
© GMV, 2014 Property of GMV

All rights reserved

MultIMA
Multi-core in Integrated
Modular Avionics

© GMV, 2014 Final Presentation Days 2014 21-05-2014

STUDY LOGIC

 GTSP-AO activity / TO – Martin Hiller

 KO - December 2012 / AR – May 2014

Page 2

© GMV, 2014 Final Presentation Days 2014 21-05-2014

PROJECT GOALS

 To establish the feasibility of running an IMA system in parallel
on different cores;

 To create multi-core versions of the AIR operating system and
of the SIMA simulator;

 To determine and demonstrate the best mapping between the
IMA-SP architecture and multiple cores, with the aim to address
architectural problems of IMA-SP and multi-core.

Page 3

© GMV, 2014 Final Presentation Days 2014 21-05-2014

STUDY LOGIC

 GTSP-AO activity / TO – Martin Hiller

 KO - December 2012 / AR – May 2014

Page 4

© GMV, 2014 Final Presentation Days 2014 21-05-2014

OUTLINE

 MultIMA Activity

 IMA, SIMA & AIR

 Multi-Core

Motivation and Issues

 Design and Implementation

Common
SIMA
AIR

 Tests, Benchmarks and Demonstrator

 Conclusion

Page 5

© GMV, 2014 Property of GMV

All rights reserved

IMA, SIMA & AIR

© GMV, 2014 Final Presentation Days 2014 21-05-2014

INTEGRATED MODULAR AVIONICS

 Enables multiple unrelated applications, with different
criticalities, to share the same computing platform without
interference;

 Based on Robust Partitioning – Time, Space and I/O
segregation:

TDM partition schedule
Memory areas with strict access rights

Page 7

© GMV, 2014 Final Presentation Days 2014 21-05-2014

SIMA

 Simulation of Integrated Modular Avionics;

 Origin: ESA AMOBA project – ARINC 653 Simulator for Modular
Space Based Applications;

 Functional simulation of ARINC 653 – Application Executive
(APEX);

 Assessment of ARINC 653 transposition to the Space domain;

 Support application development and training;

Page 8

© GMV, 2014 Final Presentation Days 2014 21-05-2014

SIMA

 Designed to address portability across operating systems
supporting POSIX;

 Shield applications from POSIX implementation specificities;

 Share configuration format with ARINC 653 operating systems;

 Isolate specific configuration into another file.

Page 9

© GMV, 2014 Final Presentation Days 2014 21-05-2014

SIMA

 Each SIMA partition is comprised by a process;

 The SIMA Module Operating System is another process;

 The partition scheduling is accomplished through signals
exchanged between those two processes;

Page 10

© GMV, 2014 Final Presentation Days 2014 21-05-2014

SIMA PARTITION

 Different software modules implementing APEX services;

 Process scheduler supports processes queues visibility for
users;

 A SIMA partition can be executed in standalone mode;

With inter partition communication;
No MMS;
No HM;

Page 11

© GMV, 2014 Final Presentation Days 2014 21-05-2014

SIMA MOS

 Manages system state and module configuration data;

 Controls the module schedule (SET_MODULE_SCHEDULE);

 Controls partitions execution;

 Host the Health Monitor;

Page 12

© GMV, 2014 Final Presentation Days 2014 21-05-2014

AIR

 AIR is a full fledged real-time
operating system that
guarantees time and space
partitioning

 AIR hardware abstraction
layer is rooted in RTEMS

 Currently TRL 5

 AIR results from several
research and development
efforts made in cooperation
with ESA

 Executes in SPARC/Leon
2/3/4

 AIR is open source (GPL v2
with linking exception) –
RTEMS license

Page 13

REAL-TIME HYPERVISOR
COMPLIANT WITH
ARINC 653 and IMA-SP

© GMV, 2014 Final Presentation Days 2014 21-05-2014

AIR ARCHITECTURE OVERVIEW

 Modular Design:

