Eavesdropping of Terahertz RIS-enabled HAPS-integrated satellite communication

Security for Space Systems (3S) 2025

November 4-6, 2025 – ESTEC in Noordwijk, The Netherlands

D. van der Eijk*, S. Soderi*†, M. Conti*‡

* University of Padova, Italy
† IMT School for Advanced Studies, Italy
‡ Örebro University, Sweden

1 Background

4 Security analysis

2 Threat model

5 Results

3 Atmospheric scattering

6 Conclusions

1 Background

4 Security analysis

2 Threat model

5 Results

3 Atmospheric scattering

6 Conclusions

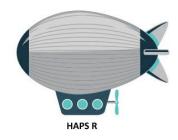
Satellite Communication (SatCom)

Background

Non-Terrestrial Networks (NTNs) have become essential components of key critical infrastructures. This leads to an **expanding threat surface**.

Strategic attention:

- European Union 2023 Space Strategy for Security and Defense
- Increased NATO investments

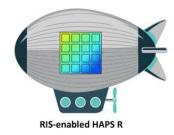


High Altitude Platform Station (HAPS)

Background

Solar-powered aircraft or balloon located in the **stratosphere** (~20 km altitude). **Long-endurance**, **quasi-stationary** platforms that have been theorized to manage aerial networks of UAVs, **act as interface with LEO satellites** or act as aerial data centers. Their unique position in the sky gives them **line-of-sight connections** to both satellites and users.

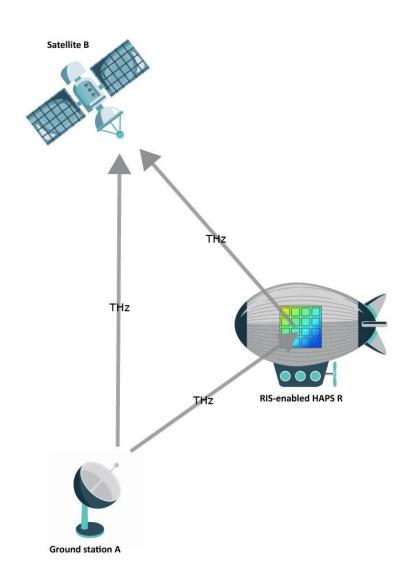
Reconfigurable Intelligent Surface (RIS)


Background

Set of elements capable of adjusting the amplitude and phase shift of an incident signal. **Passive RIS** adjust only the phase shift, whilst **active RIS** can adjust both.

Example integration scenarios:

- Billboards or building facades
- Vehicle-to-vehicle (V2V) communication
- Mounted on a HAPS



Terahertz (THz) Frequency Band

Background

The relatively unexplored THz frequency band offers possibilities for **ultra-high capacity networking**. It is currently only partially regulated (<0.3 THz), of which the higher frequencies are generally allocated only for **experimental communication**.

However, THz band RF communication suffers from high propagation losses due to **absorption** and **rain attenuation**.

1 Background

4 Security analysis

2 Threat model

5 Results

3 Atmospheric scattering

6 Conclusions

Adversary Model

Threat Model

Threat objective:

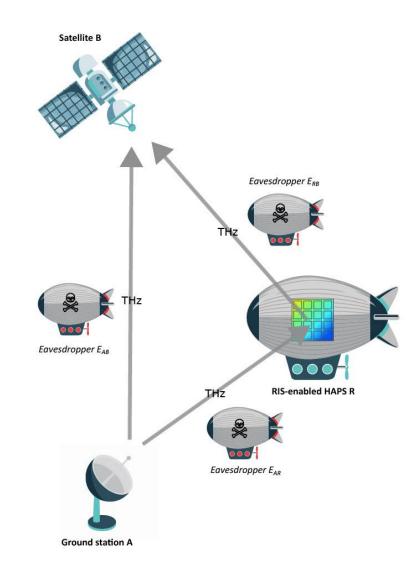
The adversary aims for passive compromise of confidentiality by obtaining a higher SNR than the legitimate receiver.

Threat capabilities:

- Knowledge of key positions
- Adversary mobility
- Link tracking strategy
- Stealth assumptions

Eavesdropper Locations

Threat Model

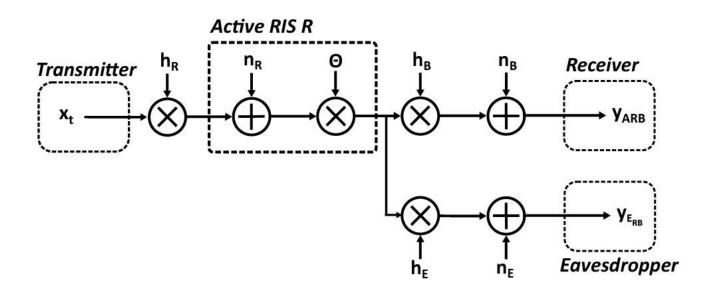

Direct scenario:

EAB located between ground station and satellite

RIS-enabled scenario:

- EAR between ground station and RIS-enabled HAPS
- ERB between RIS-enabled HAPS and satellite

The **RIS** alters the signal, so E_{AR} and E_{RB} observe different signal characteristics.



