
Institut Supérieur de l’Aéronautique et de l’Espace

Formal Verification of the
PolyORB-HI Middleware

Jérôme Hugues, ISAE/DMIA
with support from Christophe Garion, ISAE/DMIA

and Gregory Essertel, ISAE/SUPAERO student
DMIA/IpSC ESA Final Presentation Days -- May 2014 1

> As part of TASTE COO2 project, ISAE was tasked to explore
usage of theorem proving tools, C/ACSL and SPARK2014
» How can they be used to assess the quality of the code

generated by the TASTE toolchains
» Mostly exploratory, small workforce of 1 man.month funded by

ESA, dedicated to review existing tools, technologies and see how
far we can go

Objective of TASTE COO2

DMIA/IpSC ESA Final Presentation Days -- May 2014 2

Short answer for the TL;DR folks: it works not so bad
except for pointers management and tasking
Longer answer in the slides that follow ;-)

> Context & objective
> A little bit of theory
> Proof of the C runtime
> Proof of the Ada runtime
> Some lessons learnt

Outline

DMIA/IpSC ESA Final Presentation Days -- May 2014 3

About TASTE and the TASTE process

AOCS

Control law 10 Hz

sensor data

actuators

to FDIR
Mode Management

State Machine

Deadline: 3 ms
WCET: 1 ms

Simulink
LEON2

SDL
LEON2

FDIR-command ::= ENUMERATED {
 safe-mode,
 switch-to-redundant,
 ...
}

AOCS-tm ::= SEQUENCE {
 attitude Attitude-ty,
 orbit Orbit-ty,
 ...
}

AADL and ASN.1
are combined to provide a formal,
precise, and complete description

of the system architecture and data.

process ABB1

idle

PI1

RI1
(myData)

wait_ABB2

wait_ABB2

PI2

idle

FBY

1 false stop

status start

DMIA/IpSC ESA Final Presentation Days -- May 2014 4

ASSERT “model compilation”

 Generate “application skeletons” in
Simulink, SDL, C, and Ada

system basic_fv

USE Datamodel;

SIGNAL basictotc (T_TM);

SIGNAL tcommand (T_HLTC_PLUS);

SIGNAL basictocontrol (T_CONTROL_IN);

SIGNAL controldow ntobasic (T_CONTROL_DOWN_OUT);

SIGNAL controluptobasic (T_CONTROL_UP_OUT);

SIGNAL cyclicactivationimplementation;

procedure aplc_basic_op COMMENT '#c_predef';FPAR
 IN thrusters_opening T_THRUSTERS_OPENING,
 IN pfs_iw m_arming_relay_status_on T_PFS_IWM_ARMING_RELAY_STATUS_ON,
 IN pfs_hltc_red_button_is_on T_PFS_HLTC_RED_BUTTON_IS_ON,
 IN msu_id T_MSU_ID,
 IN pfs_ew m_msuy_msux_hs T_PFS_EWM_MSU_MSU_HS,
 IN f tcp_health_status T_FTCP_HEALTH_STATUS,
 IN pfs_ew m_dtg12_msu T_PFS_EWM_DTG12_MSU,
 IN hltc T_HLTC,
 IN end_boost_is_reached T_END_BOOST_IS_REACHED,
 IN sun_is_aimed T_SUN_IS_AIMED,
 IN/OUT pfs_ew c_msu_pde_t T_PFS_EWC_MSU_PDE_T,
 IN/OUT pde_cmd_a T_PDE_CMD_A,
 IN/OUT dpu_cmd T_DPU_CMD,
 IN/OUT set_pfs_ew c_msu_dtg_mode_coarse T_ON_OFF_CMD,
 IN/OUT hltm T_HLTM,
 IN/OUT pfs_ew m_msux_msuy_hs T_PFS_EWM_MSU_MSU_HS,
 IN/OUT cam_mode T_CAM_MODE,
 IN/OUT controller_to_be_activated T_CONTROLLER_TO_BE_ACTIVATED,
 IN/OUT navigation_output T_NAVIGATION_OUTPUT;
 EXTERNAL;

procedure mysimulink COMMENT '#c_predef';FPAR
 IN my_in T_FOR_SIMULINK_IN,
 IN my_in2 T_control_in,
 IN/OUT my_out T_FOR_SIMULINK_OUT,
 IN/OUT my_out2 T_Control_in;
 EXTERNAL;

c

tcommand,
controldowntobasic,
controluptobasic,
cyclicactivationimplementation

basictotc,
basictocontrol

basic_fv

 Generate a software
real-time architecture (in
AADL)

