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Objective of TASTE CO02

> As part of TASTE COQO2 project, ISAE was tasked to explore
usage of theorem proving tools, C/ACSL and SPARK2014

» How can they be used to assess the quality of the code
generated by the TASTE toolchains

» Mostly exploratory, small workforce of 1 man.month funded by
ESA, dedicated to review existing tools, technologies and see how

far we can go

Short answer for the TL;DR folks: it works not so bad
except for pointers management and tasking
Longer answer in the slides that follow ;-)




Context & objective

A little bit of theory
Proof of the C runtime
Proof of the Ada runtime
Some lessons learnt

vV V. V V V




About TASTE and the TASTE process
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ASSERT “model compilation™
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Behind the scenes

« TASTE relies on standardized languages :
- ASN.1 and AADL to capture the software architecture and data

- SDL, Simulink, SCADE, C, Ada, VHDL, ... to capture the software
behaviour

- MSC and Python to test
« Combine graphical AND textual notations
- If anything goes wrong, human can fix textual syntax
- Diagrams for easier understanding
— But some information Is textual by nature
o Avoid languages with weak semantics or syntax



What you should to know about AADL @ ISAE

Architecture helps you focusing on the actual system

aag Architectural patterns
Ada Task object

AADL Process AADL Dataas

as Partition

Ada Protected object

N\

/’ Concurrency view / >
{ o0 B0 ™y m o e
L Data_Sink “in a;}ne ceher Thead {j:_; watcher Thread
. eventdata port L »
Link to code/model ' /‘3{ 7
- B S Read P " &
, e pdate J e Y
/ SC_1 I A Locat Cread> J T ¢
P . Object <update
/ ‘x‘.l'_',>=-= " Semder Thread 8 Dawn_soucd’ out // - ) upaa® >
y ' i eventdata gt~ -
/ s - Fi -
/ ; (Send ®»— — —m>— ™ -
/ ! o :’ il ‘: I
/ P J R ——— - - / |
_, NI/ |
T 06 i i
> Data$ink -/ s JE S oer T =5 A e wamnerTrrena T T
* e\.em_‘aa port a I-I - ]
- . £
: A N 2 T leadn o
- - I ~ Pdal € ,f‘ - \\QVHI € l">
[ N * H B v"’ T
Il : ; e EEsEEe e emm———— s
\\ - -*, ﬁ /
\\\‘. : 4 \ ’//
B L3 L B
) b = _
/ s o ™
-
i - —1 ‘v
ﬁfﬁﬂ%‘iﬁ% SpaceiVire
L d
-
-
S :
L 3
S
A 4 : :
%‘22;;\ Non-functional properties
-//

'\x Physical view

AADL covers many parts of the V cycle: model checking, scheduling,
safety and reliability (ARP4754) and code generation

ISAE contributions to SAE
AADL since 2009

Lead on the Ocarina toolset,
used by ESA

Code generation : Ada, C
(POSIX, ARINC653), RTOS

TRL 7 with ESA (ECSS E-40)

Scheduling: Cheddar, MAST

Model checking: Petri Nets
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Architectural
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standardized
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Code generation from AADL models

> Exploits AADL models information to generate application-
tailored middleware
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Ocarina: an AADL code generator

http://www.openaadl.oro

> Qcarinais a stand-alone tool for processing AADL models
» Command-line tool, a-la gcc

» Can be integrated with third-party tools
« OSATE (SEI), TASTE (ESA), Cheddar (UBO), MyCCM-HI (Thales)
 Also emacs and vim modes

> Code generation facilities target PolyORB-HI runtimes
> Two flavors
» Ada HI integrity profiles, with Ada native and bare board runtimes
» C POSIX or RTEMS, for RTOS & Embedded
> (Generated code quality tested in various contexts
» For WCET exploration, support for device drivers, ...
» For various RTOS
>  Written to meet most High-Integrity requirements

» Follow Ravenscar model of computations, static configuration of all
elements (memory, buffers, tasks, drivers, etc.).



