
1ESA UNCLASSIFIED – For ESA Official Use Only

Presenter: Lucana Santos, with contributions from TEC-EDM

EDHPC, Elche, 13/10/2025

Hardware Accelerators for Space Applications



2

Introduction

• Overview of solutions to accelerate algorithms in space by parallelization 

• Identification of challenges and potential solutions. 

NB: Wide topic, presentation is more qualitative than quantitative – details in 

the sources/bibliographic references



3

Why Accelerators?

Single core Multi core Heterogeneous

Next (?)



4

Hardware Accelerators

Generic

• Instruction Set Extensions

• Processing in Memory (PIM)

• Systolic Arrays

• Vector Processor

Application driven

• Graphics Processing Units (GPUs)

• Video Processing Units (VPUs)

• Digital Signal Processors (DSPs)

• Tensor Processing Unit (TPUs)

• AI Engine

• Neuromorphic Processor

Application specific

• Dedicated cores: GNSS, Image/video compressor, encryption



5

Parallel Computation Paradigm (Flynn’s Taxonomy)

- Array processor or vector processor
AKA SIMT. Each PU has its own 

independent memory and register file

- Pipelined processor
Data is read from a central resource, 

fragmented and processed by the PU to 

then store results in the same central 

resource.

- Associative processor
AKA predicated SIMD, PU can make an 

independent decision based on local data. 



6

Heterogeneous Computing: Hardware Accelerators

• Multicore Systems with accelerators (GPU/ AI Core/ eFPGA) and ISA extensions (vector, packed).

• FPGA with hard IPs (GPU/ AI Core/ Multicore processor).

• GPGPU

Local memory

Shared memory

Programmable 
logic

HW/SW 
accelerator

Interconnect

External I/F

Processor

ALU

.

.

.

.

.

.

• Multicore Systems with accelerators (GPU/ AI Core/ eFPGA) and ISA extensions (vector, packed).

• FPGA with hard IPs (GPU/ AI Core/ Multicore processor).

• GPGPU



7

Heterogeneous Computing: Hardware Accelerators

• Multicore Systems with accelerators (GPU/ AI Core/ eFPGA) and ISA extensions (vector, packed).

• FPGA with hard IPs (GPU/ AI Core/ Multicore processor).

• GPGPU

GR765Kalray MPPA



8

Heterogeneous Computing: Hardware Accelerators

• Multicore Systems with accelerators (GPU/ AI Core/ eFPGA) and ISA extensions (vector, packed).

• FPGA with hard IPs (GPU/ AI Core/ Multicore processor).

• GPGPU

Local memory

Shared memory

Programmable 
logic

HW/SW 
accelerator

Interconnect

External I/F

Processor

ALU



9

Heterogeneous Computing: Hardware Accelerators

• Multicore Systems with accelerators (GPU/ AI Core/ eFPGA) and ISA extensions (vector, packed).

• FPGA with hard IPs (GPU/ AI Core/ Multicore processor).

• GPGPU

NanoXplore NG-ULTRA Xilinx Versal XQR



10

Heterogeneous Computing: Hardware Accelerators

• Multicore Systems with accelerators (GPU/ AI Core/ eFPGA) and ISA extensions (vector, packed).

• FPGA with hard IPs (GPU/ AI Core/ Multicore processor).

• GPGPU

Local memory

Shared memory

Programmable 
logic

HW/SW 
accelerator

Interconnect

External I/F

Processor

ALU

.

.

.

.

.

.



11

Tighly vs Loosely Coupled Accelerator

- Defines how the accelerator architecture is exposed to 

higher level programming model. 

- It is crucial to ensure workloads are deployed on the 

accelerators quickly. 

- Loosely coupled architecture (LCA)

- Example: GPU

- Communicates with processor through 

interconnect interfaces. (AXI, AHB, NoC)

- Tightly coupled architecture (TCA)

- Example: Vector processor for ISA extensions

- Accelerator can share processor key resources 

such as Register File, MMU, L1 cache.

Loosely coupled

Tightly coupled



12

Software Ecosystem

Software ecosystem is key to ensure efficient use of HW 

accelerators.

