

Advanced Data Handling Architecture (ADHA)

"Working towards a European solution for standardized Data Handling Systems"

Tutorial: ADHA 101

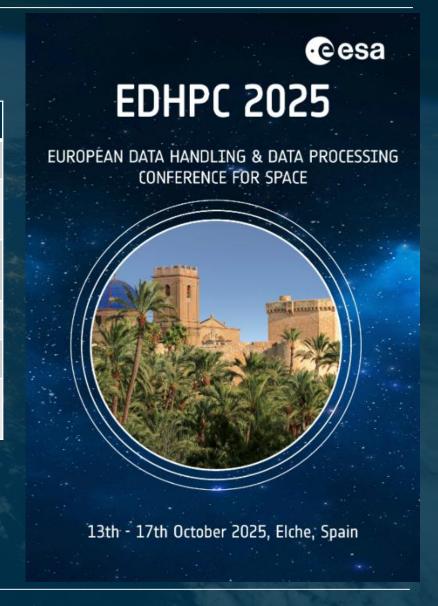
Presenters:

<u>David Steenari, European Space Agency, david.steenari@esa.int</u>

<u>Dario Pascucci, Thales Alenia Space, dario.pascucci@thalesaleniaspace.com</u>

<u>Julian Bozler, Airbus, julian.bozler@airbus.com</u>

<u>Robin Franz, Airbus, robin.franz@airbus.com</u>


EDHPC 2025 Tutorial: ADHA 101

2025-10-13

ADHA Sessions at EDHPC2025

	Day	Time	Session(s) Title	Contents	
	Monday	14:00 - 16:00	Tutorial: ADHA 101	Introduction to ADHA	
+	Tuesday	09:00 - 10:20	Session A1 – ADHA Plenary	ADHA roadmaps (ESA, LSIs) and round-table	
		10:50 - 12:30	Session A2 – ADHA Architectures and Equipment	Paper presentations	
¥		14:00 - 15:30	Session A3 – ADHA Equipment	Paper presentations	
		16:10 - 17:30	Session A4 – ADHA Equipment	Paper presentations	
	Wednesday	09:00 - 10:00	Session A5 – ADHA Building Blocks and Future Activities	Paper presentations	

ADHA 101 – Tutorial Session Overview

#	Time	Duration	Topic	Speaker
1	14:00 - 14:10	10 min	ADHA Overview and Introduction	David Steenari (ESA)
2	14:20 - 14:40	30 min	ADHA Architectures	Julian Bozler (Airbus)
3	14:40 - 15:10	30 min	ADHA Module Designs	Dario Pascucci (Thales Alenia Space)
4	15:10 - 15:20	20 min	Navigating the ADHA Datapackand how to participate in the ADHA Eco-System	David Steenari (ESA)
5	15:20 - 15:40	20 min	Technologies for thermal management in electronics units	Stephane Lapensee (ESA)
6	15:40 - 16:00	10 min	Q&A	All

ADHA 101 - Tutorial Scope

Within this tutorial, we aim to cover:

- An introduction and overview to the ADHA R&D programme
- The main architectural features of ADHA
 - Module slot profiles, electrical interfaces and backplane network routing schemes
- Module level design considerations
 - ADHA data-handling functions, discrete signals, health monitoring system, mechanical form-factor
- The ADHA document datapack
 - Hierarchy, key documents, and their contents
- ...and how you can participate in the ADHA eco-system!

ADHA Introduction & Overview

ADHA & APA: Executive Summary

The Advanced Data Handling Architecture (ADHA) and Advanced Power Architecture (APA) initiatives specify an end-to-end architecture for data-handling and power sub-systems, based on European standardized and inter-operable electronics modules and units, of common form-factors and interfaces.

The ADHA program was initiated in 2019, in a partnership between ESA and key industry partners (SMEs, LSIs) across ESA Member States.

 Responsibility for the evolution and further development of the program is being shifted to a larger industry group (industry-driven program).

The Advanced Power Architecture (APA) initiative addresses the same objectives, for the Electrical Power Subsystem (EPS)

Substantial commonalities and synergies between the ADHA and APA programs.

The aim of the ADHA and APA R&D programs is to deliver a new generation of standardized datahandling and power equipment at TRL6 by 2027, ready for use by institutional and commercial missions and constellations.

ADHA Objectives

ADHA aims to:

- Meet the evolving performance requirements of OBDH / DHS equipment of the next generation of applications by utilising the latest technologies (e.g. European UDSM technology)
- Increase European competitiveness, serialisation and non-dependence and reduce Non-Recurring Engineering (NRE) in Data Handling Systems

ADHA has the following objectives:

- Deliver a new generation of On-Board Data Handling equipment at TRL6 by 2027
- Ensure dual- or multi-sourcing of key On-Board Data Handling Equipment by 2028
- ...to be available for institutional and commercial missions.
- ...both large-scale missions (ADHA-6U), mid- and small-sats / constellations (ADHA-3U).

ADHA Technical Perimeter & Scope

The ADHA program defines the following elements:

- An end-to-end data handling architecture
 - To ensure interoperability between data handling units
- A standard backplane electrical interconnect between modules
 - Based on the cPCI-Serial-Space standard
 - To allow interoperability of modules from different suppliers within the same unit
- Standard mechanical form factor and interfaces
 - For uniformity across the OBDH subsystem, more efficient qualification, assembly and integration
 - Compatibility between any ADHA-compliant modules, for faster unit integration and configuration
- A standard procurement and PA (Product Assurance) approach
 - To allow clear requirements based on expectations in different mission classes

All ADHA specifications have been agreed between the ADHA consortia members, including the three LSIs (ADS, TAS and OHB), ensuring that data handling equipment suppliers / SMEs have a consistent set of requirements.

ADHA ESA R&D Programme Organisation

The ADHA R&D Programme is divided into three types of activities:

- 1. System-level studies (ADHA-1, -2, and -3)
 - Define the requirements specification for ADHA elements
 - Perform 1st ADHA unit-level AIT campaigns
 - Parallel contracts: ADS (DE) and TAS (IT) primes
- 2. ADHA Unit and Module hardware development contracts
 - Core modules: OBC, MM, Power and GNSS funded through TDE
 - Others funded through GSTP, Incubed, etc many initiated by industry! In total, ca 20 development activities on-going
- 3. ADHA Building Block activities
 - (e.g. backplane connector development and qualification)

ADHA System Studies Developments

ADHA

Req.

Specs

ADHA-2

ADHA Requirements Specs
 Issue#1 Published (2023) – mainly 6U

3x Core 6U-ADHA platform modules

2x 6U-ADHA Unit developments

• 6U-ADHA platform modules to be integrated in ADHA Units

- ADHA Payload requirements specifications to be defined
- ADHA 3U requirements specifications to be defined
- Extended AIT campaign:
- 6U-ADHA Payload Units
- 3U-ADHA Platform/Payload Units

ADHA-1

cPCI-S-

 Agreement with industry to use cPCI-S-S Standard
 Architectural definition

2019-2020

2021-2026

2025-2027