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PROJECT GOALS 

 To establish the feasibility of running an IMA system in parallel 
on different cores; 

 To create multi-core versions of the AIR operating system and 
of the SIMA simulator; 

 To determine and demonstrate the best mapping between the 
IMA-SP architecture and multiple cores, with the aim to address 
architectural problems of IMA-SP and multi-core. 
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STUDY LOGIC 

 GTSP-AO activity / TO – Martin Hiller 
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OUTLINE 

 MultIMA Activity 

 IMA, SIMA & AIR 

 Multi-Core 

Motivation and Issues 

 Design and Implementation 

Common 
SIMA 
AIR 

 Tests, Benchmarks and Demonstrator 

 Conclusion 
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INTEGRATED MODULAR AVIONICS 

 Enables multiple unrelated applications, with different 
criticalities, to share the same computing platform without 
interference; 

 Based on Robust Partitioning – Time, Space and I/O 
segregation: 

TDM partition schedule 
Memory areas with strict access rights 
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SIMA 

 

 

 

 

 Simulation of Integrated Modular Avionics; 

 Origin: ESA AMOBA project – ARINC 653 Simulator for Modular 
Space Based Applications; 

 Functional simulation of ARINC 653 – Application Executive 
(APEX); 

 Assessment of ARINC 653 transposition to the Space domain; 

 Support application development and training; 
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SIMA 

 Designed to address portability across operating systems 
supporting POSIX; 

 Shield applications from POSIX implementation specificities; 

 Share configuration format with ARINC 653 operating systems; 

 Isolate specific configuration into another file. 
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SIMA 

 Each SIMA partition is comprised by a process; 

 The SIMA Module Operating System is another process; 

 The partition scheduling is accomplished through signals 
exchanged between those two processes; 
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SIMA PARTITION 

 Different software modules implementing APEX services; 

 Process scheduler supports processes queues visibility for 
users; 

 A SIMA partition can be executed in standalone mode; 

With inter partition communication; 
No MMS; 
No HM; 
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SIMA MOS 

 Manages system state and module configuration data; 

 Controls the module schedule (SET_MODULE_SCHEDULE); 

 Controls partitions execution; 

 Host the Health Monitor; 
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AIR 

 AIR is a full fledged real-time 
operating system that 
guarantees time and space 
partitioning 

 AIR hardware abstraction 
layer is rooted in RTEMS  

 Currently TRL 5 

 

 AIR results from several 
research and development 
efforts made in cooperation 
with ESA 

 Executes in SPARC/Leon 
2/3/4 

 AIR is open source (GPL v2 
with linking exception) – 
RTEMS license 
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AIR ARCHITECTURE OVERVIEW 

 Modular Design: 

 PMK 
HAL 
 PAL 

 Partition Management Kernel 
(PMK) is designed using a 
microvisor architecture; 

 PAL is a generic abstraction 
layer to which the Partition 
operating system attaches 
to; 

 “System” Partitions: 

Higher Privileges 
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AIR ARCHITECTURE OVERVIEW II 

 Space partitioning 

Uses MMU; 
Reduces the number of MMU pages used for each partition (ideally 

only one) to ease WCET analysis; 
Uses virtual addresses to guarantee partition independence; 

 

 Time Partitioning 

Based on a monotonic timer; 
Partitions can set and use other timers through a specific API; 
“Big” system calls are preemptable to reduce the effects of the 

partitioning kernel presence on the partitions; 
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AIR FEATURES 

 Supported “personalities”: 

ARINC 653 APEX (P1, P2) 
IMA-SP 
RTEMS (-impr, -4.x) 
Bare C Executive 

 AIR provides ARINC 653 compatible: 

Inter-partition communication: queuing and sampling ports; 
Health Monitoring (HM); 
Multiple Module Schedules (MMS); 
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AIR TOOLCHAIN 

 Kernel is small and simple; 

 The intelligence is in configuration tools; 

 Tool chain is hence complex; 

 Starting point is an ARINC 653  
XML specifically tailored for AIR; 

 It defines: 

Partition attributes (e.g. FPU use); 
Scheduling; 
I/O device allocation 
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A653 Config

AIR User application Python GNU Standard 
Definition

POSPMK P*ports.c

Modelling

usr_partitions.c

usr_schedules.c

Makefile

make
ld

gcc

*.c

*.c

*.c

apex.a

airimage.exe

usr_rtemsconfig.c

usr_syscall.c

configurator

usr_callbacks.c usr_hm.c

usr_init.c

usr_plugins.c

P*init.c

linkcmds

Partitions
Makefile

P*kthread.c
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MULTI-CORE AND REAL-TIME 
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MOTIVATION FOR MULTI-CORE 

 Address the Memory/ILP/Power wall hit by single-core 
processors; 

 Enables the integration of onboard systems that were, up to 
now, split in multiple computational units; 

 Enables development of more autonomous and sophisticated 
missions by exploring the increased processing power provided 
by multi-core. E.g. 

