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Subject of the activity 

 Problem to be addressed 
 

 Reduce AIT costs for temperature monitoring on 
space platforms during on-ground environmental tests 

 Improve installation flexibility and reduce payload 
mass 

 

– Huge quantity of temperature sensors installed in a medium 
size satellite, more than 500 copper-constantan 
thermocouples 

– All sensors wired to the acquisition system via hermetic feed 
through (TVAC facility limit) 

– Complexity of harnesses and assembly process 
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Subject of the activity 

 Solution proposed 
 

 Replace part of conventional wired thermocouples 
with wireless instrumentation 

 Use of RF based systems relying on SAW passive 
sensors for temperature remote monitoring 
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reader sensor 
RF signals 

Principle of operation 

- The reader/interrogator launches a RF 
signal to the sensor 

- An echo is received back with temperature 
information (back scatter from the sensor) 

- Very similar to radar operation 



Origin of the technology 
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 Spin-in from terrestrial wireless systems 
 

 Technology of SAW passive devices as remotely 
readable passive sensors 

 Initial studies appeared more than 20 years ago 
 Only in recent years practical systems have been 

designed and developed for use in terrestrial 
commercial markets 

 

Basic idea: apply the above technique for mapping 
the temperature within a spacecraft 



Innovation content 

 Novelty of the proposed solution 
 

 Temperature remote sensing based on radio 
frequency signals 
 

with 
 

 SAW passive sensor devices 
 

in the frame of 
 

 Shielded compartments with multipath fading and 
LOS/NLOS conditions of a satellite structure 
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Satellite in stowed 
configuration 



Innovation content 

 Targeted space application 
 On-ground test campaigns for space platforms, with particular 

regard to thermal vacuum tests 
 

  Then perspective for extension to space flight applications: 
 

 Structural health monitoring  
 during launch phase 
 
 In flight temperature telemetry  
 inside spacecraft compartments 
 
 In flight temperature telemetry  
 outside spacecraft structure, for  
 instance on solar panels 
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Interrogator inside with 
Antenna outside

Sensors
outside



Innovation content 

 Benefits 
 

 No wires  reduction of harnesses complexity, leading to shorter 
integration times and reduced payload mass 

 No batteries and no active circuits, simple piezoelectric device, 
no maintenance, robustness and reliability 

 Wide temperature range and insensitivity to ionising radiation 
 Flexibility in modifying an already installed configuration (adding 

of a sensor) 
 Ideally suited where access is limited or restricted and where 

providing power supply to sensors is difficult (with respect to 
active sensors) 

 Removal of wire bundles and slip-rings of rotating joints 
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 Objective 
 Demonstrate feasibility of wireless temperature 

monitoring on board of space platforms 
 Activity steps 
 definition of operational and functional requirements 
 review of RF interrogation techniques applicable to SAW passive 

sensors 
 selection of a COTS wireless system to be used 
 design and implementation of a test bed, duly scaled  
 test verification over temperature and vacuum conditions, EMC 

included 
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Work performed 



Work performed 

 Operational constraints 
 

 Typical intra satellite structure composed of multiple cavities 

 Single cavity with metal boundaries (panels), size of 1 meter order of 
magnitude, avionic equipment internally mounted (metal boxes) and MLI 
cover when needed 

 RF propagation according to LOS/NLOS and multipath fading due to 
multiple reflections  quasi-mode stirred cavity 

 EMC limits, RE and RS, versus existing satellite electronic systems 

  

9 Single panel C shaped panels 
(half deployed) 

Satellite structure with 
basic compartments  



Work performed 

 Functional requirements 
 

 Functional requirements on temperature measurement are derived from 
typical space requirements 

 

 

 

 

 
 The most common temperature range has been determined as -40 ÷ +90 °C 

 T-type Cu-Co thermocouples used as reference temperature sensors 

 Sampling time is the rate the measurement is performed (temperature is a slowly 
varying parameter) 

 Real-time availability refers to the maximum delay allowed between 
measurement time and delivery time to the acquisition system 
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Temperature range -40 ÷ +90 °C 

Temperature accuracy ±2 °C 

Resolution 0.1 °C 

Sampling time  1÷30 s 

Real-time availability 1 s 



Work performed 

 Interrogation techniques with SAW sensors 
 

 System composed of a reader and a number of sensors 

 Completely passive sensors: a substrate of piezoelectric material (Quartz or LiNbO3) 

