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•  Specification and Description Language, ITU-T standard intended to write 
the detailed specifications of the protocols in order to make sure they will 
interoperate. 

•  Major updater every 4 years since 1976. 
•  Major releases: 

•  SDL 1988: First mature version 
•  SDL 1992: Object orientation 
•  SDL 2000: UML alignment 
•  SDL 2010: C types support in Z.104 

•  Anual conference 
•  SDL Forum (http://www.sdl-forum.org/) 
•  SAM workshop (satellite event of Models) 

•  11 commercial tools, 10 public domain tools. 
•  Integrated technology in TASTE ESA framework. 



SDL: features 

•  SDL graphical abstraction (architecture, communication, behavior, 
services) fits the needs. 

•  SDL being formal, it is possible to simulate the model. 

•  SDL being formal, partial or full code generation is possible.  

•  SDL being object oriented, software components are reusable. 

•  System are globally asynchronous (GALS) so SDL can be used at 
system level. 

•  SDL has the characteristics to describe a good PIM. 

•  SDL is recognized by certification authorities (European Aviation 
Safety Agency Certification Memorandum, ETSI, ESA) 



SDL: the figures 

•  C code: 35 to 50 mistakes per 1000 lines 

•  SDL code: 8 mistakes per 1000 lines 

•  Development time is globally reduced by 35% 

•  Reduced up to 50% in the left branch of the V cycle 

•  Less gain on the right side of the V because of the gap 
with technical reality 

Years of experience allows to quantify gains of SDL usage. 



Target segment 
•  Decomposed in tasks running 

concurrently 
•  Communicating via messages 

(sporadic or cycling in TASTE) 
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SDL FSM Editor 

•  ASN.1 or SDL abstract data 
types. 

•  Syntax highlighting 

•  Code completion (limited) 

•  Context-sensitive action 
availability 

•  Logical-unit based editing 

•  Operation preview 



SDL concepts in processes (1) 
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SDL concepts in processes (2) 
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SDL concepts in processes (3) 
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More “standard” control flow statements available in 
task blocks (for, break / continue, if, …). 



RTDS: supported languages 
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RTDS: supported languages 
Informal modelling for requirements: UML 

•  Edition 
•  C++ stubs generation 

Semi-formal modelling for design: SDL-RT  
•  Edition 
•  Syntaxic et semantics checking 
•  Code generation 
•  Graphical debugging 

Fully formal modelling for specification: SDL Z.100 
•  Edition 
•  Syntaxic et semantics checking 
•  Simulation 
•  Verification 
•  Code generation 
•  Graphical debugging 
•  Test 



Architecture and communication 



Model 
simulator 

A graphical debugger 
for fully formal models 

and TTCN-3 test 
cases 

•  Set breakpoints and step 
in the model, 

•  Dynamic traces. 



Code generation 

•  C++ skeleton for static classes  
•  C or C++ for dynamic classes 
•  Generated code is legible 
•  Generation profile wizard 
•  The code is: 

•  Integrated with: FreeRTOS, 
VxWorks, OSE, OSE Epsilon, 
CMX RTX, Nucleus, uiTRON, 
Posix, ThreadX, and Win32,  

•  Provided with an scheduler, 
•  Royalty free,  
•  Documented for customization. 



Debugging architecture 
The Model debugger relies on a traditional C debugger or cross debugger to 
provide graphical debugging. 
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Model debugger 

Debug in the model: 
•  Breakpoints, stepping, 

in the SDL/RT 
diagrams or in the 
generated C files, 

•  Dynamic MSC traces, 
•  Connecting an 

external tool is 
possible through a 
socket. 

Relies on the target 
semantic: processor 
and RTOS. 



Debug features 
•  Switch between 

•  Model 
•  Generated C/C++ code 



Graphical traces 
Execution traces: 
•  States, 
•  Events, 
•  Semaphores, 
•  Timers. 
Trace level configuration 
Display of system time 

MSC Diff allows to check: 
•  Conformity, 
•  Non-regression. 



Model coverage 

•  Graphical model coverage 
analysis 

•  Merge feature 



Prototyping interface 

Ø  Connects 
automatically 
to the 
simulator or 
the debugger. 

Ø  Knows 
about the 
model inputs 
and outputs. 



Documentation generation 
Ø  Logical publications (state, transition, partition, diagram) 
Ø  Comments preceeding or following the publication 

Ø  Styles for paragraphs 
Ø  Styles for characters 

Ø  Export format 
Ø  RTF 
Ø  OpenDocument 
Ø  HTML 
Ø  SGML 

Ø  Exported elements 
Ø  Texts with publications 
Ø  Index entries 
Ø  Table of contents entries 



Documentation generation 
A document 

The generated documentation A publication 



Standard testing language 

•  Relies on basic services 

•  Messages 

•  Procedures 

•  Timers 

•  Parallel execution 

•  Based on TTCN-3 international standard: 

•  Data types definitions or ASN.1, 

•  Templates definitions, 

•  Test cases, 

•  Verdict, 

•  Execution control. 



TTCN-3 support 

•  Textual language 

•  Simulator with Test manager 

•  C++ code generator 

•  TTCN-3 to MSC generation 

•  MSC to TTCN-3 generation 

•  TTCN-3 generation from a 

property on the model (Verimag) 

•  TTCN-3 generation based on 

model coverage (to come) 



Continuous integration 
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Model checking 
•  Partnership with specialized 

labs: 
•  Exhaustive simulation, 
•  Symbolic resolution. 

•  Properties: 
•  Model coverage, 
•  Static or dynamic property: 

•  Property verification, 
•  Test objectives. 

•  RTDS feature: 
•  Export, 
•  Execute a script, 
•  Get the results back. 
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Property Sequence Chart 

•  PRESTO european project: 
•  Functional property 

verification. 
•  Non functional property 

verification. 
•  Free tool: PragmaDev Tracer 



Conclusion / Future 
Ø  SDL FSM Editor: 

Ø  Editor only. 
Ø  More user-friendly then RTDS, but limited. 
Ø  Evolutions planned, but will remain limited. 

Ø  RTDS: 
Ø  Much more features: debug, documentation, 

test, validation, … 
Ø  V5 will integrate the SDL FSM Editor, and open 

the same diagrams. 