Physical Layer Security (PLS)

Threat model

PLS uses the wiretap model to model the legitimate and eavesdropper channel. Unique characteristics of the channels can then be used to enhance secure communication where traditional upper-layer cryptographic methods (e.g. link layer encryption) are too computationally intensive and inflexible.

1 Motivation

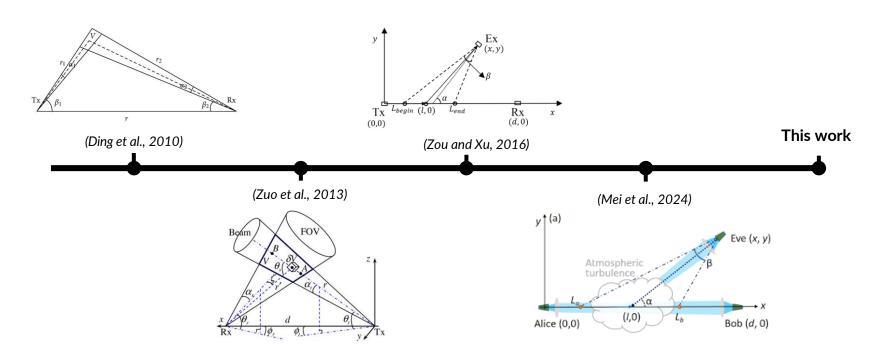
4 Security analysis

2 Threat model

5 Results

3 Atmospheric scattering

6 Conclusions



Related Works

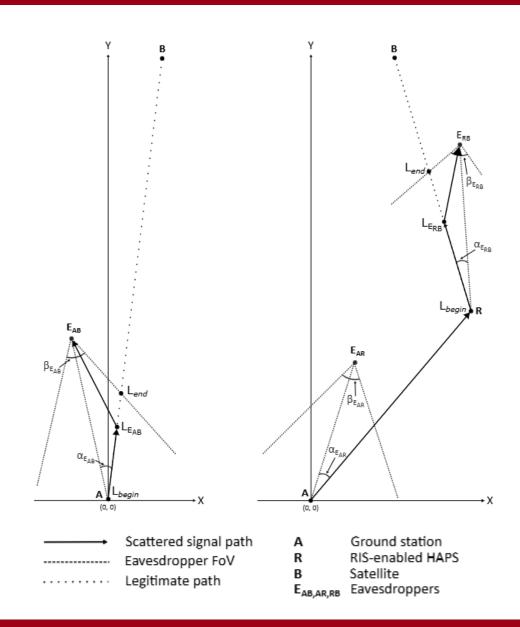
Atmospheric scattering

Research into the effect of atmospheric scattering highlights how **physical phenomena** can lead to **redirection of signals**, which can result in possible **eavesdropping** of legitimate connections.

Contributions

Atmospheric scattering

- We propose calculations for the secrecy capacity of Terahertz direct and RIS-enabled HAPSintegrated uplink communication.
- We introduce a **deterministic 2D single-scattering model** for NTN THz communication that captures the received signal at an eavesdropper.
- We quantify the **security benefits of employing a RIS-enabled HAPS** in uplink communication in **different weather conditions** through multiple security metrics.



Geometric Representation

Atmospheric scattering

Scattering phenomenon variables:

- Lex, which represents the location at which the signal scatters off the legitimate path
- α , β , which represent the scattering angles
- L_{begin}, L_{end}, which represent the edges of the eavesdroppers' FoV on the legitimate channel

Non-Line-Of-Sight Channel Coefficient

Atmospheric scattering

The NLOS channel coefficient captures the **cumulative scattered signal** along the propagation path **towards the eavesdropper**.

$$h_{\text{NLOS}} = \sqrt{G_t G_r} \int_{L_{\text{begin}}}^{L_{\text{end}}} \Omega(x_l) p(\mu) \, \alpha_{\text{sca}} \, e^{-\alpha_{\text{atm}} d} \, dx_l,$$

where

- G_t , G_r : transmitter and receiver antenna gains,
- $\Omega(xl)$: solid angle,
- $p(\mu)$: scattering phase,

- α_{sca} : total scattering attenuation,
- α_{atm} : total atmospheric attenuation,
- *d*: total propagation distance.