Simulators, object toolchain, debugger, compilers and libraries, 

bootloaders, monitors…

…and it increases in complexity!

OpenMP Stack Open Neural Network 

Exchange (ONNX)
GPU Programming Models

AI Inference Flow



13

Space Specific Technical Constraints

Reliability

• Radiation

• Total ionising dose (TID) and single event effects 
(SEU)

• Commercial off-the-shelf (COTS) → needs expensive 
testing and system level mitigation

• Radiation hardening by design (RHBD), redundancy

• Vacuum

• Outgassing from package materials → contamination 

of sensors

• Vibration

• At launch → stress on interconnects

• Temperature

• Satellites can be very hot and very cold (-55 to 125 
deg C)  → challenge for timing closure.

• Thermal dilatation → defects in interconnects.

Functional

• Determinism

• Needed by timing critical control functions (launch, 
landers) 

• Mixed criticality software

• Different levels of trust, time and space partitioning for 

fault containment.

• Specific interfaces

• MIL-1553B

• SpaceWire

• SpaceFibre

• Time Sensitive Networking (TSN) / TimeTriggered-

Ethernet (TTE)

• Low power (TOTAL and operations/watt)

• Security

• PQC Encryption, root of trust, authenticated bootLifetime of satellites up to 20 years longer than 

commercial electronics → No repair!



14

Benchmarking/Metrics

• CPU single core metrics

• Clock frequency

• Core Count

• Cache size

• Thermal design power

• Instructions per cycle (IPC)

• Mega instructions per second (MIPS)

• Accelerator (AI, GPU)

• Trillions of Operations per Second (TOPS) 

[int8, int16, int32]

• Floating Point Operations Per Secod 

(FLOPS) ) [FP32, FP64]

• Synthetic benchmarks

• Dhrystone (integer) – DMIPS or 

DMIPS/Hz

• Whetstone (floating point) 

• CoreMark, CoreMark PRO

• Application benchmarks

• OBPMark & OBPMark-ML: 

https://github.com/OBPMark

• How to compare two solutions?

• Speedup of execution time

• Note: 

• Keep track of anything affecting 

performance, compiler version, compiler 

flags…

https://github.com/OBPMark


1515

ESA UNCLASSIFIED – Releasable to the Public

Instruction Set Extensions



16

ISA – Instruction Set Architecture

ISA refers to the set of instructions that a computer 

processor can understand and execute. 

Defines the instructions, data types, registers, and the 

programming interface for managing main memory such as 

addressing modes, virtual memory, and memory consistency 

mechanisms. The ISA also includes the input/output model of 

the programmable interface. 

When an Instruction Set Architecture (ISA) is described as 

open, it means that its specifications are publicly available 

and free to use, without licensing fees or proprietary 

restrictions.



17

Why Open ISA for Space?

• Non-dependence: multiple IP sources, or own development.

• Free and open standard, allowing for customization.

• Easier to modify for radiation hardening when compared with proprietary ISA.

• Industry and academia in the game: commercial and open source.

• Stable specification, low complexity, GNU tool chain.

Open ISA allows for competition of multiple IP sources → warrants for 

flexibility and non-dependence

Frontgrade Gaisler (FGG)

SPARC in space 

success story

25 years

 5 generations

SPARC is in all our missions

Europe, US, China, Japan

 with > 20000 flight parts

standard processors

SPARC IP in FPGA

mature SW ecosystem

demand in space continues



18

RISC-V ISA Extensions

ISA Extension Notes

I/E
Instructions for basic Integer operations. This is the only extension that is mandatory. 

I requires 32 registers, E requires only 16.

M Instructions for multiplication and division

C
Compact instructions that have only 16bit encoding. This extension is very important 

for applications requiring low memory footprint.

F Single-precision floating-point instructions

D Double-precision floating-point instructions

A Atomic memory instructions

B
Bit manipulation instructions. The extension contains instructions used for bit 

manipulations, such as rotations or bit set/clear instructions.

V Vector instructions that can be used for HPC.

P DSP and packed SIMD instructions needed for embedded DSP processors.