 Technical complexity moved to the reader unit: very peculiar RF interrogation signal 

 Two functions: identification and sensing  SAW tagged-sensor 

 Anti-collision function: capability to identify and distinguish the sensors responses 

 Multiple access techniques for anti-collision: FDMA, TDMA, CDMA and combinations 

 Spectral efficiency intended as number of sensors per unit bandwidth ≈ 1÷3 MHz per sensor 

 From commercial market: systems developed only with FDMA like approach, other types 
seem to be still at laboratory level prototypes 
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Work performed 

 FDMA like interrogation 
 

 Sensor Identification    

• SAW device as a narrow band high Q 
resonator 

• Orthogonal to each other in frequency, 
i.e. different frequency bands for each 
sensor 

• SAW storage time (delay) longer than 
the duration of the decay of the 
environmental electromagnetic RF 
request echoes, 10 µs versus 10 ns over 
short distances (a few meters) 

 
  Temperature Detection 

• shift of the centre frequency of the 
resonator with a typical temperature 
coefficient of ≈ 10 kHz/°C at 430 MHz 
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Work performed 

 Selected system kits 
   

 SENSeOR (France) selected as main system for pass/fail criteria, 
deployed within the primary cavity of the test bed 

 

 Sengenuity (Germany, part of Vectron International) selected as 
auxiliary system, deployed within the secondary cavity of the test bed 
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  Frequency 
Range 
(MHz) 

N° of 
sensors 

Temp. range 
(°C) 

Temp. 
accuracy 

(°C) 
SENSeOR 430÷445 6 -40/ +90 ±2 
Sengenuity 429÷438 6 -25/+120 ±3 



Work performed 

 Spectrum of interrogation signals 
   

14 

dBm
 10

 0

-10

-20

-30

-40

-50

-60

-70

-80

-90

Senseor-Sengenuity Bandwidth
Senseor Sengenuity

Start: 420.0000 MHz Stop: 450.0000 MHz
Res BW: 100 kHz Vid BW: 300 kHz Sweep: 20.00 ms
11/12/2013 15:11:00 HP8566B

Mkr  Trace  X-Axis  Value  Notes

1

1  Sengenuity  429.1200 MHz  5.00 dBm

2

2  Senseor  430.9500 MHz -30.50 dBm

3

3  Senseor  431.7900 MHz -26.40 dBm

Sengenuity BW: ~8 MHz  

Senseor BW: ~ 13,5 MHz  
1 2 3 4 5 6 1 

2 3 4 
5 6 

Sengenuity Frequencies: 
 
Sensor 1: 429 MHz 
Sensor 2: 431 MHz 
Sensor 3: 432,2 MHz 
Sensor 4: 433,7 MHz 
Sensor 5: 435,1 MHz 
Sensor 6: 436,5 MHz 
 
 
 

Senseor Frequencies: 
 
Sensor 1: 430,9 MHz – 431,8 MHz 
Sensor 2: 433,4 MHz – 434,3 MHz 
Sensor 3: 435,9 MHz – 436,8 MHz 
Sensor 4: 438,9 MHz – 439,3 MHz 
Sensor 5: 440,9 MHz – 441,8 MHz 
Sensor 6: 443,4 MHz – 444,3 MHz 
 
 
 

Almost the whole Sengenuity 
bandwidth is covered by Senseor 
frequencies 

Only a few frequencies overlap 
with Sengenuity bandwith   



Work performed 

 Main wireless system (SENSeOR) 
 

 Based on Frequency Domain Sampling (FDS), pulsed interrogation signal 

 Interrogation mechanism very similar to RF Vector Network Analyzer swept 
frequency measurement: sweep of a frequency source with a spectral response 
narrower than that of the resonator and measure the signal amplitude 

 Sensitive to saturation effects in the receiver 

 ALC (Automatic Level Control) mode, the transmitted power level is adjusted over 
31 dB dynamic range in order to maintain a fixed and optimal level at receiver input 

 Dual resonator: differential design with opposite temperature coefficients for 
improved accuracy but two times the frequency bandwidth required 

 Dual interrogating antennas for more robustness to multiple reflections, but may 
also work with a single antenna 
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SAW sensor within the package 
(5 x 5 mm, without antenna) 

echoes 

Interrogation: pulsed RF signal 

Operation frequency in the UHF band 



Work performed 

 Main wireless system (SENSeOR) 
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Wireless 
Sensors 