 PMK
HAL
 PAL

 Partition Management Kernel
(PMK) is designed using a
microvisor architecture;

 PAL is a generic abstraction
layer to which the Partition
operating system attaches
to;

 “System” Partitions:

Higher Privileges

 Page 14

© GMV, 2014 Final Presentation Days 2014 21-05-2014

AIR ARCHITECTURE OVERVIEW II

 Space partitioning

Uses MMU;
Reduces the number of MMU pages used for each partition (ideally

only one) to ease WCET analysis;
Uses virtual addresses to guarantee partition independence;

 Time Partitioning

Based on a monotonic timer;
Partitions can set and use other timers through a specific API;
“Big” system calls are preemptable to reduce the effects of the

partitioning kernel presence on the partitions;

Page 15

© GMV, 2014 Final Presentation Days 2014 21-05-2014

AIR FEATURES

 Supported “personalities”:

ARINC 653 APEX (P1, P2)
IMA-SP
RTEMS (-impr, -4.x)
Bare C Executive

 AIR provides ARINC 653 compatible:

Inter-partition communication: queuing and sampling ports;
Health Monitoring (HM);
Multiple Module Schedules (MMS);

Page 16

© GMV, 2014 Final Presentation Days 2014 21-05-2014

AIR TOOLCHAIN

 Kernel is small and simple;

 The intelligence is in configuration tools;

 Tool chain is hence complex;

 Starting point is an ARINC 653
XML specifically tailored for AIR;

 It defines:

Partition attributes (e.g. FPU use);
Scheduling;
I/O device allocation

Page 17

A653 Config

AIR User application Python GNU Standard
Definition

POSPMK P*ports.c

Modelling

usr_partitions.c

usr_schedules.c

Makefile

make
ld

gcc

*.c

*.c

*.c

apex.a

airimage.exe

usr_rtemsconfig.c

usr_syscall.c

configurator

usr_callbacks.c usr_hm.c

usr_init.c

usr_plugins.c

P*init.c

linkcmds

Partitions
Makefile

P*kthread.c

© GMV, 2014 Property of GMV

All rights reserved

MULTI-CORE

© GMV, 2014 Final Presentation Days 2014 21-05-2014

MULTI-CORE AND REAL-TIME

Page 19

© GMV, 2014 Final Presentation Days 2014 21-05-2014

MOTIVATION FOR MULTI-CORE

 Address the Memory/ILP/Power wall hit by single-core
processors;

 Enables the integration of onboard systems that were, up to
now, split in multiple computational units;

 Enables development of more autonomous and sophisticated
missions by exploring the increased processing power provided
by multi-core. E.g.

Multi-core for payload processing: use case from the Euclid mission
(ADCSS 2011)

GNC application cases needing multi-core processors (ADCSS 2011)

Page 20

© GMV, 2014 Final Presentation Days 2014 21-05-2014

ISSUES WITH MULTI-CORE

 Most software components are inherently sequential and, thus,
not prone to parallelization;

 Parallelization of software artefacts creates complexities at
software design level (requirements concerning
synchronization, deadlock and starvation avoidance, etc.) that
are difficult to address;

 Shared resources open channels of interference that can have a
huge impact on the software behavior and can break the
independence between different software modules (key point in
the IMA concept).

Page 21

© GMV, 2014 Final Presentation Days 2014 21-05-2014

IMA AND MULTI-CORE SYNERGIES

 IMA can potentiate the greater level of integration promoted by
multi-core architectures:

Without partitioning, integrating a high number of components can
become prohibitively complex;

 TSP can help manage the additional complexity brought by
multi-core operating systems;

 Ease the transposition of application from single-core to multi-
core platforms;

