

EDHPC2025 paper presentation:

Modular and Scalable Electrical Architectures for Satellite On-Board Data Handling and Processing – using ADHA (Advanced Data Handling Architecture)

<u>David Steenari</u>¹, Julian Bozler², Dario Pascucci³, Jon Caudepon⁴, Felix Siegle¹, Kostas Marinis¹

1: ESA ESTEC, 2: Airbus GmbH, 3: Thales Alenia Space Italia, 4: OHB Systems AG

David Steenari, <u>david.steenari@esa.int</u> Kostas Marinis, <u>kostas.marinis@esa.int</u>

Data Handling Section ESA/ESTEC EDD

| ED<u>D</u>

EDHPC 2025 ADHA Session A1

ESA UNCLASSIFIED – For ESA Official Use Only

Presentation Scope and Overview

ADHA has already provided standardisation of some DHS functions (OBC, MM, etc).

An expansion of DHS functions to be standardised under ADHA is currently planned.

This paper presentation aims to provide possible examples of end-to-end data-handling / avionics architectures for representative mission profiles based on ADHA units, and module functions currently considered for standardisation under the ADHA-3 system study activity.

More details are included in the provided technical paper.

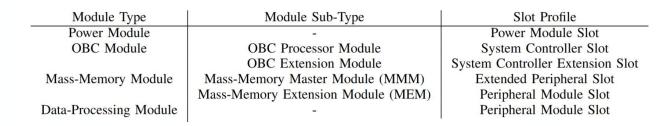
Presentation sections:

- 1. Standardised ADHA data-handling functions
- 2. Example unit architecture configurations
- 3. End-to-end data-handling system / avionics architectures based on ADHA units

1. ADHA standardised DHS functions

ESA UNCLASSIFIED - For ESA Official Use Only

-


ADHA standardised DHS functions — current

ADHA standardises DHS functions as Module Functional Requirements Specifications.

The currently standardised module functions include:

- Power Module provides backplane power buses
- **OBC Module** complete SAVOIR-compliant OBC
 - Possible to split over several modules up to supplier!
- Mass-memory complete (payload) mass-memory
 - Reference architecture split between MM master module and MM extension (storage) module)
- DPM (Data Processing Module) for high-end (payload) data processing
 - Can also be provided as for co-processor, off-loading a payload ICU or platform OBC for processing tasks

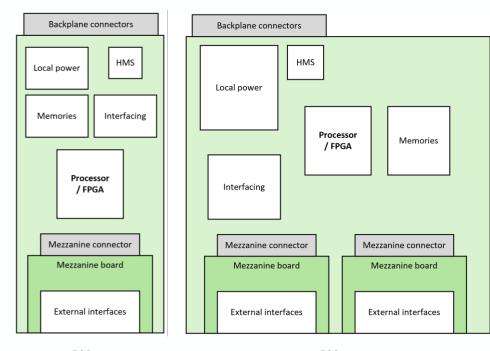
ADHA standard DHS functions under consideration — platform

Module type	Profile Type	Short description	HW roadmap
RTU Controller Module	System Controller Slot	Provides control function for free-standing RTU unit, or for offloading OBC	Under dev.
RTU Generic I/O Module	Peripheral Slot	Generic I/O for thermistors, heaters, HPCs, etc. (similar to ICU Generic I/O module)	Under dev.
RTU AOCS I/O Module	Peripheral Slot	For interfacing AOCS sub-system (MAG, MTQ, RW, sunsensor, etc.)	Under dev.
RTU Propulsion I/O Module	Peripheral Slot	For interfacing the propulsion sub-system	Under dev.
GNSS Receiver Module (GNSSRxM)	Peripheral Slot	GNSS (Galileo, GPS, etc) receiver	TDE ITT
TTC Transponder Module	Peripheral Slot	TTC transponder / radio (SDR)	GSTP Compen.
Payload Transmitter Module	Peripheral Slot	Payload transmitter / radio (SDR)	GSTP Compen.
Security Module	Peripheral Slot	Additional security functions (authentication, encryption, etc)	TBA

