FAME Final Presentation Days Noordwjik, 22-05-14

WE LOOK AFTER THE EARTH BEAT

A. Guiotto (TAS-I)M. Bozzano (FBK)R. De Ferluc (TAS-F)

23/05/2014

THALES ALENIA SPACE INTERNAL

- >> Study framework
- **~** FAME Proposed solution
- >>> Demo of FAME Environment
- Evaluation on a case study
- ~ Characterization of the approach
- 🛰 Conclusions

2

thor disclosed

FAME Final Presentation

23/05/2014

This document is not to be reproduced, modified, adapted, published, translated in any material form in whole or in part nor disclosed to any third party without the prior written permission of Thales Alenia Space - © 2012, Thales Alenia Space

THALES ALENIA SPACE INTERNAL

>> Study Framework

THALES ALENIA SPACE INTERNAL

FAME: FDIR Development and Verification & Validation Process

THALES ALENIA SPACE INTERNAL

23/05/2014

Ref .:

This document is not to be reproduced, modified, adapted, published, translated in any material form in whole or in part nor disclosed to any third party without the prior written permission of Thales Alenia Space - © 2012. Thales Alenia Space

A Thales / Finmeccanica C

- FMECA and FTA becomes available late in the process, leading to late initiation of the FDIR development, which has a detrimental effect on the eventual FDIR maturity
- All possible fault and failure combinations are inherently complex to analyse and to define an adequate FDIR strategy for
- As various sub-systems and equipment tend to incorporate some local FDIR functionalities, the global FDIR concept shall account for coordination of the local FDIR elements to achieve the FDIR coherency
- Safety-critical systems being double failure tolerant need adequate FDIR operation in all double failure configurations and their propagation
- Currently employed approaches to FDIR development are poorly phased.
- No dedicated approach to FDIR development exists

THALES ALENIA SPACE INTERNAL

This document is not to be reproduced, modified, adapted, published, translated in any material form in whole or in part nor disclosed to any third party without the prior written permission of Thales Alenia Space - © 2012, Thales Alenia Space

5

- Definition of the FDIR development methodology be based on the formal specification and analysis techniques
- Definition of the FDIR Development and V&V Process based on the aforementioned Methodology, encompassing the full FDIR lifecycle
- Development of the Failure and Anomaly Management Engineering (FAME) Environment implementing the Process and allowing for the System-level coherent definition, specification, development, and V&V of the FDIR functionalities
- >> Demonstration of the approach on case studies
- Evaluation of the adequacy of the approach and developed environment for use in the context of critical on-board space systems and software development

6

THALES ALENIA SPACE INTERNAL

23/05/2014

Ref .:

➣ FAME Process

THALES ALENIA SPACE INTERNAL

Overview of FAME Process

Analyze User Requirements

- System engineers:
 - collect and analyze all the user requirements contained in SRD and OIRD that impact the FDIR to derive the objectives of the FDIR and define the impacts they will have on the S/C design from system level down to unit level.
 - Highligth possible limitations
- Start: begin of System Phase B
- End: before System SRR

THALES ALENIA SPACE INTERNAL

Ref .:

Define Partitioning/allocation

- FDIR engineers:
 - Allocate RAMS and Autonomy Requirements contained in SOFDIR per Mission Phase/Spacecraft Operational Mode in order to define FDIR approach and Autonomy Concept during different mission phases/Spacecraft Operational Mode.
 - Model spacecraft FDIR architecture including all the involved subsystems (avionics, payload...)
- Start: after System SRR
- End: System PDR

FONDAZIONE BRUNO KESSLER

This document is not to be reproduced, modified, adapted, published, translated in any material form in whole or in part nor disclosed to any third party without the prior written permission of Thales Alenia Space - © 2012, Thales Alenia Space

THALES ALENIA SPACE INTERNAL

FDIR objectives and strategies

- **FDIR** engineers:
 - specify FDIR Objectives at system-level specification in FOS and FDIR Strategies at subsystem level in FSS by using FDIR Analysis and TFPG Analysis Report.
- Start: after System SRR
- End: System PDR