Task 1

Task 3
Task 4

Task 2
Task 1

Task 3
Task 4

Task 2

Task 1

Task 3

Task 2
Task 1

Task 3

Task 2

 Generate glue code to
put everything together
on a real-time
operating system

DMIA/IpSC ESA Final Presentation Days -- May 2014 5

 TASTE relies on standardized languages :
− ASN.1 and AADL to capture the software architecture and data
− SDL, Simulink, SCADE, C, Ada, VHDL, … to capture the software

behaviour
− MSC and Python to test

 Combine graphical AND textual notations
− If anything goes wrong, human can fix textual syntax
− Diagrams for easier understanding
− But some information is textual by nature

 Avoid languages with weak semantics or syntax

Behind the scenes

DMIA/IpSC ESA Final Presentation Days -- May 2014 6

ISAE contributions to SAE
AADL since 2009
Lead on the Ocarina toolset,
used by ESA

Code generation : Ada, C
(POSIX, ARINC653), RTOS
TRL 7 with ESA (ECSS E-40)

Scheduling: Cheddar, MAST
TRL 4 with ESA

Model checking: Petri Nets
TRL 2 (PhD contribution)

Architectural
Constraints/Requirements
checks
TRL 6 with SEI, being
standardized

Link with SysML models
TRL 1, under evaluation

What you should to know about AADL @ ISAE

ESA Final Presentation Days -- May 2014 7

Link to code/model

Non-functional properties

Architectural patterns

Architecture helps you focusing on the actual system

AADL covers many parts of the V cycle: model checking, scheduling,
safety and reliability (ARP4754) and code generation

DMIA/IpSC

> Exploits AADL models information to generate application-
tailored middleware

Code generation from AADL models

DMIA/IpSC ESA Final Presentation Days -- May 2014 8
page 8

Ocarina: an AADL code generator
http://www.openaadl.org

> Ocarina is a stand-alone tool for processing AADL models
» Command-line tool, a-la gcc
» Can be integrated with third-party tools

• OSATE (SEI), TASTE (ESA), Cheddar (UBO), MyCCM-HI (Thales)
• Also emacs and vim modes

> Code generation facilities target PolyORB-HI runtimes
> Two flavors

» Ada HI integrity profiles, with Ada native and bare board runtimes
» C POSIX or RTEMS, for RTOS & Embedded

> Generated code quality tested in various contexts
» For WCET exploration, support for device drivers, …
» For various RTOS

> Written to meet most High-Integrity requirements
» Follow Ravenscar model of computations, static configuration of all

elements (memory, buffers, tasks, drivers, etc.).
ESA Final Presentation Days -- May 2014 DMIA/IpSC 9

> Initial objective: demonstrate TASTE runtimes (PolyORB-HI/C
and Ada) are free of runtime errors (RTE)

> The leading tool for asserting code is free of RTEs are
» For C: ACSL framework, from CEA; combined with Why3 from

Inria along with various analysis plug-ins
» For Ada: forthcoming SPARK2014 from AdaCore and Altran Praxis

> Stakeholders agreed on the following roadmap
» Adapt existing toolchains to process runtime entities
» Perform annotations on source code to asses lack of RTEs

TASTE COO2 roadmap

DMIA/IpSC ESA Final Presentation Days -- May 2014 10

> Context & objective
> A little bit of theory
> Proof of the C runtime
> Proof of the Ada runtime
> Some lessons learnt

Outline

DMIA/IpSC ESA Final Presentation Days -- May 2014 11

> We are interested in imperative programs: when executing a
program P, we go from a state si to a state sf

> Specifying P is characterizing si and sf with a Hoare triple {φ} P
{ψ} where:
» φ is a logical formula called the precondition of P
» ψ is a logical formula called the postcondition of P

> Intuitive meaning: starting from a state verifying the assertions
defined by φ, executing P should lead to a state verifying the
assertions defined in ψ.