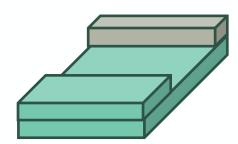
ADHA standard DHS functions under consideration — payload

Module type	Profile Type	Short description	HW roadmap
ICU Controller Module	System Controller Slot	Provides control of instrument/payload, instrument applications SW (IASW), interface to platform,	GSTP Compen.
ICU Generic I/O Module	Peripheral Slot	Generic I/O for thermistors, heaters, HPCs, etc. (similar to RTU Generic I/O module)	GSTP Compen.
Payload Power Module	Power Slot	High-end power module for highly dissipative units (500-1000W)	GSTP Compen.
Payload Power Distribution Module	Peripheral Slot	For distributing power to external payload units (e.g. sensor front-end, etc)	Future
Optical FEE I/O module	Peripheral Slot	For interfacing with optical sensors / FEEs, both analogue and digital output sensors	Future
RF Digital Backend module	Peripheral Slot	Provides digital backend for RF payloads, including ADCs/DACs, buffering, processing and synchronisation	Future

Flexibility in ADHA module design — mezzanines


Note that it is possible to support multiple different ADHA DHS functions with a single hardware design!

Due to the standardised backplane interfaces, the same core hardware configuration can be kept – while adapting for specific DHS functions by:


- Changing the SW and FPGA design
- Adopting the front-panel interfaces

To make updating the front-panel interfaces more affordable — ESA plans to develop and qualify very-high performance (10-25Gbit/s/lane) mezzanine connectors, with high-pin count (>100 pins), for board-to-board configurations

• This allows to change the front-panel interfaces, without impacting the TRL of the core module design (including processor/FPGA, power, backplane interfaces)

3U 6U Example ADHA modules with mezzanine boards

2. Example ADHA unit configurations

8

Example ADHA Unit Configurations

In the following slides, we will go through some possible example configurations of ADHA units – based on the standardised module functions described in the previous section.

...including the ones that are considered for future standardisation.

Examples:

- 1) Central Data Handling Unit (CDHU) for institutional EO mission
- 2) Fully integrated platform DHS for integrated platforms
- 3) Payload Data Handling Unit (PDHU)
- 4) Instrument Controller Unit (ICU)
- 5) Data Processing Unit (DHU)
- 6) Integrated instrument electronics

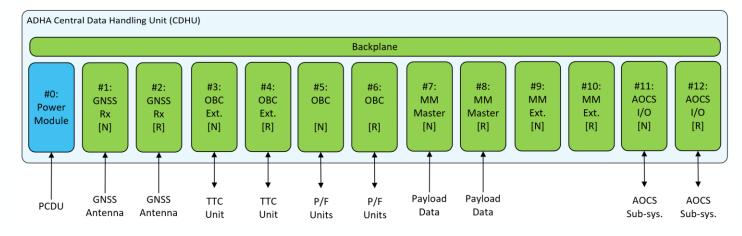
ADHA unit configuration example 1)

12-slot 6U-ADHA Central Data Handling Unit (CDHU)

The following CDHU (Central Data Handling Unit) integrates both platform and payload data handling in a single unit:

- Full platform OBC
- GNSS Receiver
- I/O Modules for AOCS
- Full payload Mass-Memory

Note: excepts additional external (u)RTU for propulsion sub-system, and thermistor acquisition — if necessary.


Options:

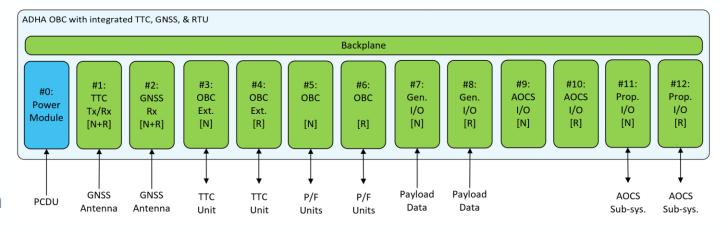
- AOCS I/O can be replaced with e.g. additional MM
- ...or removed for a smaller 10-slot unit.