19

RISC-V P and V Extensions

P-extension (Packed-SIMD) V-extension (Vector-SIMD)

Target
Array processors (parallel ops via multiple 

elements/partitionable datapath)

Vector processors (reuse processing elements over 

multiple cycles, scalable lanes)

Registers used
Reuses general-purpose registers (RV32I: 

32×32-bit, RV64I: 32×64-bit)

Dedicated vector registers (32 registers, min 128-bit 

wide, scalable)

Parallelism
Limited by scalar register width (fewer elements in 

RV32I vs RV64I)

Scales with vector register width (≥128b, can be 

grouped for larger ops)

Instruction 

encoding
Separate instructions per element size (e.g., add8, 

add16, add32)

Element size selected dynamically (8–64b required, up 

to 1024b reserved)

Floating-point Not supported (fixed-point only) Supported (16-, 32-, 64-bit FP if scalar supports it)

Datapath reuse Shares scalar datapath → saves area/power
Requires separate vector datapath (ALU, multiplier, 

FPU) → more complex

Scalability Compact, lower-power, suitable for small designs
High performance, scalable with wider vectors & more 

lanes

Area & Power
Lower area, lower power (no FPU, no extra 

registers)

Higher area/power (extra vector register file, duplicate 

units, register file transfers)

Use cases Embedded, low-power, simpler SIMD workloads
HPC, ML, DSP, floating-point heavy, scalable high-

performance workloads



20

Vector Extensions

Block diagram of a vector processor

Architecture of the ARA accelerator 

as a co-processor with CVA6 

Assembly without vector 

extensions

Assembly with vector 

extensions

M. Johns and T. J. Kazmierski, "A Minimal RISC-V Vector Processor for 
Embedded Systems," 2020 Forum for Specification and Design Languages 

(FDL), Kiel, Germany, 2020, pp. 1-4



21

EPAC

• European Processor Initiative (EPI)

• Four RISC-V Vector (RVV) tiles composed of the 

scalar, two-way in-order Avispado core and 8-lane 

Vector Processing Unit (VPU) implementing v0.7 

of RISC-V Vector extension ISA.

• Two STX tiles consisting of Stencil/Tensor 

Accelerator cores.

• One VRP tile consisting of Variable floating point 

precision core.

EPAC1.0 Test Chip in GF22 Technology



22

SIMD Within A Register SWAR for RISC-V and LEON5

• Octacore LEON5 SPARC or NOEL-V RISC-V in 28nm SOI

• SIMD extension (SWAR, daiteq s.r.o.)

• L1 64 KiB/core, striped 4MiB L2 cache

• DDR2/3/4 Memory interface (PHY Nanoxplore)

• QSPI and NAND Flash Controller

• eFPGA 30k LUT (Nanoxplore)

• NavRix GNSS Receiver IP (GPS/GAL, Beyond Gravity AT)

• PQC authenticated boot (Xiphera FI)

• Isolated SoC for authentication / crypto / RoT

• SerDes MIPHY (ST Microelectronics) 6.25 Gbit/s

• 8 lanes PCIe Gen3 (Synopsys controller)

• 4 lanes SpFi, bridge to SPW router, WizardLink

• Ethernet switch and TTEthernet (TTTech AT)

• SOC Bridge, FPGA supervisor, CAN-FD

• Package FF1924 – no LVDS IO’s

SWAR extensions available as ESA IP Core

• SIMD within a register (SWAR) 

extensions enable the use of 

packed instructions. 

• Computation of a single 

instruction on multiple low-

resolution operands without 

penalties.

• Targeted applications: 

• GNSS ​: 16x2b words ​; 

10x3b words ​; 8x4b words

• Audio​: 2x16b words \

• Video/image ​: 4x8b 

words

• New support: data compression; 

AI



23

ISA Extensions – Programming

0.00 10.00 20.00 30.00 40.00 50.00 60.00 70.00

OBPMark 3.1

OBPMark ML

NOEL-V & SWAR performance

Generic RISC-V 64 (NO SWAR) NOEL-V 64 (NO SWAR) NOEL-V 64hp (SWAR)

Hardware Side

• Extensions need to exist in the processor architecture.

• Functional Unit design, RTL implementation…

Toolchain Side

• Add opcodes and types.

• Add compiler support to recognise new instructions. 