Reader 

Interrogation antennas 



Work performed 

 Auxiliary wireless system (Sengenuity) 
 

 Based on Time Domain Sampling (TDS), pulsed interrogation signal 

 Double heterodyne down-conversion is employed in reception with in-phase and 
quadrature sample streams at baseband 

 Low sensitivity to saturation effects in the receiver 

 Fixed transmitted power level, adjustable by software interface 

 Single resonator design for the sensors 

 Single interrogating antenna 
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ECM TCU 

PALAMEDE 

BASEPLATE 
ADAPTER 

TVAC CHAMBER 

Work performed 
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 Test bed design 
 

 The Test Bed simulates the 
operational constraints related to RF 
propagation: 1 meter size cavity with 
metal walls and with metal boxes 
(equipment) internally mounted, 
vacuum conditions over temperature 
range 

 Palamede microsatellite has been 
employed (by courtesy of Politecnico 
di Milano) 

 The TVAC chamber boundaries 
represent the primary satellite cavity 
with SENSeOR system deployed 

 Palamede is the secondary cavity 
with Sengenuity system  installed 

 

 

 

  

 The dual cavity allows verification of 
Space Division Multiple Access (SDMA), 
main and auxiliary systems share 
common frequencies  frequency reuse 

 MLI cover sheets are not used 

 

 

  



Work performed 
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 Test bed implementation 
 Selex ES thermal vacuum chambers test 

facility 

 The reader units of the wireless systems 
are placed outside the chamber and 
connected to the internal interrogation 
antennas via hermetic coaxial feed 
through 

 PC’s are used for interfacing the readers 

 

 

  
Reader units 

Hermetic 
coaxial feed 
through 



Work performed 
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 Test bed implementation - primary cavity 
  

View of open chamber 

Interrogating Antennas 

Wireless Sensor 

Palamede case 
(secondary cavity) 

 SENSeOR: main wireless 
system with 6 sensors 

 Injection antenna used to test 
system susceptibility against 
interference RF noise (as 
verification of EMC tests in 
anechoic chamber) 

 

  
Injection antenna 

(ground-plane wire 
antenna) 



Work performed 
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 Test bed implementation - primary cavity 
  

Injection antenna 
(tuned at a slightly higher frequency) 

 Antennas return loss, measured with closed chamber  
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Senseor system antennas 

The antenna operates as a probe, 
gain and directivity are not 
relevant, but only coupling to the 
cavity 

 

  



Work performed 
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 Test bed implementation - secondary cavity 

Electronic box 
without case 

Interrogation antenna in Palamede 
case: ground plane wire antenna 

with SMA connector 
  

Palamede 
Electronic box    

Electronic box 
top view 

 Sengenuity: auxiliary  
wireless system with 6 
sensors 

  

Wireless Sensor 



Work performed 
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 Mode Stirred cavity 
 Cavity size (1÷3 meters) > RF signal wavelength, λ ~ 70 cm at 430 MHz 
 Quasi-mode stirred behaviour 
 Field distribution as a result of multiple reverberation effects 
 About 10 dB Electric Field amplitude variation has been measured from point to 

point within the primary cavity 

 Isolation between cavities (at 430 MHz) 
 30 dB isolation measured with harness deployed between the two cavities 
 50 dB isolation measured with harness removed 

 MLI 
 10 layers lay-up with double side aluminized, 6 μm polyester film interleaved 

with 10 layers polyester non-woven spacer. External Al layer with thickness of 
250 Å 

 From laboratory tests, MLI sheets seem to heavily attenuate the RF signal at 
UHF frequencies despite the penetration depth is much higher than aluminium 
metal thickness (to be further verified) 

 Acceptable attenuation only with a single or dual Al layer 
 Not used in the test bed 

 

 

  



Work performed 

 Wireless sensing setup and calibration 
 
 Deployment of sensors within the compartment 

 Interrogation antenna is integrated with the panel structure 

 System calibration is performed at reference temperature, 
typically at ambient temperature 

 Electromagnetic conditions have to remain stable after system 
calibration 
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Work performed 
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 Link budget – SENSeOR system 
 

  Implemented EM configurations for the interrogating antennas 
 Dual antenna nominal (the two antennas from SENSeOR, Ant1 and Ant2) 

 Dual antenna modified (SENSeOR antenna 2 with a wire antenna, laboratory 
made, i.e injection antenna) 

 Single 1 (SENSeOR) 