Possible optimisation:

- N+R GNSSRxM in a single slot (#1) with 2x FCGs
- ...would allow a possibility to add a transponder (also 2xFCGs) in the open slot (#2)

Slot #	Module type	Redundancy
0	Power Module	Internally redundant
1-2	GNSS Receiver Module (GNSSRxM)	N+R
3-6	On-Board Computer (OBC)	N+R
7-8	Mass-Memory Master Module (MMM)	N+R
9-10	Mass-Memory Extension Module (MEM)	N+R
11-12	RTU AOCS I/O Module	N+R

ADHA unit configuration example 2) Complete platform DHS


Targets a fully integrated platform functions is a single unit – suited for more integrated spacecraft configurations, that do not need to place RTU functions close to AOCS and propulsion sub-systems for harness management.

Note: expects payload data to be handled by external unit (e.g. PDHU)

Integrates:

- OBC
- TT&C Transponder
- GNSS Receiver
- RTU functionality generic I/O, AOCS I/O and propulsion sub-system I/O

Slot # Module type Redundancy Power Module Internally redundant 0 TT&C Module N+R (2FCGs) **GNSS** Receiver Module N+R (2FCGs) On-Board Computer (OBC) 3-6 N+R7-8 RTU Generic I/O Module N+R 9-10 RTU AOCS I/O Module N+R RTU Propulsion I/O Module N+R 11-12

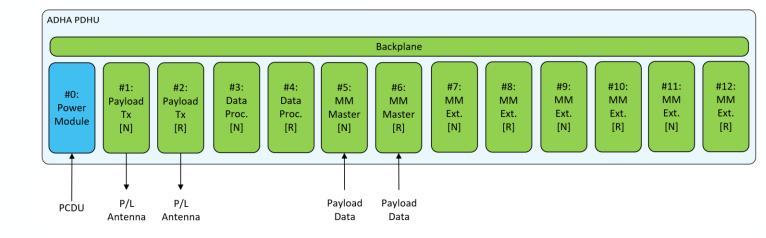
Utilises 2xFCGs in slots #1-#2 for TT&C transponder and GNSS Receiver.

ADHA unit configuration example 3)

Stand-alone Payload Data Handling Unit (PDHU)

This example PDHU (Payload Data Handling Unit) targets the complete management of payload data

Integrates:

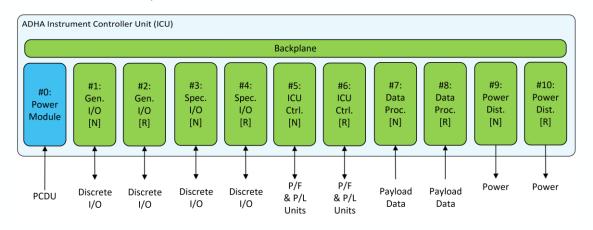

- MM master controller and memory slices
- Data processing module
- Payload transmitter radio

The number of MEM slices and/or DPMs can be adapted for the specific mission need.

Redundancy concept can also be adapted for the reliability: both N and R master-modules, have access to all (six) MEM slices — in principle all can be activated at the same time.

Possible optimisation: data processing can be provided by the MM master module.

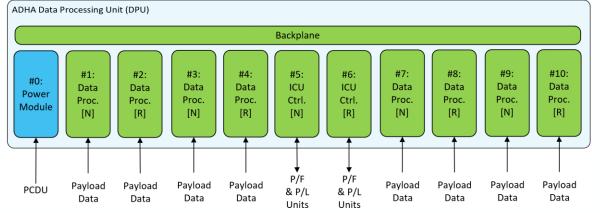
Slot #	Module type	Redundancy
0	Power Module	Internally redundant
1-2	Payload Transmitter Module	N+R
3-4	Data Processing Module (DPM)	N+R
5-6	Mass-Memory Master Module (MMM)	N+R
7-12	Mass-Memory Extension Module (MEM)	3*(N+R)



Instrument Controller Unit (ICU) includes:

ICU control, generic and specific I/O functions
 (motor control, heaters, thermistors etc), power
 distribution for external payload units, and payload
 data processing.