1 Background

4 Security analysis

2 Threat model

5 Results

3 Atmospheric scattering

6 Conclusions

Received signal

Security analysis

The received signal captures the impact of **transmission**, **propagation**, and **reception** of a signal through the atmosphere in the **presence of noise**. For the direct AB channel, the received signal is given as

$$y_{t,AB} = \sqrt{P}h_{AB}x_t + n_{AB},$$

with the pilot signal transmitted $x_t \in C$, $|x_t| = 1$, transmit power P, AWGN $n_{t,AB} \sim CN(0, \sigma^2_{AB})$ and channel coefficient

$$h_{AB} = h_{FSPL} \cdot h_{atm},$$

where h_{FSPL} and h_{atm} represent free space path loss and atmospheric attenuation respectively.

Received signal

Security analysis

For the active RIS-enabled ARB channel, the received signal is given as

$$y_{t,ARB} = \sqrt{P}(\mathbf{h}_{RB}\mathbf{\Theta}_t \mathbf{h}_{AR})x_t + \mathbf{h}_{RB}\mathbf{\Theta}_t \mathbf{n}_{t,AR} + \mathbf{n}_{t,RB},$$

with the pilot signal transmitted $x_t \in C$, $|x_t| = 1$, transmit power P, AWGN $n_{t,RB} \sim CN(0, \sigma^2_{RBINB})$ for NB antennas, RIS-amplified noise $n_{t,AR} \sim CN(0, \sigma^2_{ARIM})$ for M RIS-elements, AR channel $h_{AR} \in C^{M+1}$, and RB channel $h_{RB} \in C^{N_B+M}$. We have reflection coefficient matrix $\Theta_t = \text{diag}(\theta_t)$, with corresponding reflection coefficients $\theta_t = [\theta_{t,1}, ..., \theta_{t,M}]^T$ with

$$\theta_{t,m} = \alpha_m e^{j\phi_{t,m}},$$

where α_m represent the amplitude gain and $e^{j\varphi_{t,m}}$ the phase shift induced by the RIS.

Signal-to-Noise Ratio

Security analysis

The SNR can be interpreted as a measure of how much stronger the desired signal is compared to the background noise. For the direct AB channel, the SNR is given as

$$\gamma_{AB} = \frac{P|h_{AB}|^2}{\sigma_{AB}^2}.$$

For the RIS-enabled channel ARB the SNR is given as

$$\gamma_{ARB} = \frac{P \left| \sum_{m=1}^{M} h_{RB,m} \alpha_m e^{j\phi_{t,m}} h_{AR,m} \right|^2}{\sigma_{AR}^2 \sum_{m=1}^{M} |h_{RB,m} \alpha_m e^{j\phi_{t,m}}|^2 + \sigma_B^2}.$$

Secrecy Capacity

Security analysis

The SC represents the maximum secure communication rate (in bits/s/hz) over the legitimate channel.

$$C_s^{E_X} = \max \{ \log_2(1 + \gamma_m) - \log_2(1 + \gamma_{E_X, \max}), 0 \},$$

where γ_m is the legitimate main channel SNR and $\gamma_{EX, max}$ is the maximum SNR of the corresponding eavesdropper.