23/05/2014

Perform Timed Fault Propagation Analysis

as defined in 2 ECSS-Q-ST-30-02C ECSS-0-ST-40-02C Safety engineers: ECSS-Q-ST-40-12C "Perform» Perform RAMS Analysises specifies a TFPM for the design starting from fault trees, FMEA «mandatory.out» «mandatory.out» «mandatory.out» tables and Hazard Analysis Start: System SRR FMFC End: System PDR Hazard Analysis «in.mandatory» «in.mandatory» **Outputs:** TFPM analysis Report «in:mandatory» Tasks: «Perform» Specify TFPM Specify TFPM «mandatory.out» «Perform) Analyse **TFPM** SafetyEngineer TFPM Analysis Report «mandatory.out» Analyze TFPM

THALES ALENIA SPACE INTERNAL

This document is not to be reproduced, modified, adapted, published, translated in any material form in whole or in part nor disclosed to any third party without the prior written permission of Thales Alenia Space - © 2012, Thales Alenia Space

FONDAZIONE BRUNO KESSLER

ThalesAlenia

A Thales / Finmeccanica Comp

Design

- FDIR engineers, SW engineers, SDB engineers:
 - design FDIR in the various subsystems, software and database on the base of FDIR Reference Architecture
- Start: System PDR
- Fnd: S/S CDR

ThalesAlenia This document is not to be reproduced, modified, adapted, published, translated in any material form in whole or in part nor disclosed A Thales / Finmeccanica Company to any third party without the prior written permission of Thales Alenia Space - © 2012. Thales Alenia Space

FONDAZIONE BRUNO KESSLER

to any third party without the prior written permission of Thales Alenia Space - © 2012. Thales Alenia Space

***** FAME Proposed Solution

THALES ALENIA SPACE INTERNAL

- Built on top of the COMPASS environment
 - Modeling in SLIM, a variant/extension of AADL language
 - Formal verification based on model checking engines
- 🛰 See demo
- Technical solutions
 - Routines for synthesis of FD from a TFPG
 - Synthesis of alarms raised whenever faults can be diagnosed
 - Routines for synthesis of FR
 - Based on techniques for model-based planning
 - A plan is a recovery strategy that is guaranteed to bring the system into the specified target configuration, whenever an alarm is activated

16

Ref .:

Proposed Solution: flow of the FAME environment

>> Demo of FAME Environment

THALES ALENIA SPACE INTERNAL

The Battery Sensor Example: nominal system

mattery Sensor

- Generators powering batteries, in turn powering sensors
- ~ Redundant system: 2 Generators, 2 Batteries, 2 Sensors
- >> At least one sensor must be working, for the system to be alive

FONDAZIONE BRUNO KESSLER

25

THALES ALENIA SPACE INTERNAL

23/05/2014

The Battery Sensor Example: fault injections

🛰 Faults

- ➣ Generators: off
- Sensors: wrong output

FONDAZIONE BRUNO KESSLER

26

THALES ALENIA SPACE INTERNAL

The Battery Sensor Example: system re-configuration

- >> Primary configuration
 - Battery 1 feeding sensor 1
 - Battery 2 feeding sensor 2

A Thales / Finmeccanica Co

27

THALES ALENIA SPACE INTERNAL

The Battery Sensor Example: system re-configuration

Secondary 1 configuration

Battery 1 feeding both sensors

23/05/2014

THALES ALENIA SPACE INTERNAL

ThalesAlenia

A Thales / Finmeccanica Cor

28

The Battery Sensor Example: system re-configuration

29

FONDAZIONE BRUNO KESSLER

ThalesAlenia

A Thales / Finmeccanica Cor

Secondary 2 configuration

Battery 2 feeding both sensors

23/05/2014

The Battery Sensor Example: TFPG

- >> Structure of the demo
 - 🛰 Loading of
 - Models
 - Fault injections
 - Mission Specification
 - > TFPG and associations
 - FDIR specification
 - ➣ TFPG analyses
 - > Behavioral validation
 - Effectiveness validation
 - ➣ Synthesis of FDIR
 - Synthesis of FD
 - Synthesis of FR
 - ~ TFPG Synthesis

FONDAZIONE BRUNO KESSLEF

31

THALES ALENIA SPACE INTERNAL

23/05/2014

➤ DEMO follows ...