TASTE COO2 roaamap

> |nitial objective: demonstrate TASTE runtimes (PolyORB-HI/C
and Ada) are free of runtime errors (RTE)

> The leading tool for asserting code Is free of RTES are

»

»

~or C: ACSL framework, from CEA; combined with Why3 from
nria along with various analysis plug-ins

~or Ada: forthcoming SPARK2014 from AdaCore and Altran Praxis

> Stakeholders agreed on the following roadmap
» Adapt existing toolchains to process runtime entities
» Perform annotations on source code to asses lack of RTES
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Some theoretical background

We are interested in imperative programs: when executing a
program P, we go from a state s; to a state s;

Specifying P Is characterizing s; and s; with a Hoare triple {¢} P
{wg} where:

» @ is a logical formula called the precondition of P
»  is a logical formula called the postcondition of P

Intuitive meaning: starting from a state verifying the assertions
defined by ¢, executing P should lead to a state verifying the
assertions defined in y.

Thus, verifying the correctness of P given its specification as a
Hoare triple {¢} P {w} is to prove the Hoare triple {¢} P {w} in
the Floyd-Hoare formal system.



About the Floyd-Hoare formal system

> Four constructs: assignment, sequence, conditional, iteration
» Enough to represent all sequential programs

)

I/ED x = E (o) O

{o} P {7} {7} Q {v} (Seq)

{v} PQ {v}

o — ¢ {¢'} P {9} Y — 1 (Cons)
{w} P {v}

{pnC} P {¥} {en=C}H Q {v} (Cond)

{p} if Cthen P else Q fi {v}

{oACAv=V} P {pAv <V} < is wf
{p} while Cdo P od {pA—-C}

(It)



The weakest-precondition calculus

> The weakest-precondition calculus is a particular semantics for
Imperative programs that can be viewed as a complete strategy
to build deductions in FH logic

> Main idea: given a specification {¢@} P {y}, start from y, find the
minimal (weakest) precondition allowing to deduce y and verify
that ¢ implies this minimal precondition

> Implies exploring a proof-tree, applying FH rules
» Combined with higher-order theories (for naturals, memory, ...)
» And some specific strategies to speed up the process

{1(0,X)} P1 {I(Q,R)} {I(Q,R)} P2 {I(Q,R) A ~(Y < R)}
o — 10, X) {(0,X)} P {I(Q,R) A =(Y < R)}

{e}r P {I(Q,R)A—(Y < R)}



How does it relate to my source code ?

> The process is thus the following:

» a human expert writes specification in terms of preconditions,
postconditions, loop invariants, loop variants etc. for a program

» those specifications are translated into verification conditions (VC)
using weakest-precondition calculus. The VC are purely
mathematical/logical statements

» the VC are then passed to a theorem prover, automated or
Interactive, to be discharged

/*@ ensures \result >= x && \result >= y;

ification
ensures \result == x |] \result == y; Specificatio

*/ N
int max (int x, inty) { return (x >y) ? X : y; } Implementation




Refining the roaamap

> The C and Ada PolyORB-HI runtimes share a common heritage

> Same global architecture, built on top of the “schizophrenic”
middleware pattern

> Similar code design and patterns

» Ravenscar archetypes for task constructs

» Same queueing discipline for messages

» Same code patterns generated from AADL description
> Yet, different implementation choices

» Ada: rely on limited but rich High-Integrity subsets

» C: must accommodate for an abstraction layers on top of OS for
tasking, concurrency and time management



About the schizophrenic midaleware architecture

> |Inherited from the PolyORB middleware
> A generic definition of middleware architecture
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The Frama-C platform

> We have used the Frama-C platform to prove the runtime.

» the ACSL specification language allows to express assertions,
preconditions, postconditions, loop variants and variants etc. as
special comments in the C source code

» the RTE plugin has been used to generate additional assertions
about possible runtime errors (signed integers overflow, invalid
memory access, division by zero etc.)