FIR Filter – Exec. Instructions for 

integer vs SWAR. With linear buffer, 

ring buffer, ring buffer aligned to 2^n. 

Work in 

progress



24

SPARROW – SIMD Unit for AI Acceleration

• Increase the machine learning processing capabilities 

of space processors.

• Portable, open-source design, integrated with CAES 

processors NOEL-V (RISC-V) and LEON 3 (SPARC) 

High-performance, Low-cost targeting both ASIC and 

FPGA implementations, at least 30% smaller than 

conventional vector processors with similar 

performance.

• Key features: reuse of integer register file, short SIMD 

unit (8-bit), swizzling, reductions 

• Area overhead, 30% when compared with LEON3.



25

Processing in Memory

• Computation into or near the memory instead of transferring large amounts of data to and from the 

computing unit.

• Reduced data movement: Processing data within the memory chip minimizes the need for data transfers 

between the CPU and main memory.

• Improved bandwidth utilization and lower latency: Direct connections between computational units and local 

DRAM banks allow for higher internal bandwidth. 

• Energy Efficiency: Reducing off-chip data movement lowers energy consumption.

• Scalability

• Challenges:

• Thermal management

• Radiation tolerance

• Programming complexity



2626

ESA UNCLASSIFIED – Releasable to the Public

AI Accelerators



27

Accelerators for AI inference

AI Accelerator

AI accelerator is a class of specialized hardware accelerator 

designed to accelerate AI and ML applications, including 

artificial neural networks and machine vision.

Most times it is a many core design which features:

• Low precision arithmetic

• Specialized dataflow architectures

• In-memory computing capabilities

AI specialized accelerators is expected to be 10x more 

efficient, most times it is up to 100-1000x than general 

purpose solutions (GPU).

• Lower latency.

• Scalability.

• Associated SW stack. 

Neuromorphic Processor

Brain-inspired: mimic how biological neurons and synapses 

process information.

Use spiking neural networks (SNNs) instead of traditional 

digital logic for computation.

Designed for event-driven, parallel, and low-power 

processing:



28

Xilinx Versal SoC and AI accelerators

SourSource: Xilinx



29

Xilinx Versal SoC and AI Accelerators

Targeting a wide range of applications. 

• Software stack integrated in Vitis. 

• Multi-precision math support (8/16/32 SPFP, Real, 

Complex, INT(4, 8, 16, 32), BFLOAT16) – MAC/cycle 

depend on selected precision. 

• Instruction parallelism: VLIW enabling 7+ operations per 

clock cycle. 

• Data parallelism: SIMD. 

• Deterministic performance. 

• Example applications: Radio solutions and CNN inference.

Sour Source: Xilinx

Vitis AI structure



30

Microchip PolarFire SoC AI Flow



31

AI Accelerator Soft Cores

• Core Deep Learning

• Works on 8-bit fixed point.

• CNN solution for FPGA implementation. 

• Scalable. 

• Solutions based on generation of the neural network 

with HLS, such as Xilinx FINN.

• FPG-AI (University of Pisa)

• Technology independent framework for Edge AI 

deployment onboard satellite. 

• Mapping to NanoXplore FPGAs.



32

AI Accelerators - Axxelera METIS AIPU

• Metis AI Processing Unit (AIPU): Quad-core SoC designed 

for edge inference.

• Performance:

• 52.4 TOPS per AI core

- 209.6 TOPS total throughput

• Architecture: 

• Uses quantized digital in-memory computing (D-

IMC).

• 8-bit weights 8-bit activations

•  Full-precision accumulation

• Benefits:

• Reduced memory cost for weights and activations

• Lower energy consumption for matrix-vector 

multiplications (MVM)

• Maintains neural network accuracy.
Metis AIPU SoC Architecture

Source: P. A. Hager et al., "11.3 Metis AIPU: A 12nm 15TOPS/W 209.6TOPS SoC for 

Cost- and Energy-Efficient Inference at the Edge," 2024 IEEE International Solid-

State Circuits Conference (ISSCC), San Francisco, CA, USA, 2024, pp. 212-214



33

Neural Processor - Akida Brainchip

- Scalable fabric of 1-128 nodes

- Each neural node supports 128 MACs.