Page 22

© GMV, 2014 Property of GMV

All rights reserved

DESIGN

© GMV, 2014 Final Presentation Days 2014 21-05-2014

SOFTWARE MAPPING

 AMP SMP

Page 24

 Supervised AMP

© GMV, 2014 Final Presentation Days 2014 21-05-2014

IMA SCHEDULING

 The most direct way to handle scheduling is to extend ARINC
653 partition scheduling to multiple cores;

 Different partitions run concurrently in different cores;

 Partitions don’t see a multi-core platform:

Partition operating system doesn’t need to be multi-core aware;
Applications don’t require parallelization;

Page 25

© GMV, 2014 Final Presentation Days 2014 21-05-2014

IMA SCHEDULING - II

 Concurrently executing partitions create interference, therefore
breaking independence;

 Need to manage interference for Hard Real-time partitions;

 Solution: run HRT partitions isolated;

 Disadvantage: Decreases CPU utilization;

Page 26

© GMV, 2014 Final Presentation Days 2014 21-05-2014

IMA SCHEDULING - III

 Some applications are parallelizable and therefore require
access to more than one-core:

Page 27

© GMV, 2014 Final Presentation Days 2014 21-05-2014

MULTICORE CONFIGURATION

<Partition_Schedule PartitionIdentifier="10" PartitionName="p0"
 PeriodSeconds="2.000" PeriodDurationSeconds="2.000">
 <Window_Schedule WindowIdentifier="101" WindowStartSeconds="0.0"
 WindowDurationSeconds="0.500" PartitionPeriodStart="true" />
 <Window_Schedule WindowIdentifier="102" WindowStartSeconds="0.5"
 WindowDurationSeconds="0.500" PartitionPeriodStart="false" />
 <Window_Schedule WindowIdentifier="103" WindowStartSeconds="1.0"
 WindowDurationSeconds="0.500" PartitionPeriodStart="false" />
 <WinExt xmlns="Window_Sched_Ext" WindowIdentifier="101" Cores="0" />
 <WinExt xmlns="Window_Sched_Ext" WindowIdentifier="102" Cores="1" />
 <WinExt xmlns="Window_Sched_Ext" WindowIdentifier="103" Cores=“2;3" />
</Partition_Schedule>

XML Multi-Core Configuration

Page 28

© GMV, 2014 Property of GMV

All rights reserved

SIMA MULTI-CORE

© GMV, 2014 Final Presentation Days 2014 21-05-2014

MULTICORE SIMA

 MOS/SEP Executive hosts a set of four core schedulers within
the partition scheduler module;

 MOS uses Linux timers for controlling partitions schedule;

 Core schedulers are synchronized by barriers;

 Configuration manager and system state modules were also
modified to acknowledge multicore aspects;

Page 31

© GMV, 2014 Final Presentation Days 2014 21-05-2014

MULTICORE SIMA

 Configuration Manager:

 Addresses cores schedulers and the mapping of cores to the
host available cores;

Map the partition schedules to each core;
 Verifies the partitions permissions for changing the module

schedule and setting partitions operating modes;

Page 32

© GMV, 2014 Final Presentation Days 2014 21-05-2014

MULTICORE SIMA

 Partition Scheduler:

 Starts and stops core schedulers;
 Initializes, destroys and reinitializes the barriers synchronizing

partitions schedulers (according to the module schedules);
Consolidate the partial system state based on its own set of

partitions;

Page 33

© GMV, 2014 Final Presentation Days 2014 21-05-2014

MULTICORE SIMA

 System State:

Consolidate the system state based on core schedulers states;
Determine the Health Monitor response action;

Page 34

© GMV, 2014 Property of GMV

All rights reserved

AIR MULTI-CORE

© GMV, 2014 Final Presentation Days 2014 21-05-2014

AIR TARGET

 NGMP – Next Generation Microprocessor

 Quad-Core LEON 4

Page 36

© GMV, 2014 Final Presentation Days 2014 21-05-2014

FIRST STEP: MAKE IT RUN!

 NGMP has a different hierarchical AMBA structure;

Our AMBA scanning functions required adaptation to support it.