> Thus, verifying the correctness of P given its specification as a
Hoare triple {φ} P {ψ} is to prove the Hoare triple {φ} P {ψ} in
the Floyd-Hoare formal system.

Some theoretical background

DMIA/IpSC ESA Final Presentation Days -- May 2014 12

> Four constructs: assignment, sequence, conditional, iteration
» Enough to represent all sequential programs

About the Floyd-Hoare formal system

DMIA/IpSC ESA Final Presentation Days -- May 2014 13

> The weakest-precondition calculus is a particular semantics for
imperative programs that can be viewed as a complete strategy
to build deductions in FH logic

> Main idea: given a specification {φ} P {ψ}, start from ψ, find the
minimal (weakest) precondition allowing to deduce ψ and verify
that φ implies this minimal precondition

> Implies exploring a proof-tree, applying FH rules
» Combined with higher-order theories (for naturals, memory, …)
» And some specific strategies to speed up the process

The weakest-precondition calculus

DMIA/IpSC ESA Final Presentation Days -- May 2014 14

> The process is thus the following:
» a human expert writes specification in terms of preconditions,

postconditions, loop invariants, loop variants etc. for a program
» those specifications are translated into verification conditions (VC)

using weakest-precondition calculus. The VC are purely
mathematical/logical statements

» the VC are then passed to a theorem prover, automated or
interactive, to be discharged

How does it relate to my source code ?

DMIA/IpSC ESA Final Presentation Days -- May 2014 15

/*@ ensures \result >= x && \result >= y;
 ensures \result == x || \result == y;
*/
int max (int x, int y) { return (x > y) ? x : y; }

Specification

Implementation

> The C and Ada PolyORB-HI runtimes share a common heritage
> Same global architecture, built on top of the “schizophrenic”

middleware pattern
> Similar code design and patterns

» Ravenscar archetypes for task constructs
» Same queueing discipline for messages
» Same code patterns generated from AADL description

> Yet, different implementation choices
» Ada: rely on limited but rich High-Integrity subsets
» C: must accommodate for an abstraction layers on top of OS for

tasking, concurrency and time management

Refining the roadmap

DMIA/IpSC ESA Final Presentation Days -- May 2014 16

> Inherited from the PolyORB middleware
> A generic definition of middleware architecture

About the schizophrenic middleware architecture

DMIA/IpSC ESA Final Presentation Days -- May 2014 17

Neutral Core Middleware

coding
Representation

access pt
Transport

surrogate
Binding

Client Server

Container
Activation

Reference
Addressing

App. code
Execution

SOAP

DSA CORBA

network

request

receiving
& analysis

request

Protocol

3) Queue Mgmt &
Dispatch

4) Tasking
archetypes

1) Static
configuration

tables

2) Message
management and

drivers library

4 layers of
complexity in

managing proofs

> Context & objective
> A little bit of theory
> Proof of the C runtime
> Proof of the Ada runtime
> Some lessons learnt

Outline

DMIA/IpSC ESA Final Presentation Days -- May 2014 18

> We have used the Frama-C platform to prove the runtime.
» the ACSL specification language allows to express assertions,

preconditions, postconditions, loop variants and variants etc. as
special comments in the C source code

» the RTE plugin has been used to generate additional assertions
about possible runtime errors (signed integers overflow, invalid
memory access, division by zero etc.)

