

Liberté Égalité Fraternité

Plasma chamber tests and simulations to prepare the CROCUS mission dedicated to detect and mitigate ESDs on small satellites

Melody PALLU¹ (melody.pallu@onera.fr),

J.-C. MATEO-VELEZ¹, J. GUERARD¹, F. ISSAC¹, V. LEBAT¹, M. DALIN¹, R. CHHUN¹, G. MALLET^{1,2} L. BUCCIANTINI²

¹ONERA, France ²Centre Spatial de l'Ecole Polytechnique, France

SPACEMON 2025 – Plasma, Dust and Micrometeorites Session

11/06/2025

Ce document est la propriété de l'ONERA. Il ne peut être communiqué à des tiers et/ou reproduit sans l'autorisation préalable écrite de l'ONERA, et son contenu ne peut être divulgué. This document and the information contained herin is proprietary information of ONERA and shall not be disclosed or reproduced without the prior authorization of ONERA.

ElectroStatic Discharges (ESDs) on spacecraft

- Accumulation of excess negative charge or inductive re-distribution of charge generates potential differences between spacecraft and space or between two points on the spacecraft
- An electrostatic discharge (ESD) results when electric fields associated with ٠ potential differences exceed the dielectric breakdown strength of materials allowing charge to flow in an arc

Anomalies and Failures Attributed to Charging						JACOBS ESSSA Group		
Spacecraft	Year(s)	Orbit	Impact*		Spacecraft	Year(s)	Orbit	Impact*
DSCS II	1973	GEO	LOM		Intelsat K	1994		Anom
Voyager 1	1979	Jupiter	Anom		DMSP F13	1995	LEO	Anom
SCATHA	1982	GEO	Anom		Telstar 401	1994, 1997	GEO	Anom/LOM
GOES 4	1982	GEO	LOM		TSS-1R	1996	LEO	Failure
AUSSAT-A1, -A2, -A3	1986-1990	GEO	Anom		TDRS F-1	1986-1988	GEO	Anom
FLTSATCOM 6071	1987	GEO	Anom		TDRS F-3,F-4	1998-1989	GEO	Anom
GOES 7	1987-1989	GEO	Anom/SF		INSAT 2	1997	GEO	Anom/LOM
Feng Yun 1A	1988	LEO	Anom/LOM		Tempo-2	1997	GEO	LOM
MOP-1, -2	1989-1994	GEO	Anom		PAS-6	1997	GEO	LOM
GMS-4	1991	GEO	Anom		Feng Yun 1C	1999	LEO	Anom
BS-3A	1990	GEO	Anom		Landsat 7	1999-2003	LEO	Anom
MARECSA	1991	GEO	LOM		ADEOS-II	2003	LEO	LOM
Anik E1	1991	GEO	Anom/LOM		TC-1,2	2004	~2GTO, GTO	Anom
Anik E2	1991	GEO	Anom		Galaxy 15	2010	GEO	Anom
Intelsat 511	1995	GEO	Anom		Echostar 129	2011	GEO	Anom
SAMPEX	1992-2001	LEO	Anom		Suomi NPP	2011-2014	LEO	Anom

Spacecraft Anomalies and Failures Workshop, 24 July 2014

(Minow & Parker, 2014)

NASA-HDBK-4002B

(a) Failure caused by in-flight ESD arcing

(b) Failure caused by ground ESD arcing Figure 11-Examples of Solar Array Failure

Image sat : NA

Figure 1-Earth Regimes of Concern for On-Orbit Surface Charging Hazards for Spacecraft Passing Through Indicated Latitude and Altitude Based on DMSP and Freja Observations, et al

NASA-HDBK-4002B

Égalité

Exaternit

*Anom=anomaly, LOM=Loss of mission, SF=system failure

٠

CROCUS mission ChaRging On CUbeSat

SCIENCE APPLICATIONS:

- Observe keV electrons during auroral arcs
- Monitor the occurrence of ESDs on a CubeSat mission in LEO
- Space weather and geomagnetic activity effects
- Space plasma matter interaction

TECHNOLOGICAL DEMONSTRATIONS IN FLIGHT:

- Measurement of keV electron content and electrostatic charging
- Detection and measurement of ESDs waveforms
- Mitigation of charging issues (in favoring or limiting ESDs)
 - → New means of anomaly diagnosis and protections, for satellite designers for future missions

EDUCATIONAL AND OUTREACH OBJECTIVES:

- Payload development, satellite integration, software development, training material, internships
- In partnership with Centre Spatial de l'Ecole Polytechnique (> 20 students involved)

ADDITIONNAL SCIENCE OBJECTIVES:

- Measure the Earth's energy (or radiation) budget (collaboration with LATMOS)
- Evaluate atomic oxygen fluxes

Scientific and Technological Approach at ONERA

Mission orbit

To maximize the number of charging events and their detection, CROCUS mission will fly :