Slot #	Module type	Redundancy
0	Power Module	Internally redundant
1-2	ICU Generic I/O Module	N+R
3-4	Custom payload-specific I/O module	N+R
5-6	ICU Controller Module	N+R
7-8	Data Processing Module (DPM)	N+R
9-10	Payload Power Distribution Module	N+R



Data Processing Unit (DPU)

 For a very high-throughput payload (e.g. multisensor or SAR radar)

Integrates multiple DPMs (data processing modules) – scalable between 1-10 per unit (here shown with 8x).

Slot #	Module type	Redundancy
0	Payload Power Module	Internally redundant
1-4	Data Processing Module (DPM)	2*(N+R)
5-6	ICU Controller Module	N+R
7-10	Data Processing Module (DPM)	2*(N+R)

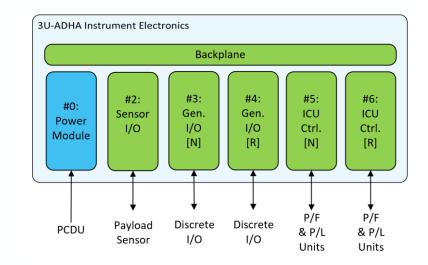
→ THE EUROPEAN SPACE AGENCY

3U-ADHA integrated instrument electronics

A unit targeting a full instrument electronics for a less complex instrument.

Integrates:

- ICU/DPU module for IASW, control and simpler processing
- Generic I/O for instrument discrete functions (e.g. payload mechanism)
- Specific (non-redundant) sensor I/O


Targets primarily science instruments developed by research institutes for ESA Science missions, as CFIs.

 Note: similar concept for a reference payload DPU reference design was e.g. used on the ESA JUICE mission.

JUICE payload DPU reference design Image source: Frontgrade Gaisler AB

Slot #	Module type	Redundancy
0	Power Module	Internally redundant
2	Mission-specific sensor I/O module	Non-redundant
3-4	ICU Generic I/O Module	N+R
5-6	ICU Controller Module	N+R

3. End-to-end data-handling / avionics architectures based on ADHA units and modules

ESA UNCLASSIFIED - For ESA Official Use Only

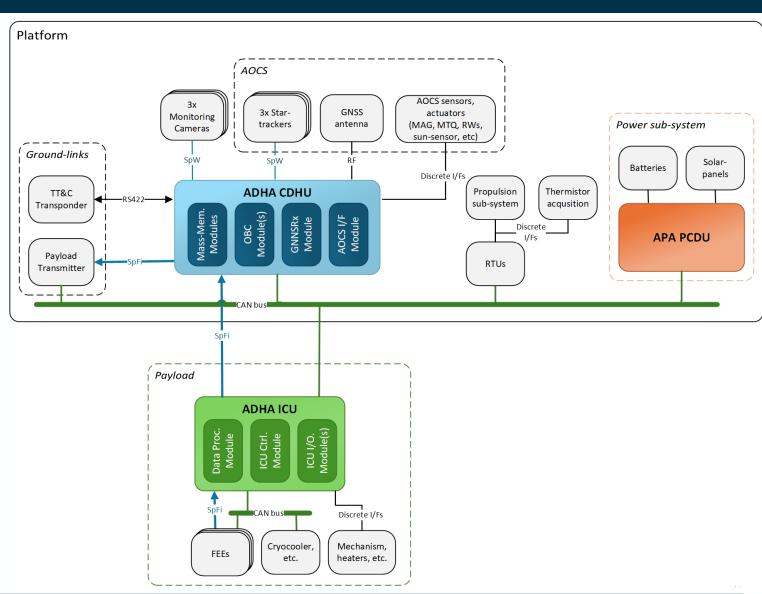
End-to-end data-handling / avionics architectures based on ADHA units and modules

In the following slides, we now present some example end-to-end data handling / avionics architectures based on the ADHA units and modules presented in the previous sections.

