## EDHPC 2025 - 2nd European Data Handling & European Data Handling & Conference



Monday 13 October 2025 - Friday 17 October 2025

# **Topics**

# Satellite End-to-end data handling and processing architectures

On-Board data processing architectures

On-board data handling architectures

**ADHA - Advanced Data Handling Architecture** 

**Reconfigurable Data System Architectures** 

**Distributed processing architectures** 

Distributed computing of data and signal processing

Signal processing chain architectures

**Lessons learnt** 

# Avionics and data handling systems for platform, launchers, optical & RF payloads

On-Board Computer (OBC) units, Remote Terminal Units (RTU), Mass Memory units, Instrument Control units (ICU)

# High Performance Hardware Data and Signal Processing unit/module,

#### **Software Defined Radios**

Use of digital and mixed-signal components in OBC / OBDP and in data/signal processing systems (Reference Designs)

o High throughput electronics for Radar back-ends, Radiometer back-ends, Instrument Front End Electronics

o High throughput electronics for transparent and regenerative processors for Satellite Communication, Intersatellite and TT&C units

Multicore processors, GPUs, FPGAs, DSPs, memories, full custom processor ICs,SoC, SiP, DAC, ADC

#### Use of COTS in OBC / OBDP and signal processing systems

Selection, radiation test results, mitigation technics in designs

Validation & verification, testing, qualification, simulation, modelling of complex systems

Lower-class mission, smallsat and cubesat data handling equipment

Processor simulators/emulators

Software development platforms/toolchains for the new generation of processors (including FPGAs) - compilers, debuggers, etc.

**Qualification of low-level software libraries (e.g. OpenMP)** 

## **Buses, networks & protocols**

Protocol developments of SpaceWire, SpaceFibre, CAN-Bus, Ethernet, other protocols

Software building blocks for higher level protocols

#### **Validation & verification**

Simulation suites, Test equipment, approaches, and standards

### **Components**

Embedded interfaces in processors/FPGAs, Switches, routers, SerDes, (optical) transceiver, connectors, harness

**Wireless Technologies** 

## **OBDP (On-Board Data and Signal Processing)**

#### **Device Benchmarks (Multicore processors, GPUs, FPGAs)**

### Developments in On-Board Data Processing Frameworks, Architectures and Building Blocks

Parallel processing frameworks (OpenMP, OpenCL), Hardware acceleration of processing tasks, Heterogeneous processing systems, FPGA IP and HLS

#### On-board Data Processing Algorithms and Implementations

On-board processing applications for Multi- and Hyperspectral image processing, Visual navigation, Data reduction

On-board Signal Processing Algorithms for RF applications such as SDR, 5G/6G gNb, AIS, ADS-B, Beamforming, Modems, PNT, Positioning, Synthetic aperture radar (SAR) processing, Radio interferometer processing

Implementations of On-board Signal Processing Algorithms for RF applications (DSP SW, FPGA IP and HLS, etc)

#### Al and Machine learning for on-board data processing

Data Analysis (classification, segmentation, selection), datasets for training of on-board AI, Efficient Neural Networks, Software tools and FPGA IP for machine learning inference, Fault-tolerance in deep learning algorithms, applications for RF Payloads and Instruments, like signal intelligence, anomaly detection, spectrum allocation, cognitive radar, network orchestration

Validation & verification of hardware and software implementation of On-Board Data & Signal Processing algorithms and functions.