» the WP plugin has been used as VC generator for the weakest-
precondition calculus

» the Alt-Ergo SMT solver has been used to automatically prove the
generated VCs



Frama-C/Why In action
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Proving PolyORB-HI/C

>

The following C compilation units must be considered
» Po_hi_types.h: definition of simple types and a function to copy arrays of bytes

» Po_hi_time.h: time management, with definition of a struct embedding time
decomposed into seconds andnanoseconds. Several functions to add, initialize
etc. such structures

» po_hi_marshallers.h: conversion functions for marshalling/unmarshalling data

» Po_hi_messages.h: messages management functions (write message, append
message, move part of a message etc.)

» po_hi_main.h: defines functions for a synchronized start of the system
» po_hi_protected.h: mutex management functions

» po_hi_task.h: link to concurrency library

» po_hi_gqueue.h: queue management functions

» po_hi_transport.h: communications between tasks functions



About the complexity of annotations

> C memory model is a pain

[T@ requires \valid (((char ) dst)+(0..size-1));
@ requires \valid (((char ) src)+(0..size-1));
@ requires \separated (((char ) dst)+(0..size=1), ((char ) src)+(0..size=1));
@ assigns ((char [) dst)[0..size-1] \from ((char ) src)[0..size-1];
@ ensures \ forall int i; 0 <=1 < size ==> [|(((char [) dst)+i) == [(((char [) src)+i);

@~

void __po_hi_copy_array (voidl[ dst, voidl src, __po_hi_uint32_t size);
> The specification reads as follow:
Pointer parameters are valid, at least for the length size specified as a parameter.
The memory regions of the two pointers do not overlap (\separated clause).
Only the dst pointer will be assigned, using the src pointer.

as the \from clause Is an experimental feature, we have to specify the complete
postcondition, i.e. that the size first bytes of src has been copied into dst.

>

A\

>

A\

>

A\

>

A\



About memory models

> All memory is statically allocated in the heap

» As we deal with values living inside the heap, we have to use a
memory model allowing to map each C value in the heap to logical
expressions in the ACSL specification.

» Of course, the more precise the memory model is, the more
difficult the generated VC are to discharge.

> Limitations ®

» We have used the Typed memory model that allows reasoning
with pointers with an efficient mixed memory model.

» Unfortunately, the Typed memory model does not allow all
possible casts between pointer types (for instance int * to void * IS
not allowed).



Abstracting OS primitives

> Use of external libraries require precising expected outputs
» Normal and error case, as this is propagated back to clients

/T@ behavior __tp_not_valid:

@e®

assumes !\ valid(__tp);
assigns \ nothing;
ensures \result == EFAULT;

@ behavior clock_not_valid:

PRPEPPPPPPPO®

@/

assumes !clock_valid(_._clock_id);
assigns \ nothing;
ensures \result == EINVAL;

behavior normal:

assumes \valid(__tp);

assigns __tp—->tv_sec;

assigns __tp—->tv_nsec;

ensures \result ==

ensures \valid(__tp);

ensures __tp == \old(__tp);

ensures __tp->tv_sec >= 0 && __tp->tv_sec <= UINT32.MAX;
ensures __tp—->tv_nsec < 1000000000 && __tp—->tv_nsec >= 0;

extern int clock_gettime (clockid_t __clock_.id, struct timespec O__tp) __THROW,;



Basic computations

> Some complex corner cases to evaluate even basic arithmetics
» EX: byte swapping, shifting and integers do not mix very well

/@
@ ensures \result == ((value & 0x000000ff) << 24) +
@ ((value & 0x0000ff00) << 8) +
@ ((value & 0x00ff0000) >> 8) +
@ ((value & 0xff000000) >> 24);
@/

» But this can be proved

unsigned long __po_hi_swap_byte (unsigned long value)

{

unsigned long v = 0;

v |= (value % 256) [ 16777216;

v |= ((value / 256) % 256) 1 65536;
v |= ((value / 65536) % 256) 1 256;
v |= (value / 16777216);

return v;

 Runtime penalty limited thanks to compiler optimizations



Global results

> Proving basic units, except gueue management and tasking

vC Tobeproved Proved Time(ms) Qed Alt-Ergo

Qed 65 65 56 3
Alt-Ergo 156 152 28376 H
Pre 16 16 668 12 4

Post 141 41 12156 18 23 >
RTE 92 a0 9888 13 79 §)
Assigns 58 56 1732 16 42 o)
Loop 10 10 3940 6 4 ©
Other 4 4 48 0 4

Total 221 217 28432

> Still a lot to do at Frama-C/ACSL tool-support level
» No support for complex pointers, required for queues

» NO support for concurrency constructs, impossible to demonstrate
absence of interferences between task, or respect of Ravenscar!

