
PragmaDev SDL FSM Editor &
Real Time Developer Studio
within the TASTE framework

ESA – May 22th, 2014

Eric Brunel
eric.brunel@pragmadev.com

ESA Taste framework integration

Event
driven

AADL

SDL
FSM

Editor
-

RTDS

Scade Matlab
E

nc
od

er
s

/ D
ec

od
er

s

E
nc

od
er

s
/ D

ec
od

ee
rs

ASN.1
ASN.1

Ada

ASN.1

E
nc

od
er

s
/ D

ec
od

er
s

Control
law

Control
law Generic

•  Specification and Description Language, ITU-T standard intended to write
the detailed specifications of the protocols in order to make sure they will
interoperate.

•  Major updater every 4 years since 1976.
•  Major releases:

•  SDL 1988: First mature version
•  SDL 1992: Object orientation
•  SDL 2000: UML alignment
•  SDL 2010: C types support in Z.104

•  Anual conference
•  SDL Forum (http://www.sdl-forum.org/)
•  SAM workshop (satellite event of Models)

•  11 commercial tools, 10 public domain tools.
•  Integrated technology in TASTE ESA framework.

SDL: features

•  SDL graphical abstraction (architecture, communication, behavior,
services) fits the needs.

•  SDL being formal, it is possible to simulate the model.

•  SDL being formal, partial or full code generation is possible.

•  SDL being object oriented, software components are reusable.

•  System are globally asynchronous (GALS) so SDL can be used at
system level.

•  SDL has the characteristics to describe a good PIM.

•  SDL is recognized by certification authorities (European Aviation
Safety Agency Certification Memorandum, ETSI, ESA)

SDL: the figures

•  C code: 35 to 50 mistakes per 1000 lines

•  SDL code: 8 mistakes per 1000 lines

•  Development time is globally reduced by 35%

•  Reduced up to 50% in the left branch of the V cycle

•  Less gain on the right side of the V because of the gap
with technical reality

Years of experience allows to quantify gains of SDL usage.

Target segment
•  Decomposed in tasks running

concurrently
•  Communicating via messages

(sporadic or cycling in TASTE)

hardware
OS / RTOS / Scheduler

Application

Module 1 Module 2 Module 3

dr
iv

er

dr
iv

er

Event driven systems
Embedded & Real time

SDL FSM Editor

•  ASN.1 or SDL abstract data
types.

•  Syntax highlighting

•  Code completion (limited)

•  Context-sensitive action
availability

•  Logical-unit based editing

•  Operation preview

SDL concepts in processes (1)

Instance start

Next state

State

Message input

Instance stop (kill)

Priority input

Message save

Guarded
transition

(continuous
signal)

Message
handled for all

states

Default for not
explicitly handled

message

SDL concepts in processes (2)

Message output

Priority output

Timer time-out

Timer start

Timer cancel

SDL concepts in processes (3)

Task block

Dynamic process
instance creation

Procedure call

Label

Decision

Decision branches
(answers)

Join

More “standard” control flow statements available in
task blocks (for, break / continue, if, …).

RTDS: supported languages

UML

C
C++

Analysis

Specification

Design

SDL-RT
 SDL

Z.100

Informal Fully formal Semi formal Testing

TTCN-3

RTDS: supported languages
Informal modelling for requirements: UML

•  Edition
•  C++ stubs generation

Semi-formal modelling for design: SDL-RT
•  Edition
•  Syntaxic et semantics checking
•  Code generation
•  Graphical debugging

Fully formal modelling for specification: SDL Z.100
•  Edition
•  Syntaxic et semantics checking
•  Simulation
•  Verification
•  Code generation
•  Graphical debugging
•  Test

Architecture and communication

Model
simulator

A graphical debugger
for fully formal models

and TTCN-3 test
cases

•  Set breakpoints and step
in the model,

•  Dynamic traces.