 NGMP contains several “new” peripherals, that weren’t
completely supported by AIR:

L2Cache;
IOMMU;
IRQASMP.

Page 37

© GMV, 2014 Final Presentation Days 2014 21-05-2014

L2 CACHE

 256 Kb, 4 Ways;

 Several possible configurations and replacement policies:

LRU;
LRR;
Partitioned;
Write Through;
Copy Back;

 New hardware abstraction interface for AIR;

 Default Configuration for AIR:

Partitioned with write through write policy.

Page 38

© GMV, 2014 Final Presentation Days 2014 21-05-2014

IOMMU

 IOMMU stands between DMA capable I/O devices and main
memory; It mediates DMA transfers from I/O devices.

 Several possible configurations:

With memory translation and memory protection;
Only with memory protection;
Variable granularity (page size)

 Default configuration for AIR:

Access protection vector (memory protection only) with configurable
page size;

 Devices are allocated as part of the configuration to partitions;

Allocated devices are able to access the partition memory space;
Partition can refine the accessible memory area.

Page 39

© GMV, 2014 Final Presentation Days 2014 21-05-2014

INITIALIZATION

 Initialization is mainly sequential;

A single core (core 0) is used to handle the bulk of the initialization;

 New peripherals are initialized:

L2 Cache;
IOMMU;

 If included in the schedule, secondary cores are initialized:

The initialization routine prepares the CPU registers and sets up an
initial MMU context;

The secondary cores signal the end of their initialization and enter
the idle mode;

Initialization routine in core 0 waits for the other cores;
Cores are awaken when the MTF starts through a Inter-processor

interrupt.

Page 40

© GMV, 2014 Final Presentation Days 2014 21-05-2014

NEW INTERNAL PRIMITIVES

 Classical Spin lock

 Mellor-Crummey and Scott (MCS) spin lock

 Phase-Fair Read-Write lock

Used on the ARINC 653 ports

 Synchronization Barriers

Sense-reversing centralized barriers

Page 41

© GMV, 2014 Final Presentation Days 2014 21-05-2014

SCHEDULING

 AIR’s partition scheduler was extended to support multiple
cores;

 A timer interrupt is used to drive the partition scheduler;

 When a context switch is necessary in another core, the core
that received the timer interrupt sends a inter-processor
interrupt;

 Several synchronization points
are required:

Partition migrating core;
MTF end;
MMS change;
End of SMP interrupt;

Page 42

© GMV, 2014 Final Presentation Days 2014 21-05-2014

MULTI-CORE PARTITIONS: VIRTUAL CPU

 Virtual CPU concept extended to support several vCPUs per
partition;

 Each vCPU contains the status of virtualized registers that are
different for each core and partition;

 vCPU are accessed through system calls;

 Their values are filtered and
written to the real hardware
registers

Page 43

© GMV, 2014 Final Presentation Days 2014 21-05-2014

MULTI-CORE PARTITIONS: INTERFACE

 A new set of system calls was defined that enables the same
operations over virtual CPUs that could be done over hardware
cores in SPARC:

 A partition may:

Boot a secondary virtual CPU
Send an Inter processor interrupt to a virtual CPU
Broadcast an Inter-processor interrupt to all virtual CPUs

Page 44

© GMV, 2014 Property of GMV

All rights reserved

TESTS AND
BENCHMARKS

© GMV, 2014 Final Presentation Days 2014 21-05-2014

AIR AND SIMA TEST RESULTS

AIR SIMA

Page 46

62%
21%

15%

2%

 Covered through tests

Covered through inspection

Covered through fulfillment of child
requirements
Related features not implemented