THALES ALENIA SPACE INTERNAL

Evaluation on a Case Study

THALES ALENIA SPACE INTERNAL

Evaluation on a case-study

- Case-study : EXOMARS Trace Gas Orbiter (TGO)
 - Will be launched in 2016 and will arrive at Mars 9 month later.
 - ~ Rich mission:
 - During transit to Mars : provide services to the Entry Descent Module
 - Atmosphere entry / Orbit Insertion after EDM ejection
 - Aerobreaking to reach the science orbit after EDM operations completion
 - Science and data acquisition
 - 2018 : new Rover support
- Complex mission = complex FDIR:
 - 🛰 autonomy
 - Mission phase dependent:
 - Fail Op / Fail Safe strategies
 - Hot / Cold redundancies

34

THALES ALENIA SPACE INTERNAL

This document is not to be reproduced, modified, adapted, published, translated in any material form in whole or in part nor disclosed to any third party without the prior written permission of Thales Alenia Space - © 2012, Thales Alenia Space

Ref .:

Evaluation on a case-study

23/05/2014

THALES ALENIA SPACE INTERNAL

Ref :

This document is not to be reproduced, modified, adapted, published, translated in any material form in whole or in part nor disclosed

36

~ FDIR requirement analysis

1. FDIR requirement analysis

[FAME-SUB-CASE-STUDY-FDIR-REQ-010]

Mission shall be ensured for any single failure

[FAME-SUB-CASE-STUDY-FDIR-REQ-020]

TGO shall be able to achieve its manoeuvres of Mars Orbit Insertion even in case of single failure.

2. FDIR objectives definition

[FAME-SUB-CASE-STUDY-FDIR-OBJ-010]

If IMU failure item "FAME_IMU_001" occures during phase "MOI" and mode "MAN_C", TGO shall be able to carry on the manoeuvre.

[FAME-SUB-CASE-STUDY-FDIR-OBJ-020]

If IMU failure item "FAME_IMU_001" occures during phase "MOI" and mode "ROUT", TGO shall not start the manoeuvre and go to SAFE mode.

3. FDIR strategy definition

[FAME-SUB-CASE-STUDY-FDIR-STR-010]

If a failure occures on the nominal IMU during phase "MOI" and mode "MAN_C", the TGO system shall autonomously switch to redundant unit.

[FAME-SUB-CASE-STUDY-FDIR-STR-011]

If a failure occures on the redundant IMU during phase "MOI" and mode "MAN_C", the TGO system shall reset this redundant unit and try to carry on the manoeuvre.

37

ThalesAlenia

23/05/2014

THALES ALENIA SPACE INTERNAL

*• F	DIR Sp	pecifica	ation :										38
hases		Op-mo	des									=	
Name MOI	\$	Name ROUT MAN SAFE	2 - _C	1. Mode	es								
S/C Config	jurations												
Configura	ation ID Allowed space	cecraft configuration	Associated Op-m	odes 2. S	space-c	raf	t co	onfigu	irati	ions			
IMU_1	TGO.Acquire	Attitude_Block.senso	r_id = enum:S1 ROUT					_					
IMU_2	TGO.Acquire	Attitude_Block.senso	r_id = enum:S2 MAN_C SAFE										
	Phase / Op-mo	de combination											
	Phases Asso	ciated Op-modes De	efinition via Observable								1		
	▼ MOI MAN ROU SAFI	N_C T(IT T(E T(GO.TGO_SAT_CONF.MissionPhas GO.TGO_SAT_CONF.MissionPhas GO.TGO_SAT_CONF.MissionPhas	se=enum:MOI and TGO.TGO se=enum:MOI and TGO.TGO se=enum:MOI and TGO.TGO	_SAT_CONF.Operal _SAT_CONF.Operal _SAT_CONF.Operal	tionalM tionalM tionalM	ode=en ode=en ode=en	um:MAN_C um:ROUT um:SAFE		com	binati	on	
Componer	nt		Error State	Failure Mode				Generated a	larm P	redefined ala	rm Enabled		
TGO.Acc	quireAttitude_Bloc	k.AcquireAttitude	:1										
			MEASURES_NONE	FM_AcquireAttitude	_MEASURES_N	ONE_1		NO_MEAS_1	1			\checkmark	
4. Faul	It Detect	tion	MEASURES_ERRONEOU	JS FM_AcquireAttitude	_MEASURES_ER	RONE	OUS_1	ERR_MEAS_	1				
			MEASURES_BIASED	FM_AcquireAttitude	_MEASURES_BI	ASED_	1	BIASED_ME	AS_1			S	
					EP Table								
					Alarm	Phase	Op-mod	e Severity	Target mod	de Target conf Tar	et constraints Allow	wed Recovery Actio	ons Predefined reco
					▼ NO_MEAS_1	MOL							
					·	MOI	MAN_C	2 (Critical)	MAN_C	IMU_2	all		
			4. Fault Rec	covery			ROUT SAFE	1 (Catastrophic) 1 (Catastrophic)	SAFE SAFE	IMU_2 IMU_2	all all		
					▼ ERR_MEAS_1 ▼	моі					⊳		