- 550-595 km of altitude
- a sun-synchronous orbit (SSO) and a descending node of 10am to 2pm
- 98° inclination

MEO/GEO

 \rightarrow 3 minutes/orbit in the auroral area, and 15 orbits/day

Seeing the small time spent in exposed areas along the orbit (compared to MEO or GEO), 2 working modes are used:

- Passive mode: nominal mode, expected for GEO or MEO
- Active mode: to trigger or limit ESDs actively, in increasing or decreasing artificially the potential differences, to test the payload and get data

CROCUS Satellite Design

3U format 2U solar panels UHF radiocommunication Detumbling after injection in orbit

Ground Support Equipment

PHEDRE - Toulouse Thermal vacuum -150°C à +150 °C

EVT - Châtillon Thermal vacuum -30°C à +80 °C PIT - Guyancourt Vibrating tests

JONAS - Toulouse Ionospheric plasma

Ground Support Equipment

PHEDRE - Toulouse Thermal vacuum -150°C à +150 °C

EVT - Châtillon Thermal vacuum -30°C à +80 °C PIT - Guyancourt Vibrating tests

JONAS - Toulouse Ionospheric plasma

JONAS, vacuum/plasma chamber -

FACILITY FOR FUNCTIONNAL TESTS

- e- gun represents LEO / GEO arcjets
- VUV source represents solar photons
- KP probe measures surface potential
- Ground segment data acq.

NANOSAT MOCKUP

- **Test** of engineering models
- **EPS** with batteries
- Scopes ESD on-board detection
- Communication with optical fiber
- Nylon wires fixes the mockup

 \rightarrow Floating satellite

Ground segment

Control room

Antenna

		Instrument	Objective	Success criteria
	(ANT/TWIST	Detect transients in S/C absolute potential	Voltage drop of less than 100 V in 500 ns
Detect keV e- and ESDs	$\left\{ \right.$	ISC/TWIST	Detect transients in harnesses	20 mA - 1 A peak 100 ns - 10 µs duration 50 ns - 500 ns raise time
		СРА	Detect positive and negative differential charging	+100 V/s (IPG charging) -100 V/μs (ESDs and FO)
	(ECLAIR → active	Charge artificially the spacecraft	More negative than -400V
Increase the	J	MISTEEC → passive	Trigger ESDs at triple point	For an IPG below +400V
→ Favor ESDs		SPARK → active	Inject an waveform representative of an ESD	200 mA peak 500 ns duration 100 ns raise time
Deersee /limit the				
potential difference → Limit ESDs	{	SCAPEE → 2 passives → 2 actives	Emit electrons when the spacecraft is negatively charged	Few 10s µA @ -300V

	Instrument	Objective	iteria
(ANT/TWIST	Detect transients in S/C absolute p	100 V in 500 ns
	ISC/TWIST	Detect transients in harnesses	NR-ANT
V e- and ESDs	СРА	Detect positive and negative differe charging	ECLAN
(ECLAIR → active	Charge artificially the spacecraft	More negative than -400V
Increase the	MISTEEC → passive	Trigger ESDs at triple point	For an IPG below +400V
→ Favor ESDs	SPARK → active	Inject an waveform representative of an ESD	200 mA peak 500 ns duration 100 ns raise time
crease/limit the ential difference → Limit ESDs	SCAPEE $\rightarrow 2$ $\rightarrow 2$	ons when the spacecraft is charged	Few 10s µA @ -300V

EM Testing in Charging Conditions: ESD detection

Electron beam : 5-10 keV, -1 nA/cm²

ESD initiation on MISTEEC

ESD transient characterization with EGSE

ESD detection with TWIST TW-ESD6-201126-152339

EM Testing in Charging Conditions: charge reducing with SCAPEE

Conclusions and Future Work

• Charging can cause significant damage to spacecraft resulting in loss of mission, loss of functionality, loss of money

 \rightarrow needs to build new means to monitor and mitigate them on spacecrafts

- We have tested the EM into a plasma vacuum chamber to validate the working of the instruments in space conditions
- We perform also simulation to predict and understand the charging events
- We plan to launch CROCUS in the end of 2026, for 3 year of flight
- We will analyze CROCUS data using ground tests in ionospheric plasma chamber coupled with SPIS numerical simulations

BACK UP

Profil de mission

- Orbite SSO ~ 550 à 590 km
- Cas chaud : orbite LTAN 0600
- Cas froid : orbite LTAN 0000

• Satellite 3U non pointé

- Algorithme de detumbling BDot
- Vitesses de rotation limites selon detumbling
 - OFF : 20 °/s; 18 s/tr; 2 tr/min; 200 tr/orbite
 - ON : 0,1 °/s; 3600 s/tr; 6 °/min; 1,5 tr/orbite

