Xilinx ZCU208 board with Zyng UltraScale+ RFSoC (ZU48DR).

Key Features:

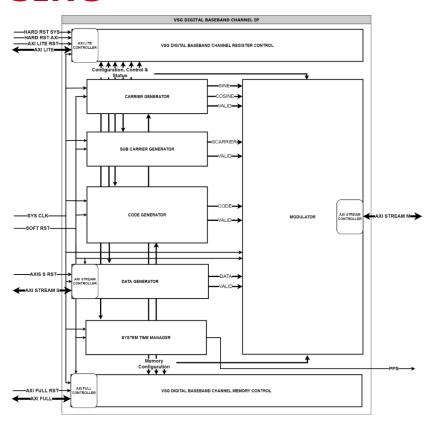
- High flexibility for future signals and modulation schemes.
- Optimized for power consumption in navigation payloads.

Capabilities:

• Generation of up to 128-QAM signals and GNSS-specific signals at baseband and RF.

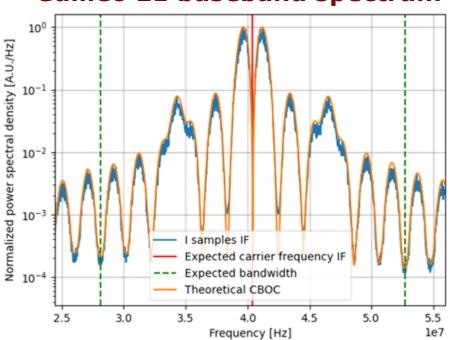

Identified Limitations:

- · Limited real-time reconfigurability.
- Degraded SNR due to hardware constraints.
- Suboptimal FPGA resource allocation → higher power consumption.

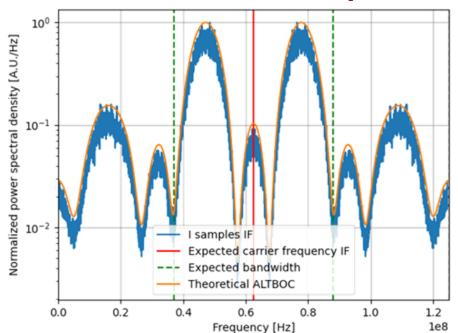

Overview of VSG IP in SING

- VSG top IP vendor agnostic design
- Parametrizable design by generics to adapt to application and device requirement
- Support for different clock domains for each channel/interface
- Scalability from 1 to N VSG digital baseband channels
- Easy control of the N channels through a single AXI interface
- Vectorized inputs and outputs to automatically generate interfaces

Overview of VSG IP in SING



- Fully configurable VSG Digital baseband channel through AXI Interfaces
- AXI Lite for register configuration, AXI4 for internal memory transaction, AXI Stream for Navigation data input and Modulated output to RF chain
- Programmable Carrier (NCO, LUT values and gain)
- Programmable Sub Carrier (NCO, size and period)
- Programmable Code generator
- 7 (by default) simultaneous code bits for 128QAM modulation support
- XOR combination of Primary LFSR, Secondary LFSR, Primary LUT and Secondary LUT
- Configurable code NCO, Primary and secondary Periods, initial Periods, Polynomials, seeds and initial seeds
- Code independent enables
- Pilot XOR Data independent configuration
- Programable Navigation Data Generator (NCO and periods)
- Programmable Modulator (Number of modulation bits, configurable Pilot&Code combination, configurable subcarrier modulation bits, Configurable LUT symbol map)



Achieved results with SING

Galileo E1 baseband spectrum

Galileo E5 baseband spectrum

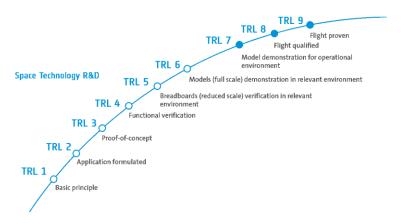
Roadmap

Roadmap

Project Development Stages

 The LEOSG project progresses from the initial EBB model to the Engineering Model and future qualified models.