» the WP plugin has been used as VC generator for the weakest-
precondition calculus

» the Alt-Ergo SMT solver has been used to automatically prove the
generated VCs

The Frama-C platform

DMIA/IpSC ESA Final Presentation Days -- May 2014 19

Frama-C/Why in action

> The following C compilation units must be considered
» po_hi_types.h: definition of simple types and a function to copy arrays of bytes
» po_hi_time.h: time management, with definition of a struct embedding time

decomposed into seconds andnanoseconds. Several functions to add, initialize
etc. such structures

» po_hi_marshallers.h: conversion functions for marshalling/unmarshalling data
» po_hi_messages.h: messages management functions (write message, append

message, move part of a message etc.)
» po_hi_main.h: defines functions for a synchronized start of the system
» po_hi_protected.h: mutex management functions
» po_hi_task.h: link to concurrency library
» po_hi_gqueue.h: queue management functions
» po_hi_transport.h: communications between tasks functions

Proving PolyORB-HI/C

DMIA/IpSC ESA Final Presentation Days -- May 2014 21

> C memory model is a pain

> The specification reads as follow:
» Pointer parameters are valid, at least for the length size specified as a parameter.
» The memory regions of the two pointers do not overlap (\separated clause).
» Only the dst pointer will be assigned, using the src pointer.
» as the \from clause is an experimental feature, we have to specify the complete

postcondition, i.e. that the size first bytes of src has been copied into dst.

About the complexity of annotations

DMIA/IpSC ESA Final Presentation Days -- May 2014 22

> All memory is statically allocated in the heap
» As we deal with values living inside the heap, we have to use a

memory model allowing to map each C value in the heap to logical
expressions in the ACSL specification.

» Of course, the more precise the memory model is, the more
difficult the generated VC are to discharge.

> Limitations 
» We have used the Typed memory model that allows reasoning

with pointers with an efficient mixed memory model.
» Unfortunately, the Typed memory model does not allow all

possible casts between pointer types (for instance int ∗ to void ∗ is
not allowed).

About memory models

DMIA/IpSC ESA Final Presentation Days -- May 2014 23

> Use of external libraries require precising expected outputs
» Normal and error case, as this is propagated back to clients

Abstracting OS primitives

DMIA/IpSC ESA Final Presentation Days -- May 2014 24

> Some complex corner cases to evaluate even basic arithmetics
» Ex: byte swapping, shifting and integers do not mix very well

» But this can be proved

• Runtime penalty limited thanks to compiler optimizations

Basic computations

DMIA/IpSC ESA Final Presentation Days -- May 2014 25

> Proving basic units, except queue management and tasking

> Still a lot to do at Frama-C/ACSL tool-support level

» No support for complex pointers, required for queues
» No support for concurrency constructs, impossible to demonstrate

absence of interferences between task, or respect of Ravenscar!
> Recall this was a 3 man.month combined effort

Global results

DMIA/IpSC ESA Final Presentation Days -- May 2014 26

> Context & objective
> A little bit of theory
> Proof of the C runtime
> Proof of the Ada runtime
> Some lessons learnt

Outline

DMIA/IpSC ESA Final Presentation Days -- May 2014 27

> SPARK2014 leverages Ada2012 aspects to enable definition of
contracts that can be either evaluated at run-time, or proved
formally

» Annotation through valid Ada code + special attributes
» Part of the compilation process

> GNATProve GPL2013 then GPL2014 used in this study

» First a prototype, now supported by AdaCore and Altran Praxis
» Requires adoption of Ada2012 to support all annotations

About SPARK2014

DMIA/IpSC ESA Final Presentation Days -- May 2014 28

 procedure Push (R : in out Ring_Buffer; X : Integer)
 with Pre => (not Is_Full (R)),
 Post => (R.Length = R.Length'Old + 1);

> The following packages must be considered
» PolyORB-HI.Output: logging facilities
» PolyORB-HI.Utils: helper functions
» PolyORB-HI.Messages: message management
» PolyORB-HI.Marshallers_G: marshalling functions
» PolyORB-HI.Thread_Interrogators: message queues
» PolyORB-HI.*_Task: task archetypes

> GNATProve allows one to control which package to analyse
» E.g. do not consider drivers

> GNATProve generates VCs for code that lead to RTEs
» Exclude safe code after compiler analysis