Execution Statistics
Tests Ran: 133/139

Tests Passed: 133/133
Success Rate: 100%
Elapsed time: ~24 mins

81%

15%

4%
covered through test

covered through
inspection

covered through
fulfilment of child
requirements

Execution Statistics
Tests Ran: 53/53

Tests Passed: 53/53
Success Rate: 100%
Elapsed time: ~8 mins

© GMV, 2014 Final Presentation Days 2014 21-05-2014

DEMONSTRATOR

Page 47

© GMV, 2014 Final Presentation Days 2014 21-05-2014

MULTICORE DEMONSTRATOR

 Demonstrator is based on an image processing application

 Independent set of partitions

 Two scheduling configurations:

 AMP Scheduling
 SMP Scheduling

 I/O communication with a ground console

Page 48

© GMV, 2014 Final Presentation Days 2014 21-05-2014

DEMONSTRATOR
SCHEDULE CONFIGURATIONS

AMP Schedule

SMP Schedule

Page 49

© GMV, 2014 Final Presentation Days 2014 21-05-2014

DEMONSTRATOR RESULTS

0

5

10

15

20

25

30

1 2 3 4

P
ro

ce
ss

in
g

 t
im

e

(s

)

Number of cores

Processing time V.S. Number of cores

Page 50

© GMV, 2014 Final Presentation Days 2014 21-05-2014

BENCHMARKS

Page 51

© GMV, 2014 Final Presentation Days 2014 21-05-2014

COREMARK

 Bare RTEMS Result

 AIR Multi-core for variable number of cores:

 With variable window size:

Page 52

Execution Time Iterations per second CoreMark

12.07 166 1.105

Number Cores Execution Time Iterations per second CoreMark
Performance

Gain

1 12.280 163 1.086 -1.71%

2 10.0100 200 1.332 20.58%

3 9.9000 202 1.345 21.80%

Window Slot Execution Time Iterations per second CoreMark
Performance

Loss

30 s 12.220 164 1.091 1.23%

1 s 12.240 163 1.089 1.38%

0.5 s 12.240 163 1.088 1.39%

0.1 s 12.280 163 1.086 1.71%

0.01 s 12.450 161 1.074 2.77%

© GMV, 2014 Final Presentation Days 2014 21-05-2014

CLOCK TICK OPTIMIZATION

Page 53

0

100

200

300

400

500

600

700

800

900

1 2 3 4

T
im

e
 (

u
s)

Number of cores

Clock Tick ISR

Before optimizations "After optimizations"

© GMV, 2014 Final Presentation Days 2014 21-05-2014

BENCHMARKS – PORTS

Page 54

© GMV, 2014 Property of GMV

All rights reserved

CONCLUSION

© GMV, 2014 Final Presentation Days 2014 21-05-2014

CONCLUSION

 We were able to successfully develop and demonstrate a multi-
core operating system and simulator;

 IMA and Multi-core are two technologies that should be
exploited in tandem due to their positive synergies;

 It is possible to mitigate some multi-core issues with the choice
of system configuration;

 Inter-core interference exists; it breaks application
independence;

 Interference must be:

Addressed immediately since the processor development stages (e.g.
T-CREST and MERASA projects);

Considered and characterized through new WCET estimation
methodologies (e.g. probabilistic WCET - Proartis);

Page 56

© GMV, 2014 Final Presentation Days 2014 21-05-2014

CONCLUSION

 Developing software for multi-core is more complex than for
single-core:

Simply put: bugs become worse, software becomes less intuitive
There is a more pressing need for characterizing software;
Tooling support is key;

 Complexity should be managed with a raise in the abstraction
level:

Use high level programing languages or libraries that enforce
concurrency patterns (e.g. Go-lang, MPI, etc);

 ESA should monitor and govern external research efforts from
domains with similar predictability requirements;

Page 57

© GMV, 2014 Property of GMV

All rights reserved

Thank You

www.gmv.com

Cláudio Silva
claudio.silva@gmv.com

Av. D. João II, Lote 1.17.02
Torre Fernão Magalhães, 7º
1998-025 Lisboa
Portugal

Tel. +351 21 382 93 66
Fax +351 21 386 64 93

© GMV, 2014 Final Presentation Days 2014 21-05-2014

ADOPTION IN OTHER
DOMAINS

Multi-core

Page 59

© GMV, 2014 Final Presentation Days 2014 21-05-2014

AUTOSAR MULTI-CORE

 SMP configurations only with tasks scheduled statically to a
core;