Technology Readiness Levels

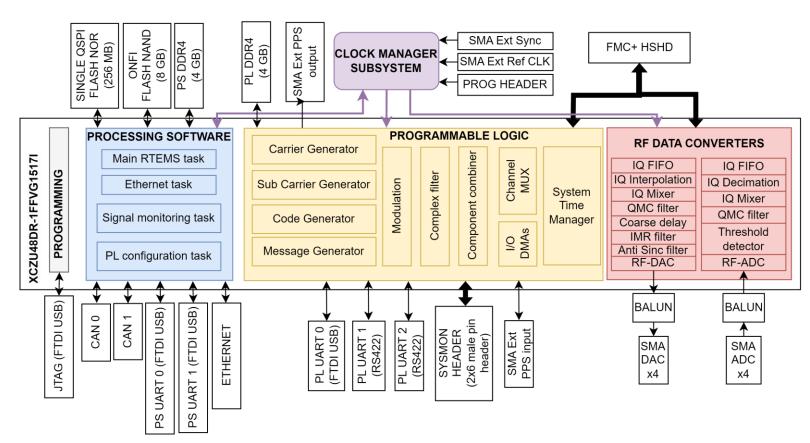

 The roadmap follows ESA's TRL framework, advancing from TRL4 toTRL6 and aiming for TRL8 for space qualification.

Technical Refinements

 Key developments include consolidating RFSoC knowledge, refining hardware design, and optimizing GNSS Signal Generator IP.

Mission Qualification Goals

 Strategic steps ensure LEOSG meets requirements for LEO-PNT space mission deployment and qualification.



Innovation aspects

LEOSG architecture

Processing software

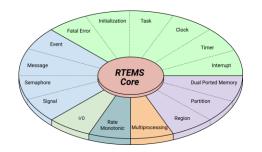
Role of PS Software

- TM/TC Communication with the OBC (CAN -> CSP -> PUS)
- Real-time operational control of signal generation.
- Low-latency, high-throughput communication with PL (same RFSoC device).

RTEMS-Based Implementation

- Thread-safe design for precise timing and safe HW access.
- Xilinx RF data converter, clock management, and drivers ported to RTEMS.

Runtime Flexibility


Allows dynamic modification of complex IP configurations.

Key Features

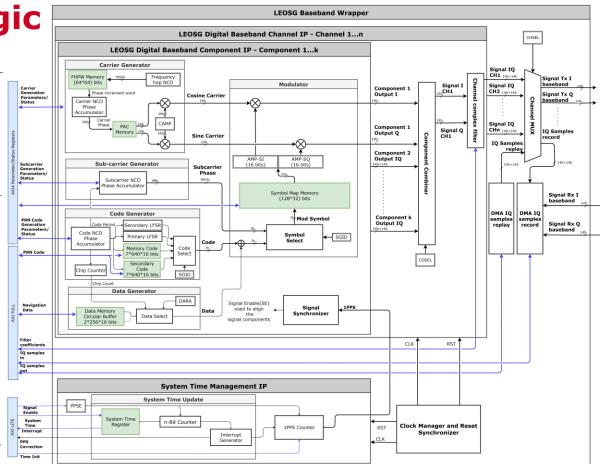
- Initialization of LUTs for carriers, codes, and modulation symbols.
- Control register configuration with transparent memory management.
- Signal and system monitoring for quality assessment.
- Configuration memory, PS and IPs integrity
- Mutual exclusion for hardware access (thread safety).
- Periodic navigation data delivery.

Programmable logic

Architecture Basis:

- Built on Versatile Signal Generation (VSG) IP (GMV VHDLbased).
- Integrated with XCZU48DR RFSoC RF data converters.

Origin & Validation


Developed under SING project, validated on Xilinx ZCU208 board.

Primary Objective

- Generate LEO-PNT GNSS signals in L-band and S-band.
- Flexible configuration → supports UHF band (per LEO-PNT SIS ICD).