Proving PolyORB-HI/Ada

DMIA/IpSC ESA Final Presentation Days -- May 2014 29

> Compared to C, annotations define pre/post conditions
» Hypothesis on behavior shared with client
» Mostly invariants on validity of data being exchanged

• E.g. message well-formed, non-empty arrays, etc.
> No need to tell a lot about memory model

» No need for pointers in High-Integrity Profile in Ada !
> No need to abstract OS services

» These are part of Ada semantics
• Copy of arrays, time management

> No need to precise bounds on types
» Use subtype mechanism of Ada

• Simplify many annotation when doing packet construction for instance

Adapting the Ada runtime

DMIA/IpSC ESA Final Presentation Days -- May 2014 30

> Proving basic units, except queue management and tasking
» Exact same subset as the C runtime

> 95 VCs to be discharged
» 77 proved already
» 18 unproved due to limitations in toolset

• Mostly related to slicing and copies, need to adapt proof strategies
• Easy to solve at tool level support

> Similar limitations to Frama-C/ACSL tool-support level
» No support for concurrency constructs, impossible to demonstrate

absence of interferences between task, or respect of Ravenscar!
» Recall we have no need for pointers 

Global results

DMIA/IpSC ESA Final Presentation Days -- May 2014 31

> Context & objective
> A little bit of theory
> Proof of the C runtime
> Proof of the Ada runtime
> Some lessons learnt

Outline

DMIA/IpSC ESA Final Presentation Days -- May 2014 32

SPARK2014 vs ACSL

DMIA/IpSC ESA Final Presentation Days -- May 2014 33

> SPARK2014
» Better language semantics

» Leverage Ada profiles

• Restrictions enforced
» Annotations compilable

> ACSL
» Weak semantics of C

• Annotations more complex
» No enforcement of profiles
» Annotations external

• Risk of discrepancies
• Compiled with E-ACSL

> Same backend technology: Why3, VCGen and Alt-Ergo

» Similar strategies applied
» Main difference in strategy to generate VC and management of

input language semantics

> Same subset of the runtime proved
» Message marshalling, constructions and basic helper functions
» Cover 50% of the code

> Limits in toolset to process complex queues of messages
» To be addressed shortly, mostly a time issue

> Limits in theoretical framework to address concurrency
» Must be abstracted away, through model of computation
» Use of the Ravenscar model at must

> Which one to chose ? Portability of Ada helps !
» 2 times more VCs to be discharged for the C variant!
» Needs adaptation of the C runtime for every RTOS variants 

PolyORB-HI/C & Ada

DMIA/IpSC ESA Final Presentation Days -- May 2014 34

> Complete integration with TASTE toolset
» Integrate new variants of the runtime to baseline
» Provides script to automate proof as part of user-visible GUIs

> Extend proof also to user code
» Needs better modeling artefacts at TASTE process-level

> Study evolution of theorem provers

» A very active community!

Future work

DMIA/IpSC ESA Final Presentation Days -- May 2014 35

	Formal Verification of the PolyORB-HI Middleware
	Objective of TASTE COO2
	Outline
	About TASTE and the TASTE process
	ASSERT “model compilation”
	Behind the scenes
	What you should to know about AADL @ ISAE
	Code generation from AADL models
	Ocarina: an AADL code generator�http://www.openaadl.org
	TASTE COO2 roadmap
	Outline
	Some theoretical background
	About the Floyd-Hoare formal system
	The weakest-precondition calculus �
	How does it relate to my source code ?
	Refining the roadmap
	About the schizophrenic middleware architecture
	Outline
	The Frama-C platform �
	Frama-C/Why in action
	Proving PolyORB-HI/C
	About the complexity of annotations
	About memory models
	Abstracting OS primitives
	Basic computations
	Global results
	Outline
	About SPARK2014
	Proving PolyORB-HI/Ada
	Adapting the Ada runtime
	Global results
	Outline
	SPARK2014 vs ACSL
	PolyORB-HI/C & Ada
	Future work