- Configurable 50-130K embedded local SRAM per 

node.

- DMA for all memory and model operations.

- On-chip communication via mesh network.

- Multi-layer execution without host CPU

- Integrate with any microcontroller or application 

Processor.

- Efficient algorithmic mesh.



34

PIC64 High-Performance Spaceflight Computing

• 8 SiFive X280 64-bit CPU cores.

• RISC-V ISA, 8-stage dual-issue in-order pipeline. 

Configurable up to 16-cores.

• Supporting vector processing for AI/ML workloads using 

custom instructions and several datatypes (incl. bfloat16). 

• Implements RISC-V Vector ISA version 1.0



3535

ESA UNCLASSIFIED – Releasable to the Public

Graphics Processing Units (GPUs)



36

GPGPUs – General Purpose GPUs

GPUs consist of a set of 

multiprocessors, each 

composed of a set of simple 

processing elements working 

in SIMD (single instruction 

multiple data) mode.

Each multiprocessor has 

different elements, including 

local registers, shared 

memories and the 

processing cores.

Dramatically increase 

computation speed in 

applications where a huge 

amount of data can be 

processed in parallel. 

CPU
Most of the transistors 

devoted to control and 

memory.

Achieve high speedups in 

applications that are control-

flow intensive.

GPU
Most of the transistors 

devoted on small arrays of 

execution units, dispatches, 

small volumes of shared 

memory and memory 

controllers:

All this does not accelerate 

the execution of separate 

streams, but allows to 

process several thousands of 

threads in parallel.

Hierarchical hardware 

parallelism (architecture)



37

GPGPUs for space use

• GPUs in general are a good fit for highly flexibly high-

performance on-board processing.

• COTS low power GPU SoCs have high-performance and 

are suited for new space applications where component 

qualification is not critical.

• Radiation testing & FDIR required.

• GPU IP Cores could be a way forward for increased 

reliability,but requires significant investment.

• OBPMark benchmarks available.

• NVIDIA Jetson Orin NX

• AI Performance: Up to 100 TOPS (INT8, sparse) for 
the 16 GB model 

• Compute: 8-core ARM Cortex-A78AE CPU + 1024-

core Ampere GPU with 32 Tensor Cores
• Memory: 8 GB or 16 GB LPDDR5, ~102.4 GB/s 

bandwidth.
• Power: Configurable 10–25 W, up to ~40 W in Super 

Mode

• Benchmarks: Runs YOLOv8n at ~52 FPS (FP16), or 
~65 FPS (INT8) on Orin NX 16 GB

• Use-cases: Edge AI, robotics, drones, and 
autonomous machines.

• Use in space with shielding.



38

GPGPU – GPU-like IP Cores

• IngeniARS GPU@sat

• Imagination Technologies 

• IMG AXM series

• ThinkSilicion NEMA GPU

• Open source-research oriented:

• MIAOW → AMD architecture 

synthesizable on FPGA, 

OpenCL

• FlexGrip → NVIDIA 

architecture, CUDA

• Limitations → memory 

interface, instruction support.

• Generally, IPs are very expensive, 

closed designs. 

MIAOW Architecture

FlexGripPlus SM



39

GPGPU – GPU-like IP Cores

Vortex GPU

• Open-source RISC-V GPGPU: Designed to support general-

purpose GPU workloads with RISC-V ISA extensions. 

• SIMT architecture: Supports parallel threads/warps, multiple cores, 

units like ALU, FPU, LSU, SFU, etc. 

• Software support: Compatible with OpenCL 1.2 for running kernels.

• Configurable pipeline: you can tune number of cores, threads, warps, 

cache hierarchy (L1, L2, L3) and shared memory. 

• Hardware-software integration: extensions to RISC-V ISA to support 

OpenCL kernels. 

• Supports both 32-bit and 64-bit RISC-V variants (RV32IMAF and 

RV64IMAFD) depending on configuration.

• Layout in 15 nm educational cell. 

• Good scaling with #cores when using Rodinia benchmark. 

• Arria 10 FPGA -> 192 MHz



4040

ESA UNCLASSIFIED – Releasable to the Public

Design Challenges



41

Application or Technology Driven?