Multi-core for payload processing: use case from the Euclid mission 
(ADCSS 2011) 

GNC application cases needing multi-core processors (ADCSS 2011) 
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ISSUES WITH MULTI-CORE 

 Most software components are inherently sequential and, thus, 
not prone to parallelization; 

 Parallelization of software artefacts creates complexities at 
software design level (requirements concerning 
synchronization, deadlock and starvation avoidance, etc.) that 
are difficult to address; 

 Shared resources open channels of interference that can have a 
huge impact on the software behavior and can break the 
independence between different software modules (key point in 
the IMA concept). 
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IMA AND MULTI-CORE SYNERGIES 

 IMA can potentiate the greater level of integration promoted by 
multi-core architectures: 

Without partitioning, integrating a high number of components can 
become prohibitively complex; 

 TSP can help manage the additional complexity brought by 
multi-core operating systems; 

 Ease the transposition of application from single-core to multi-
core platforms; 
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SOFTWARE MAPPING 

 AMP  SMP 
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IMA SCHEDULING 

 The most direct way to handle scheduling is to extend ARINC 
653 partition scheduling to multiple cores; 

 Different partitions run concurrently in different cores; 

 Partitions don’t see a multi-core platform: 

Partition operating system doesn’t need to be multi-core aware; 
Applications don’t require parallelization; 
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IMA SCHEDULING - II 

 Concurrently executing partitions create interference, therefore 
breaking independence; 

 Need to manage interference for Hard Real-time partitions; 

 Solution: run HRT partitions isolated; 

 

 

 

 

 Disadvantage: Decreases CPU utilization; 
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IMA SCHEDULING - III 

 Some applications are parallelizable and therefore require 
access to more than one-core: 
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MULTICORE CONFIGURATION 

<Partition_Schedule PartitionIdentifier="10" PartitionName="p0" 
    PeriodSeconds="2.000" PeriodDurationSeconds="2.000">   
    <Window_Schedule WindowIdentifier="101" WindowStartSeconds="0.0"   
    WindowDurationSeconds="0.500" PartitionPeriodStart="true" />  
    <Window_Schedule WindowIdentifier="102" WindowStartSeconds="0.5" 
    WindowDurationSeconds="0.500" PartitionPeriodStart="false" />  
    <Window_Schedule WindowIdentifier="103" WindowStartSeconds="1.0" 
    WindowDurationSeconds="0.500" PartitionPeriodStart="false" />  
    <WinExt xmlns="Window_Sched_Ext" WindowIdentifier="101" Cores="0" />  
    <WinExt xmlns="Window_Sched_Ext" WindowIdentifier="102" Cores="1" />  
    <WinExt xmlns="Window_Sched_Ext" WindowIdentifier="103" Cores=“2;3" />  
</Partition_Schedule> 

XML Multi-Core Configuration 

Page 28 



© GMV, 2014 Property of GMV 

All rights reserved 

SIMA MULTI-CORE 



© GMV, 2014 Final Presentation Days 2014  21-05-2014 

MULTICORE SIMA 

 MOS/SEP Executive hosts a set of four core schedulers within 
the partition scheduler module; 

 MOS uses Linux timers for controlling partitions schedule; 

 Core schedulers are synchronized by barriers; 

 Configuration manager and system state modules were also 
modified to acknowledge multicore aspects;  
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MULTICORE SIMA 

 Configuration Manager: 

 Addresses cores schedulers and the mapping of cores to the 
host available cores; 

Map the partition schedules to each core; 
 Verifies the partitions permissions for changing the module 

schedule and setting partitions operating modes; 
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MULTICORE SIMA 

 Partition Scheduler: 

 Starts and stops core schedulers; 
 Initializes, destroys and reinitializes the barriers synchronizing 

partitions schedulers (according to the module schedules); 
Consolidate the partial system state based on its own set of 

partitions; 
 
 

Page 33 



© GMV, 2014 Final Presentation Days 2014  21-05-2014 

MULTICORE SIMA 

 System State: 

Consolidate the system state based on core schedulers states; 
Determine the Health Monitor response action; 
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AIR TARGET 

 NGMP – Next Generation Microprocessor  

 Quad-Core LEON 4 
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FIRST STEP: MAKE IT RUN! 