VSG updates form SING:

- Carrier Generator: Digital sine/cosine carriers, NCO with FHSS support.
- Channel organization (each channel is composed on 3 baseband component generators + component combiner)
- System Time Manager (STM): STU + 1PPS generator for synchronization.
- · Component Combiner: Summation of signal components.
- · Channel Multiplexer: Routes IQ streams to DACs.
- Complex modulation on I and Q
- Channel Baseband complex Filter: Band-pass filtering & distortion pre-compensation.
- DMA Modules: IQ sample injection/retrieval for testing & monitoring.
- AXI interface optimization (the entire design uses 1 AXI + 1 AXI Lite + N AXI Stream {one per channel})

Clock manager subsystem

Precise reference input clock

10 MHz OCXO: Holdover ±1.5 μ sec over 8 hours, PhaseNoise10kHz [dBc/Hz] -154 dBc/H

External reference clock

Possibility to switch between OCXO and external reference clock input

Dedicated Clock Input per Tile

Each RF-ADC or RF-DAC tile has its own clock input.

No Additional Clock Buffer Required

Current-Mode Logic (CML) clock input buffer already integrated in tile architecture.

Clock Input Usage

Can serve as sampling clock or PLL reference for the tile.

CML Clock Characteristics

On-die differential termination of 100 Ω .

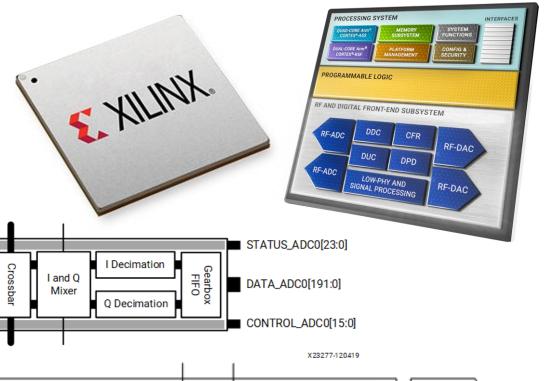
On-Chip Clock Distribution

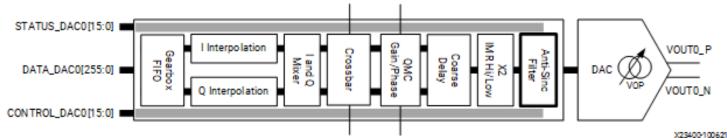
Enables forwarding of clock signals between adjacent tiles within converter groups.

Clock Source Options

Forwarded clock can be external reference or PL-generated.

RF-Data converters


Threshold Detect


OMC

Gain/Phase

LEOSG integrates high-speed DACs and ADCs within the same silicon die, reducing complexity, latency, and power use.

ADC

VIN0_N

Proposed EQM optimizations

EQM modifications

Hardware and VHDL design optimizations that can decrease size, weight and Power consumption up to 60%

- Fit the hardware design to LEOPNT requirements reducing processing capabilities
- Remove the DDR4 of the PL and reduce the performance of the DDR4 of the PS
- Remove Debug interfaces as PS/PL UARTS and ethernet
- Replace OBC CAN communication interface by SpaceWire
- Currently in progress optimizations in AXI infrastructure and configuration registers will significantly decrease the logic resources and the power consumption of the RFSoC

Replace COTS component by Low power Space Qualified counterparts

Applies ECSS-Q-ST-70C in manufacturing and assembly processes

Environmental assessment

Environmental Assessment

Suitability for Space Missions

RFSoC devices are evaluated for use in LEO space missions with low radiation tolerance and short duration.

Digital and Analog Component Analysis

Radiation tests show promising digital component results, with further analysis required for the analog RF chain.

Fault Mitigation Strategies

Ongoing campaigns focus on fault mitigation to ensure reliability of RFSoC devices in harsh space environments.

Conclusions and future work

Conclusions & Future Work

Project Feasibility Demonstrated

LEOSG proves RFSoC technology is effective for navigation payload signal generation in LEO-PNT systems.

Engineering Model Features

Incorporates real-time reconfigurability, adaptive modulation, and low SWaP for space mission viability.

Future Work and Testing

Focus on RF characterization, radiation testing, multi-channel support, and frequency band expansion.

Advancing Towards Flight Models

Aims to achieve TRL8 flight models for resilient navigation payloads in next-generation LEO constellations.

Thank you