Application 
needs

Accelerator 
design

Accelerator 
manufacturing

Accelerator 
design 

Accelerator 
manufacturing

Target 
application

New target 
application

- How do we choose the best accelerator for a given 

application?

- What processor/accelerator do we develop for the future?



42

Application or Technology Driven?

Application 
needs

Accelerator 
design

Accelerator 
manufacturing

Accelerator 
design 

Accelerator 
manufacturing

Target 
application

New target 
application

Very different 

from original 

needs

Does not exist

- How do we choose the best accelerator for a given 

application?

- What processor/accelerator do we develop for the future?



43

Profiling, Co-design, Design Space Exploration

- Profiling: parallelisation capabilities, potential bottlenecks, type of 

operations, required accuracy…

- Hardware/Software (HW/SW) co-design: simultaneous consideration 

of hardware and software within the design process. It involves co-

simulation in a Virtual Platform that models the hardware.

- HW and SW are simultaneously developed

- Fast simulation speed and high observability.

- HW/SW partitioning.

- Reduces the risk of choosing the right architecture to then 

realise there is no software ecosystem, software stack needs 

to be developed from scratch -> expensive!

- Design Space Exploration: find the right architecture: memory size, 

memory hierarchy, external (Host-Accelerator) Interface bandwidths, 

number of processing cores/clusters number of accelerator functional 

units, any other dedicated functional unit/IP.

Specifications

HW/SW Partitioning

HW/SW Interface

Co-Simulation in Virtual 
Platform

HW model 
(abstract)

SW model 
(abstract)

HW model 
(VHDL)

SW model (c)

Co-Verification in Virtual 
Platform

Prototype

Execution Real 
Platform

Simulation and 
performances OK

OK



44

Desing Space Exploration 

• Functionality implementation on SoCs is becoming more sophisticated with heterogeneous complex computing 

units: CPU, GPU, VPU, e-FPGAs, systolic arrays, parallel vector engines, neuromorphic engines.

• Need for Cycle-exact microarchitectural simulation platform to simulate heterogeneous complex SoC.

• Full SoC can be mapped to one or more FPGAs, enables validation, 

FireSim
Open-source simulation platform for cycle-
accurate full-system benchmarking.

Mentor Veloce, ProFPGA 



4545

ESA UNCLASSIFIED – Releasable to the Public

Application Examples



46

Future processing needs

• Application drivers: increasing demand for on-board processing. 

• Machine learnging powered FDIR, autonomy in exploration (landers, 

rovers), GNSS.

• On-board data processing (Earth Observation), high data volumes.

• Software Defined Radio (Beamforming, DVB-S, 5G-NTN).

• Cryptography and quantum key distribution. 

• Algorithms:

• Machine Learning is increasingly important. 

• Filters, correlations, CNN with extensive use of parallel/vector 

oprations.

• Memory footprint and organisation.

• Non-linear functions. 

• Data type support for quantized computations (INT16, 8, 4), 

BFLOAT16.

• Common denominator: vector and matrix operations

The Copernicus Hyperspectral Imaging Mission for 
the Environment, CHIME, will carry a unique 

visible to shortwave infrared spectrometer to 
provide routine hyperspectral observations to 

support new and enhanced services for 
sustainable agricultural and biodiversity 
management, as well as soil property 

characterisation



47

Applications Needs

• Signal processing example:

• Digital beamforming on Rx and Tx

• RFI detection and mitigations

• Processing increasingly larger bandwidths of 

signals at increasingly fast rates

• Fast filtering, FFTs, correlations, 

convolutions, resampling …

• High precision operations SPFP32. 

• Potential HW targets: 

• FPGA + Accelerator

• Application domain: 

• Rx → EO and Telecom

• Tx → NAV and Telecom



48

•  Example: Hyperspectral data compression: 

• GPU-like: Block based, lots of operations in parallel. 

• Prediction-based → data dependencies.

• Transform-based (DWT) → memory operations.

• Bit-wise operations involved. 

Applications Example

Image processing:

• Image processing generally involves processing of 

vectors of matrices in floating point precision. 

• Amenable to GPU, but control or memory bound 

applications can limit the performance → low 

performance/watt ratio

• Many times FPGAs are selected due to the flexibility 

to optimize parts of the algorithms. 