 Single 2 (SENSeOR) 

 

 

  

Ant2 Ant1 

Injection 



Work performed 
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 Link budget – SENSeOR system 

Data extracted  from system  internal monitors  

31 dB Tx dynamic range (0-31) 

0    -21 dBm 

31  +10 dBm 

 Tx power level during operation 
over a temperature cycle 

 Each sensor has two resonators 

  two power curves 

 Tx power decreases at low 
temperature 

 It is expected that SAW insertion 
losses are lower at low 
temperature 

 Link budget limits are respected 
over any of the four implemented 
configurations for the 
interrogating antennas 

 

 

  

High temp 

Low temp 

RF power 

Time (temperature) 



Results and tests 
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 Temperature tests under vacuum conditions 
 

 Each wireless sensor is equipped with a reference thermocouple for 
comparison purpose, measurements done with 1 second sampling time 

 Time synchronization between wireless systems and recorders of 
thermocouples 

 Multiple Temperature cycles 
are performed 

 +20/+90 deg C 

 -40/+80 deg C 

 -40/+90 deg C 

 Under different EM conditions, 
depending upon the 
configuration of the 
interrogating antennas 

 

  



Results and tests 
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 Temperature cycles - SENSeOR 
 



Results and tests 
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 Temperature cycles – SENSeOR 
 
 Some bugs in the firmware of the reader were detected and fixed 

 Firmware was upgraded during the test campaign 

 During temperature cycle with Palamede in on condition, Palamede spurious 
emission has induced noise on temperature reading 

 The spurious level was verified to be comparable with system susceptibility as 
observed during EMC test (a few mV/m Electric Field at 433 MHz, harmonic 
frequency of  internal CPU clock) 

 

  



Results and tests 
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 Temperature tests results: accuracy analysis 
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Temperature measurement & accuracy

wireless

thermocouple

accuracy

 Typical sensor measurement together 
with  reference thermocouple as 
acquired over a temperature cycle 

 Sensor and thermocouple overlap with 
the accuracy indicated by the green 
curve, accuracy being the difference 
between sensor and thermocouple 
temperatures 

 It is clearly noted the effect of the 
thermal time constant of the commercial 
sensor package, observed as a delay 
versus thermocouple reading during 
thermal transitions 

 The sensor outline has to be newly 
designed for the intended application 

 Accuracy of ±2°C is generally 
achieved 

 

  



Results and tests 
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 EMC test 
 Radiated Emissions test 

 
 
 

 
  Radiated Susceptibility test 

 
 

 Emissions measured at 1 meter distance from 
interrogation antennas, with +10 dBm RF output 
power 

 No sensors installed  ALC forced to maximum 
power 

   

  
 Susceptibility verified with 

sensors deployed on copper 
test bench along with 
interrogation antennas, the 
latter at 1 meter distance from 
test facility antenna 

 

  



Results and tests 
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 EMC test results 
RE System 

emissions 
Satellite susceptibility 

requirement 
(equipment level) 

Remarks 

  95 dBμV/m 126 dBμV/m (2 V/m) OK 

        
RS System susceptibility 

threshold 
(20 dB margin) 

Satellite emissions 
requirement 

(equipment level) 

Remarks 

  46 dBμV/m 60 dBμV/m 14 dB notching, 
seems feasible 

 Emission levels at 430 MHz, 2nd harmonic is 20 dB lower 

 No concern for the system emissions with +10 dBm Tx RF power 

 Regarding radiated susceptibility, 14 dB notching on the current requirement 
for satellite noise emissions is recommended in the wireless system 
operating frequency range, where 30 dBμV/m is typical measured emission 

 

 

  



Further developments 
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Recommended developments 
 Optimization of sensor packaging design and antennas, including 

the interrogation one for best fitting into the described space 
application, starting  from existing commercial systems 

Applications  
 On-ground test campaigns for space platforms, in particular thermal 

vacuum tests 

 Health structural monitoring during the launch phase 

 Thermal mapping of spacecraft for in-flight operation 
 inside the spacecraft structure 

 outside it, for instance on photovoltaic assemblies 

Spin-offs  
 rotating parts of aircraft engines 

 rotary wings of helicopters 

  



Extension to space flight use 

Full engineering of on-ground test 
systems 

Evolution to a wireless sensors network 

Passive Sensors engineering 

COTS Wireless Passive 
Sensors 

34 

Developments roadmap 
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