Code generation

•  C++ skeleton for static classes
•  C or C++ for dynamic classes
•  Generated code is legible
•  Generation profile wizard
•  The code is:

•  Integrated with: FreeRTOS,
VxWorks, OSE, OSE Epsilon,
CMX RTX, Nucleus, uiTRON,
Posix, ThreadX, and Win32,

•  Provided with an scheduler,
•  Royalty free,
•  Documented for customization.

Debugging architecture
The Model debugger relies on a traditional C debugger or cross debugger to
provide graphical debugging.

C code
generator

Text
editor

MSC
tracer

Model
editor

Model
debugger

compiler

C debugger

RTOS

Model

External
C/C++

Generated
C code

Binary

Real Time Developer Studio tools
Third party tools
Source code
Binary code

• MinGW
• Tornado
• Tasking
• gdb
• XRAY
• Multi

target

socket

socket / COM / pipe

Model debugger

Debug in the model:
•  Breakpoints, stepping,

in the SDL/RT
diagrams or in the
generated C files,

•  Dynamic MSC traces,
•  Connecting an

external tool is
possible through a
socket.

Relies on the target
semantic: processor
and RTOS.

Debug features
•  Switch between

•  Model
•  Generated C/C++ code

Graphical traces
Execution traces:
•  States,
•  Events,
•  Semaphores,
•  Timers.
Trace level configuration
Display of system time

MSC Diff allows to check:
•  Conformity,
•  Non-regression.

Model coverage

•  Graphical model coverage
analysis

•  Merge feature

Prototyping interface

Ø  Connects
automatically
to the
simulator or
the debugger.

Ø  Knows
about the
model inputs
and outputs.

Documentation generation
Ø  Logical publications (state, transition, partition, diagram)
Ø  Comments preceeding or following the publication

Ø  Styles for paragraphs
Ø  Styles for characters

Ø  Export format
Ø  RTF
Ø  OpenDocument
Ø  HTML
Ø  SGML

Ø  Exported elements
Ø  Texts with publications
Ø  Index entries
Ø  Table of contents entries

Documentation generation
A document

The generated documentation A publication

Standard testing language

•  Relies on basic services

•  Messages

•  Procedures

•  Timers

•  Parallel execution

•  Based on TTCN-3 international standard:

•  Data types definitions or ASN.1,

•  Templates definitions,

•  Test cases,

•  Verdict,

•  Execution control.

TTCN-3 support

•  Textual language

•  Simulator with Test manager

•  C++ code generator

•  TTCN-3 to MSC generation

•  MSC to TTCN-3 generation

•  TTCN-3 generation from a

property on the model (Verimag)

•  TTCN-3 generation based on

model coverage (to come)

Continuous integration

Specification Validation
testing

Simulation

Simulation
Execution

Execution

Design

Implementation

Integration
testing

Unit testing

Model checking
•  Partnership with specialized

labs:
•  Exhaustive simulation,
•  Symbolic resolution.

•  Properties:
•  Model coverage,
•  Static or dynamic property:

•  Property verification,
•  Test objectives.

•  RTDS feature:
•  Export,
•  Execute a script,
•  Get the results back.

Implementation

socket

translate to file

executes

SDL Model

Property

Test case

Analysis

Observer

TTCN

MSC

Pivot language

Resolution

Exploration

Resulting
scenarios

Reference testing

Model

Traces
Simulation
Execution

Tests
Test

objectives

Coverage

Requirements

Property Sequence Chart

•  PRESTO european project:
•  Functional property

verification.
•  Non functional property

verification.
•  Free tool: PragmaDev Tracer

Conclusion / Future
Ø  SDL FSM Editor:

Ø  Editor only.
Ø  More user-friendly then RTDS, but limited.
Ø  Evolutions planned, but will remain limited.

Ø  RTDS:
Ø  Much more features: debug, documentation,

test, validation, …
Ø  V5 will integrate the SDL FSM Editor, and open

the same diagrams.