 NGMP has a different hierarchical AMBA structure; 

Our AMBA scanning functions required adaptation to support it. 

 NGMP contains several “new” peripherals, that weren’t 
completely supported by AIR: 

L2Cache; 
IOMMU; 
IRQASMP. 
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L2 CACHE 

 256 Kb, 4 Ways; 

 Several possible configurations and replacement policies: 

LRU; 
LRR; 
Partitioned; 
Write Through; 
Copy Back; 

 New hardware abstraction interface for AIR; 

 Default Configuration for AIR: 

Partitioned with write through write policy. 
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IOMMU 

 IOMMU stands between DMA capable I/O devices and main 
memory; It mediates DMA transfers from I/O devices. 

 Several possible configurations: 

With memory translation and memory protection; 
Only with memory protection; 
Variable granularity (page size) 

 Default configuration for AIR: 

Access protection vector (memory protection only) with configurable 
page size; 

 Devices are allocated as part of the configuration to partitions; 

Allocated devices are able to access the partition memory space; 
Partition can refine the accessible memory area. 
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INITIALIZATION 

 Initialization is mainly sequential; 

A single core (core 0) is used to handle the bulk of the initialization; 

 New peripherals are initialized: 

L2 Cache; 
IOMMU; 

 If included in the schedule, secondary cores are initialized: 

The initialization routine prepares the CPU registers and sets up an 
initial MMU context; 

The secondary cores signal the end of their initialization and enter 
the idle mode; 

Initialization routine in core 0 waits for the other cores; 
Cores are awaken when the MTF starts through a Inter-processor 

interrupt. 
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NEW INTERNAL PRIMITIVES 

 Classical Spin lock 

 Mellor-Crummey and Scott (MCS) spin lock 

 Phase-Fair Read-Write lock 

Used on the ARINC 653 ports  

 Synchronization Barriers 

Sense-reversing centralized barriers 
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SCHEDULING 

 AIR’s partition scheduler was extended to support multiple 
cores; 

 A timer interrupt is used to drive the partition scheduler; 

 When a context switch is necessary in another core, the core 
that received the timer interrupt sends a inter-processor 
interrupt; 

 Several synchronization points 
are required: 

Partition migrating core; 
MTF end; 
MMS change; 
End of SMP interrupt; 
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MULTI-CORE PARTITIONS: VIRTUAL CPU 

 Virtual CPU concept extended to support several vCPUs per 
partition; 

 Each vCPU contains the status of virtualized registers that are 
different for each core and partition; 

 vCPU are accessed through system calls; 

 Their values are filtered and  
written to the real hardware 
registers 
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MULTI-CORE PARTITIONS: INTERFACE 

 A new set of system calls was defined that enables the same 
operations over virtual CPUs that could be done over hardware 
cores in SPARC: 

 A partition may: 

Boot a secondary virtual CPU 
Send an Inter processor interrupt to a virtual CPU 
Broadcast an Inter-processor interrupt to all virtual CPUs  
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AIR AND SIMA TEST RESULTS 

AIR SIMA 
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62% 
21% 

15% 

2% 

 Covered through tests

Covered through inspection

Covered through fulfillment of child
requirements
Related features not implemented

Execution Statistics 
Tests Ran: 133/139 

Tests Passed: 133/133 
Success Rate: 100% 
Elapsed time: ~24 mins 

81% 

15% 

4% 
covered through test

covered through
inspection

covered through
fulfilment of child
requirements

Execution Statistics 
Tests Ran: 53/53 

Tests Passed: 53/53 
Success Rate: 100% 
Elapsed time: ~8 mins 
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DEMONSTRATOR 
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MULTICORE DEMONSTRATOR 

 Demonstrator is based on an image processing application 

 Independent set of partitions 

 Two scheduling configurations: 

 AMP Scheduling 
 SMP Scheduling 

 I/O communication with a ground console 
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DEMONSTRATOR  
SCHEDULE CONFIGURATIONS 

AMP Schedule 

SMP Schedule 
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DEMONSTRATOR RESULTS 