ROUT

SAFE

ROUT

SAFE

MAN_C 2 (Critical)

MOI

▼ BIASED_MEAS_1

~

THALES ALENIA SPACI

This document is not to be reproduced, modified, adapted, published, trans

to any third party without the prior written permission of Thales

1 (Catastrophic) SAFE

1 (Catastrophic) SAFE

1 (Catastrophic) SAFE

1 (Catastrophic) SAFE

MAN_C

IMU_2

IMU_2

IMU_2

IMU_2

IMU_2

all

all

all

all

all

Fault Detection and Recovery Synthesis :

39

- Process and technology evaluation
 - Process compatible with industrial process
 - Benefits : formalism (SLIM and TFPG), well defined and guided process, timing analysis of failure propagation
 - Limitations : state space explosion on big models, decentralized FDIR not yet supported, still some problems in FR synthesis
- **~** Conclusion :
 - Experiments on TFPG is promising
 - >> Still some technical challenges to solve
 - Requires a strong cooperation between industrials and academics

40

THALES ALENIA SPACE INTERNAL

This document is not to be reproduced, modified, adapted, published, translated in any material form in whole or in part nor disclosed to any third party without the prior written permission of Thales Alenia Space - © 2012, Thales Alenia Space

23/05/2014

~ Characterization of the Approach

THALES ALENIA SPACE INTERNAL

Characterization of the approach

Adequacy •	 Compliance with current project life- cycle Compliance with applicable standard 	Complexity of TFPG respect to number of failure mode and discrepancy	 Number and type of outputs provided by tools Computing and elaboration time
Effectiveness •	 Which part of project life cycle are improved Time reducing 	Complexity of TFPG versus SLIM model complexity	 Scalability of the tool-suite Estimation of time spent for design
Usability •	 Technical skills required to the industrial team. Number of modifications to insert in the current industrial process 	How SLIM model generated support the design of FDIR?	 Format of outputs Graphical aspects. Level of automation

Metrics

THALES ALENIA SPACE INTERNAL

This document is not to be reproduced, modified, adapted, published, translated in any material form in whole or in part nor disclosed to any third party without the prior written permission of Thales Alenia Space - © 2012, Thales Alenia Space

FONDAZIONE BRUNO KESSLER

Space

ThalesAlenia

A Thales / Finmeccanica Company

Characterization of the approach: Process

Adequacy	 FAME process is compliant with the current project life cycle in terms of respect of phases (B,C,D)and reviews It is independent from any tools Starting point of FAME process is Mission Requirements Document that is available at the beginning of life-cycle FAME process is compliant with applicable standards
Effectiveness	 The project can benefit of FAME process in the initial phases where FDIR is not yet defined A clear definition of inputs and outputs of each activity with criteria for ach check point guarantees an optimization of time spent for each activity by avoiding to waste time and effort to accomplish premature tasks
Usability	 FAME process can be inserted easily in the current industrial process FAME process can be inserted inside the ECSS standards The use of TFPG requires a training of users in order to learn the methodology
	FONDAZION BRUNO KES

THALES ALENIA SPACE INTERNAL

This document is not to be reproduced, modified, adapted, published, translated in any material form in whole or in part nor disclosed to any third party without the prior written permission of Thales Alenia Space - © 2012, Thales Alenia Space

ThalesAlenia

A Thales / Finmeccanica Company

pace

Characterization of the approach: Methodoloy

Adequacy	 TFPG is based on the identification of failure mode and discrepancies, and transitions between discrepancies TFPG complexity depends on number of nodes and edges and by temporal constants in use Slim generated by synthesis can be analyzed by using COMPASS features as correctness.
Effectiveness	 The application of the FAME methodology to the space domain may be limited by the state-space explosion when introducing time on complex models. SLIM models used in the FAME process shall not be created from scratch, but shall be derived from existing models of the system
Usability	 The failure management is designed in an incremental way, considering small subset of failures, and taking into account the assumptions related to these failures At the end, all the results should be combined in order to generate FD and a FR modules that covers the entire set of FDIR specification for the entire set of failures in the system, and therefore taking into consideration all the TFPGs