• Challenge: increase in sensor resolution. 

Mapping compression to 

GPU

Hyperspectral compression in 

different targets



49

Applications Example

• AI/ML example:

• CNN for classification

• Involving mainly low resolution floating-point MAC 

operations and memory operations.

• Target HW platform: dedicated accelerator, GPU, many 

core with instruction extensions, FPGA



50

Why Accelerators?

Single core Multi core Heterogeneous

Next (?)



51

Bandwdith Interconnect and FLOPS increase

A. Gholami, Z. Yao, S. Kim, C. Hooper, M. W. Mahoney and K. Keutzer, "AI and Memory Wall," in IEEE 
Micro, vol. 44, no. 3, pp. 33-39, May-June 2024



52

Why accelerators?

Single core Multi core Heterogeneous

Chiplet



53

Takeways

• Hardware accelerators constitute a fast evolving landscape.

• Use of COTS is many times limited: radiation tolerance and power comsumption.

• Efficiency of the solution will depend on many factors: 

• Accelerator design and adequacy to intended application. 

• Internal and external connectivity bandwidth. 

• Software stack. 

• One single architecture will not fit all applications. 

• Design methodology can help: hw-sw co-design, fast prototyping or emulation. 

• Continuous development: 

• New IP cores focused on acceleration for space: ISA extensions, AI-inference, neuromorphic, PIM, 

GPGPU-like

• IP building blocks: high-speed ADCs and DACs, SERDES, NoC, AXI interconnect.


	Slide 1: Hardware Accelerators for Space Applications
	Slide 2: Introduction
	Slide 3: Why Accelerators?
	Slide 4: Hardware Accelerators
	Slide 5: Parallel Computation Paradigm (Flynn’s Taxonomy)
	Slide 6: Heterogeneous Computing: Hardware Accelerators
	Slide 7: Heterogeneous Computing: Hardware Accelerators
	Slide 8: Heterogeneous Computing: Hardware Accelerators
	Slide 9: Heterogeneous Computing: Hardware Accelerators
	Slide 10: Heterogeneous Computing: Hardware Accelerators
	Slide 11: Tighly vs Loosely Coupled Accelerator
	Slide 12: Software Ecosystem
	Slide 13: Space Specific Technical Constraints
	Slide 14: Benchmarking/Metrics
	Slide 15
	Slide 16: ISA – Instruction Set Architecture
	Slide 17: Why Open ISA for Space?
	Slide 18: RISC-V ISA Extensions
	Slide 19: RISC-V P and V Extensions
	Slide 20: Vector Extensions
	Slide 21: EPAC
	Slide 22: SIMD Within A Register SWAR for RISC-V and LEON5
	Slide 23: ISA Extensions – Programming
	Slide 24: SPARROW – SIMD Unit for AI Acceleration
	Slide 25: Processing in Memory
	Slide 26
	Slide 27: Accelerators for AI inference
	Slide 28: Xilinx Versal SoC and AI accelerators
	Slide 29: Xilinx Versal SoC and AI Accelerators
	Slide 30: Microchip PolarFire SoC AI Flow
	Slide 31: AI Accelerator Soft Cores
	Slide 32: AI Accelerators - Axxelera METIS AIPU
	Slide 33: Neural Processor - Akida Brainchip
	Slide 34: PIC64 High-Performance Spaceflight Computing
	Slide 35
	Slide 36: GPGPUs – General Purpose GPUs
	Slide 37: GPGPUs for space use
	Slide 38: GPGPU – GPU-like IP Cores
	Slide 39: GPGPU – GPU-like IP Cores
	Slide 40
	Slide 41: Application or Technology Driven?
	Slide 42: Application or Technology Driven?
	Slide 43: Profiling, Co-design, Design Space Exploration
	Slide 44: Desing Space Exploration 
	Slide 45
	Slide 46: Future processing needs
	Slide 47: Applications Needs
	Slide 48: Applications Example
	Slide 49: Applications Example
	Slide 50: Why Accelerators?
	Slide 51: Bandwdith Interconnect and FLOPS increase
	Slide 52: Why accelerators?
	Slide 53: Takeways