Examples:

- 1) Institutional EO mission
- 2) Mission with very high-rate remote-sensing payload
- 3) Multi-instrument science mission
- 4) Large-scale space telescope

ADHA-based avionics / data-handling architectures 1) Institutional EO mission


Use-case description:

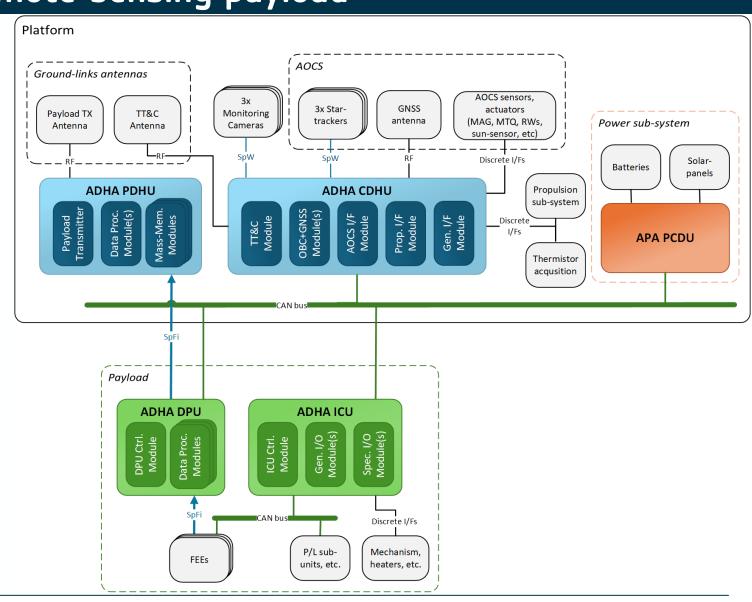
 Institutional EO mission with complex instrument, with medium data throughput

Platform:

- ADHA CDHU for platform and payload data handling
- APA PCDU for power conditioning and distribution
- Additional RTU(s) for propulsion etc
- External TTC transponder and payload transmitter

- ADHA ICU for instrument control, I/O and data processing
- Additional FEEs, cryocooler, mechanism etc

ADHA-based avionics / data-handling architectures 2) Mission with very high-rate remote-sensing payload


Use-case description:

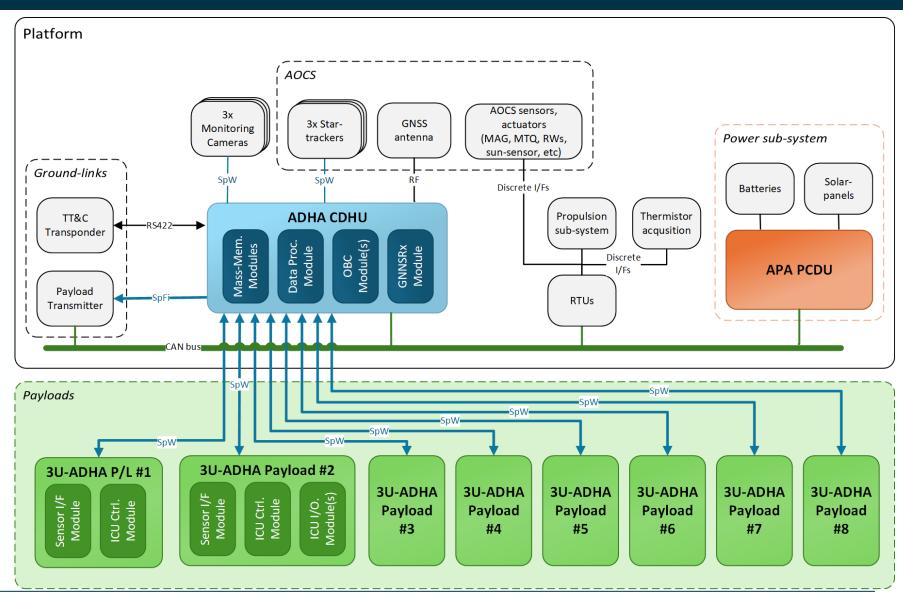
 A very high-rate remote-sensing payload (multisensor hyperspectral instrument, or SAR radar)