> Recall this was a 3 man.month combined effort
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About SPARK2014

> SPARK?2014 leverages Ada2012 aspects to enable definition of
contracts that can be either evaluated at run-time, or proved
formally

procedure Push (R - 1n out Ring Buffer; X : Integer)
with Pre => (not Is _Full (R)),
Post => (R.Length = R._Length"0ld + 1);

» Annotation through valid Ada code + special attributes
» Part of the compilation process

> GNATProve GPL2013 then GPL2014 used In this study
» First a prototype, now supported by AdaCore and Altran Praxis
» Requires adoption of Ada2012 to support all annotations



Proving PolyORB-HI/Ada

> The following packages must be considered

»

»

»

»

»

»

RB-
RB-

RB-

RB-
RB-

RB-

.Output: logging facilities

Utils: helper functions

.Messages: message management
Marshallers_G: marshalling functions
.Thread_Interrogators: message queues
* Task: task archetypes

> GNATProve allows one to control which package to analyse
» E.g. do not consider drivers
> GNATProve generates VCs for code that lead to RTES

» Exclude safe code after compiler analysis
DOMIAIBSC . ESAFialPresemaion Days~May2014 29



Adapting the Ada runtime

> Compared to C, annotations define pre/post conditions
» Hypothesis on behavior shared with client

» Mostly invariants on validity of data being exchanged
 E.g. message well-formed, non-empty arrays, etc.

> No need to tell a lot about memory model
» No need for pointers in High-Integrity Profile in Ada !
> No need to abstract OS services

» These are part of Ada semantics
 Copy of arrays, time management
> No need to precise bounds on types

» Use subtype mechanism of Ada
o Simplify many annotation when doing packet construction for instance



Global results

>

Proving basic units, except queue management and tasking
» Exact same subset as the C runtime

95 VCs to be discharged

» {7 proved already

» 18 unproved due to limitations in toolset
 Mostly related to slicing and copies, need to adapt proof strategies
 Easy to solve at tool level support

Similar limitations to Frama-C/ACSL tool-support level

» NO support for concurrency constructs, impossible to demonstrate
absence of interferences between task, or respect of Ravenscar!

» Recall we have no need for pointers ©
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SPARK2014 vs ACSL

> SPARKZ2014 > ACSL
» Better language semantics » Weak semantics of C
e Annotations more complex
» Leverage Ada profiles » No enforcement of profiles
* Restrictions enforced » Annotations external
» Annotations compilable * Risk of discrepancies

e Compiled with E-ACSL

> Same backend technology: Why3, VCGen and Alt-Ergo
» Similar strategies applied

» Main difference In strategy to generate VC and management of
Input language semantics



PolyORB-HI/C & Ada

> Same subset of the
» Message marshalli

runtime proved
ng, constructions and basic helper functions

» Cover 50% of the code

> Limits In toolset to

nrocess complex queues of messages

» T0 be addressed shortly, mostly a time issue

> Limits In theoretica
» Must be abstracted

framework to address concurrency
away, through model of computation

» Use of the Ravenscar model at must
> Which one to chose ? Portability of Ada helps !
» 2 times more VCs to be discharged for the C variant!
» Needs adaptation of the C runtime for every RTOS variants ®



> Complete integration with TASTE toolset
» Integrate new variants of the runtime to baseline
» Provides script to automate proof as part of user-visible GUIs

> Extend proof also to user code
» Needs better modeling artefacts at TASTE process-level

> Study evolution of theorem provers
» A very active community!
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