0

5

10

15

20

25

30

1 2 3 4

P
ro

ce
ss

in
g

 t
im

e
  
(s

) 

Number of cores 

Processing time V.S. Number of cores 

Page 50 



© GMV, 2014 Final Presentation Days 2014  21-05-2014 

BENCHMARKS 
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COREMARK 

 Bare RTEMS Result 

 

 AIR Multi-core for variable number of cores: 

 

 

 With variable window size: 
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Execution Time Iterations per second CoreMark 

12.07 166 1.105 

Number Cores Execution Time Iterations per second CoreMark 
Performance 

Gain 

1 12.280 163 1.086 -1.71% 

2 10.0100 200 1.332 20.58% 

3 9.9000 202 1.345 21.80% 

Window Slot Execution Time Iterations per second CoreMark 
Performance 

Loss 

30 s 12.220 164 1.091 1.23% 

1 s 12.240 163 1.089 1.38% 

0.5 s 12.240 163 1.088 1.39% 

0.1 s 12.280 163 1.086 1.71% 

0.01 s 12.450 161 1.074 2.77% 
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CLOCK TICK OPTIMIZATION 
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BENCHMARKS – PORTS 
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CONCLUSION 

 We were able to successfully develop and demonstrate a multi-
core operating system and simulator; 

 IMA and Multi-core are two technologies that should be 
exploited in tandem due to their positive synergies; 

 It is possible to mitigate some multi-core issues with the choice 
of system configuration; 

 Inter-core interference exists; it breaks application 
independence; 

 Interference must be: 

Addressed immediately since the processor development stages (e.g. 
T-CREST and MERASA projects); 

Considered and characterized through new WCET estimation 
methodologies (e.g. probabilistic WCET - Proartis); 
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CONCLUSION 

 Developing software for multi-core is more complex than for 
single-core: 

Simply put: bugs become worse, software becomes less intuitive 
There is a more pressing need for characterizing software; 
Tooling support is key; 

 Complexity should be managed with a raise in the abstraction 
level: 

Use high level programing languages or libraries that enforce 
concurrency patterns (e.g. Go-lang, MPI, etc); 

 ESA should monitor and govern external research efforts from 
domains with similar predictability requirements; 

 

Page 57 



© GMV, 2014 Property of GMV 

All rights reserved 

Thank You 
 

 

 

 

 

www.gmv.com 

 
Cláudio Silva 
claudio.silva@gmv.com 
 

Av. D. João II, Lote 1.17.02 
Torre Fernão Magalhães, 7º 
1998-025 Lisboa 
Portugal 
 

Tel. +351 21 382 93 66 
Fax +351 21 386 64 93 



© GMV, 2014 Final Presentation Days 2014  21-05-2014 

ADOPTION IN OTHER 
DOMAINS 
 

Multi-core 
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AUTOSAR MULTI-CORE 

 SMP configurations only with tasks scheduled statically to a 
core; 

 One main core is defined – system support services run on that 
core; 

 Inter-core communication through shared memory; 

 Mutual exclusion through spin locks with the multiprocessor 
priority ceiling protocol; 
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AERONAUTICS 

 ARINC 653 will include a multi-core supplement in part 5: 

Very political discussion underway… 
Several competing implementations from different OS providers 

(VxWorks, DEOS, Integrity); 
 

 EASA is suggesting some guidelines regarding multi-core 
processors: 

Currently only considering dual-core processors; 
Integration of software from different systems not permitted, 

therefore ensuring that erroneous behavior of any of the hosted 
applications is contained within that one system. 
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R&D PROJECTS 
Multi-core 
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MERASA & PARMERASA (FP7) 

 New multi-core processor designs for hard real-time embedded 
systems to guarantee analyzability and predictability; 

 Creates the concept of hard real-time (HRT) and non-hard real-
time (NHRT) threads in hardware; 

 The HRT thread is completely isolated from the other NHRT 
threads running in the same core and is prioritized; 
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T-CREST 

 Objective is to create a multi-processor system-on-chip (SoC) 
architecture designed since its inception to fully time-
predictable; 

 Explores WCET-aware compilation, local memory, core-to-core 
communication, stack caches, etc 
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PROARTIS & PROXIMA (FP7) 

 These projects introduce probabilistically time analyzable (PTA) 
techniques for multicore platforms; 

 Treat the system as a statistical system that has timing 
behavior that forms a statistical distribution; 

 Hardware architecture needs to be randomized (Random 
caches policy, etc) 
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