 One main core is defined – system support services run on that
core;

 Inter-core communication through shared memory;

 Mutual exclusion through spin locks with the multiprocessor
priority ceiling protocol;

Page 60

© GMV, 2014 Final Presentation Days 2014 21-05-2014

AERONAUTICS

 ARINC 653 will include a multi-core supplement in part 5:

Very political discussion underway…
Several competing implementations from different OS providers

(VxWorks, DEOS, Integrity);

 EASA is suggesting some guidelines regarding multi-core
processors:

Currently only considering dual-core processors;
Integration of software from different systems not permitted,

therefore ensuring that erroneous behavior of any of the hosted
applications is contained within that one system.

Page 61

© GMV, 2014 Final Presentation Days 2014 21-05-2014

R&D PROJECTS
Multi-core

Page 62

© GMV, 2014 Final Presentation Days 2014 21-05-2014

MERASA & PARMERASA (FP7)

 New multi-core processor designs for hard real-time embedded
systems to guarantee analyzability and predictability;

 Creates the concept of hard real-time (HRT) and non-hard real-
time (NHRT) threads in hardware;

 The HRT thread is completely isolated from the other NHRT
threads running in the same core and is prioritized;

Page 63

© GMV, 2014 Final Presentation Days 2014 21-05-2014

T-CREST

 Objective is to create a multi-processor system-on-chip (SoC)
architecture designed since its inception to fully time-
predictable;

 Explores WCET-aware compilation, local memory, core-to-core
communication, stack caches, etc

Page 64

© GMV, 2014 Final Presentation Days 2014 21-05-2014

PROARTIS & PROXIMA (FP7)

 These projects introduce probabilistically time analyzable (PTA)
techniques for multicore platforms;

 Treat the system as a statistical system that has timing
behavior that forms a statistical distribution;

 Hardware architecture needs to be randomized (Random
caches policy, etc)

Page 65

	Slide Number 1
	Study Logic
	Project goals
	Study Logic
	OUTLINe
	Slide Number 6
	Integrated Modular AVIONICS
	SIMA
	SIMA
	SIMA
	SIMA partition
	sima mos
	AIR
	AIR Architecture Overview
	AIR Architecture overview II
	AIR fEATURES
	AIR TOOLCHAIn
	Slide Number 18
	MULTI-CORE AND real-time
	Motivation for Multi-core
	ISSUES with Multi-Core
	IMA and MULTI-CORE SYNERGIES
	Slide Number 23
	Software MAPPING
	IMA SCHEDULING
	IMA SCHEDULING - iI
	IMA SCHEDULING - iII
	Multicore configuration
	Slide Number 29
	multicore sima
	multicore sima
	multicore sima
	multicore sima
	Slide Number 35
	AIR Target
	First STEP: Make it run!
	L2 Cache
	IOMMU
	INITIALIZATION
	New Internal PRIMITIVES
	Scheduling
	Multi-core partitions: Virtual CPU
	Multi-core partitions: Interface
	Slide Number 45
	AIR and SIMA Test Results
	DEMONSTRATOR
	multicore Demonstrator
	Demonstrator �schedule configurations
	Demonstrator Results
	Benchmarks
	Coremark
	Clock Tick Optimization
	BenchMarks – Ports
	Slide Number 55
	CONCLUSION
	CONCLUSION
	Slide Number 58
	ADOPTION IN OTHER DOMAINS�
	AUTOSAR Multi-CORE
	AERONAUTICS
	R&D Projects
	MERASA & PARMERASA (FP7)
	T-CREST
	PROARTIS & PROXIMA (FP7)