THALES ALENIA SPACE INTERNAL

SLER

pace

ThalesAlenia

A Thales / Finmeccanica Company

Characterization of the approach: FAME Environment

Adequacy	 There is a need to set up a strong configuration management process for input and outputs files Computing and elaboration time depends on complexity of TFPG for what concerns the synthesis of detection
Effectiveness	 Scalability of the tool-suite depends on several factors (Dimension of slim model, number of observables and time constants
Usability	 TFGP respects the structure of TFPGs but not easily readable when the graph is big. TFPG format should also include the possibility to model system, subsystems and units Level of automation is good: changes on TFPG textual file are reflected in graphical view (roundtrip is good)

Output	xml	slim	tfpg	FAME Window	w	Tmin to tmax	Computing time [sec]		
TFPG	Х		Х	Х		1 to 2	40	Number of	Time[sec]
FD Synthesis		Х		х		1 to 3	50	monitored	
FR Synthesis		х		Х		1 to 4	65	Node	
Effectiveness				х		1 to 5	75	1	20
Validation						1 to 6	90	2	40
Behavoir validation				х		1 to 7	115	3	60
Fault Injections	х			х		1 to 8	992	4	94
Mission specification	х			х				5	874
Associations	Х			х					DRUNU RESSE
FDIR Specification	х			х)
					THALES	ALENIA SPACE INT	ERNAL	Thales	sAlenia

This document is not to be reproduced, modified, adapted, published, translated in any material form in whole or in part nor disclosed to any third party without the prior written permission of Thales Alenia Space - © 2012, Thales Alenia Space

pace

A Thales / Finmeccanica Compa

~ Conclusions

THALES ALENIA SPACE INTERNAL

Challenge	FAME Process	FAME environment	
Conflict between bottom-up approach and top-down approach for fault identification methods	Use of functional analysis in FDIR analysis Performing diagnosability analysis	TFPG effectiveness analysis for diagnosability	
Show quantitative benefits to support engineering trades	identification of redundancy in Define FDIR Architecture task	-	
It is necessary to better define products and processes, and process metrics	 List of checkpoints List of roles List of artifacts Rules to checking consistency of FAME process 	future extension of FAME foresees process verification using NuSMV.	
Perform adequate V&V	contract based validation	Future extension	
Write relevant, decomposable requirements	use FDIR analysis as input to Define FDIR Objectives tasks to derive FOS	-	
Improve the generation of FDIR artifacts	Perform analysis for each failure step in Define FDIR Architecture	TFPG synthesis, TFPG Effectiveness Validation and TFPG Behavioural Validation	
Difficulty to determine the propagation of failure in terms of time	Perform Timed Fault Propagation Analysis activity.	TFPG Management	FOND

Challenges for current industrial approach

THALES ALENIA SPACE INTERNAL

Thales Alenia

Conclusions (1/2)

- Functional Analysis can be used early in the process with a positive effect on the eventual FDIR maturity
- Failure propagation can be analyzed with TFPG
- **FAME** process is phased
- FAME process can be employed starting form the early system development phases, and which is able to take into account the design and RAMS data from both, Software and System perspective
- FAME process includes the corresponding V&V perspective, and puts the FDIR in the system operation and mission execution context

23/05 Motivations

ThalesAlenia

48

THALES ALENIA SPACE INTERNAL

Conclusion (1/3)

- FDIR architecture
 - Modeling of scope/context/level of authority of FDIR
 - Modeling of FDIR levels hierarchy
 - > Hierarchical TFPGs
 - Synthesis of hierarchical/decentralized FDIR
- 🛰 Hazard Analysis
- ➣ TFPG synthesis
 - Synthesis of timings and modes
- Contract-based Design and Verification of FDIR

A Thales / Finmeccanica

THALES ALENIA SPACE INTERNAL

FAME: Future Extensions

This document is not to be reproduced, modified, adapted, published, translated in any material form in whole or in part nor disclosed to any third party without the prior written permission of Thales Alenia Space - © 2012, Thales Alenia Space

23/05

49

Questions?

Marco Bozzano <u>bozzano@fbk.eu</u>

- Regis De Ferluc regis.deferluc@thalesaleniaspace.com
- Andrea Guiotto andrea.guiotto@thalesaleniaspace.com

THALES ALENIA SPACE INTERNAL