Platform:

- ADHA CDHU for complete platform data handling (incl. GNSS, TTC, RTU)
- ADHA PDHU for complete payload data handling (incl. payload transmitter)
- APA PCDU

- ADHA ICU for instrument control
- ADHA DPU for payload data processing and synchronisation
- · Additional front-end/sensor units, and mechanisms

ADHA-based avionics / data-handling architectures 2) Multi-instrument science mission


Use-case description:

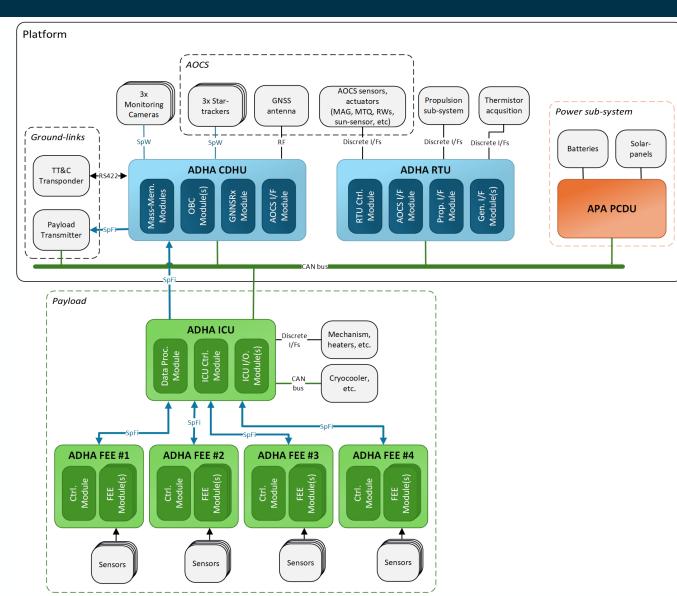
 Large-scale ESA deep-space science mission, with multiple CFI instruments from research institutes (e.g. JUICE, SolarOrbiter, BepiColombo, etc.)

Platform:

- ADHA CDHU for platform + payload data handling
- APA PCDU
- Additional RTUs, TTC transponder, payload transmitter

- 8x 3U-ADHA based payloads
- All based on reference design

ADHA-based avionics / data-handling architectures 4) Large-scale deep-space telescope


Use-case description:

 Large scale ESA deep-space telescope (e.g. Plato, Euclid, etc.)

Platform:

- ADHA CDHU for platform and payload data handling
- ADHA RTU for AOCS, propulsion, discrete I/O
- APA PCDU

- ADHA ICU for instrument control and data processing
- 4x ADHA FEEs for readout of multiple sensors per FEE, and data pre-processing

Summary and conclusions

We've shown the new planned DHS functions that are planned to be standardised as ADHA Functional Module Specifications.

Many already under development as hardware – see next presentations within this session!

The new planned DHS specifications allows to derive different ADHA unit configurations.

• We've shown examples of different CDHU, RTU, PDHU, ICU, DPU, FEE configurations across both platform and payload DHS functions.

We've shown different DHS / avionics architectures based on the ADHA units and modules.

Across different mission complexities and types (EO, Science, etc)

This shows that ADHA is flexible to enable different DHS / avionics configurations — pending on the preferences and designs of different satellite primes, and for different

Units can be configured with different functions - or split over multiple units - to meet needs of different mission profiles, across domains (EO, Science, Exploration, etc.)

EDHPC2025 paper presentation:

Modular and Scalable Electrical Architectures for Satellite On-Board Data Handling and Processing – using ADHA (Advanced Data Handling Architecture)

<u>David Steenari</u>¹, Julian Bozler², Dario Pascucci³, Jon Caudepon⁴, Felix Siegle¹, Kostas Marinis¹

1: ESA ESTEC, 2: Airbus GmbH, 3: Thales Alenia Space Italia, 4: OHB Systems AG

Contact:

David Steenari, david.steenari@esa.int

Data Handling Section ESA/ESTEC EDD

EDHPC 2025 ADHA Session A1