1 Background

4 Security analysis

2 Threat model

5 Results

3 Atmospheric scattering

6 Conclusions

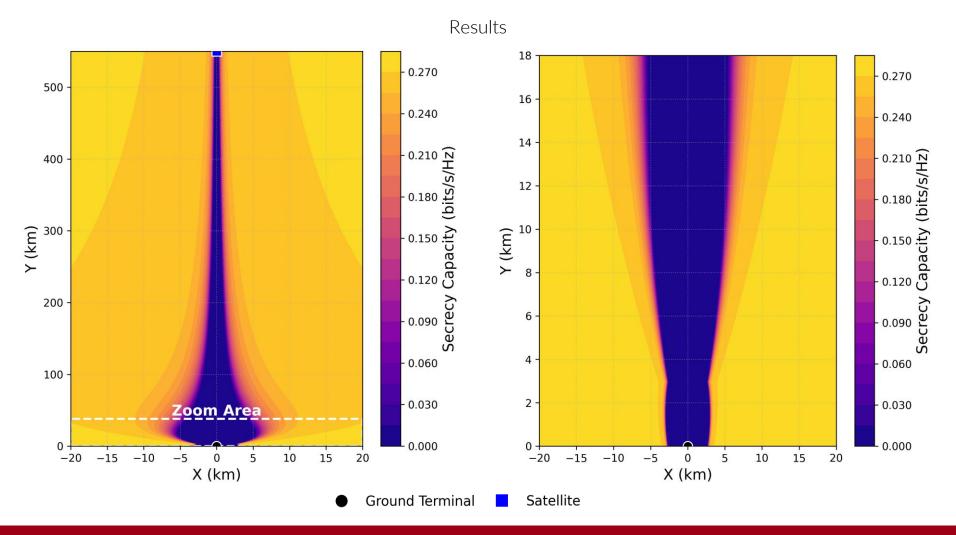
Simulation Parameters

Results

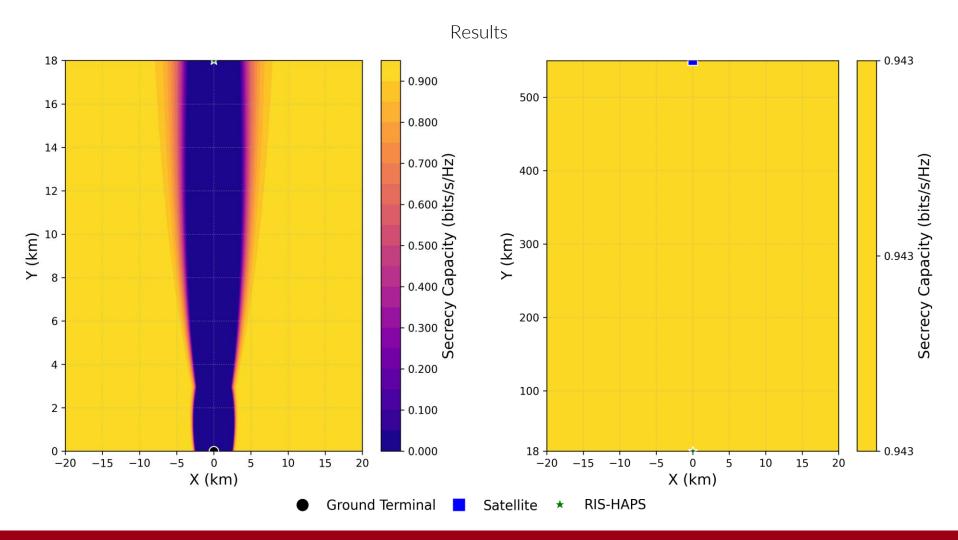
TABLE II: Simulation overview

Component	Details		
Ground Station	Altitude: 0 km		
	Antenna: 2 m diameter		
	Location: Noordwijk, Netherlands		
	Season: Summer		
RIS-HAPS	Altitude: 18 km		
	RIS surface: $1.5 \times 1.5 \text{ m}$		
Satellite	Altitude: 550 km		
	Antenna: 1 m diameter		
Eavesdroppers	Antenna: 0.5 m diameter		
Weather condition	Strong rain (ITU-R 1817-1)		

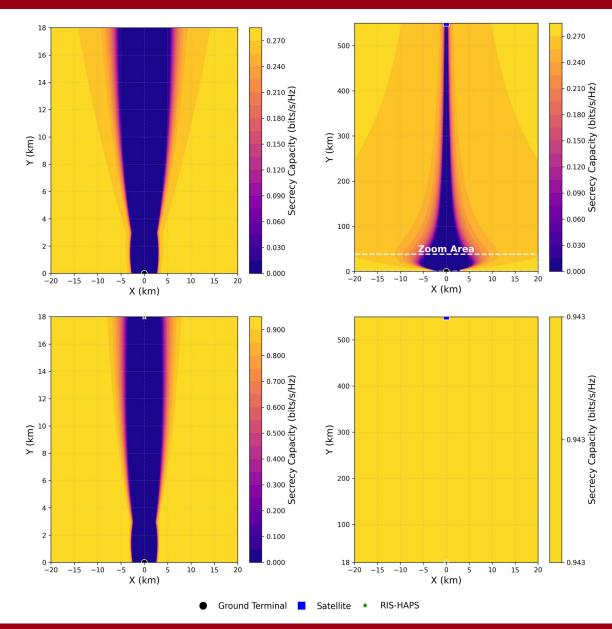
TABLE III: Parameter overview


Name	Sign	Value
Frequency	f	240 GHz
Noise temperature	T	303.15 K
Bandwidth	B	10 GHz
Transmit Power	P	10 W
RIS/antenna efficiency	η	0.65
Troposphere altitude	h_t	9 km
Ground wind speed	$\omega_{m{q}}$	21 m/s
Beam slew rate	ω_s	0.02 rad/s
Ground level C_n^2	A_{ground}	$1.7 \times 10^{-14} \text{ m}^{2/3}$
Polarization tilt	au	45°
Freezing level altitude	h_0	2.6 km
Eavesdropper FoV	β	40°
HG asymmetry factor	g	0.2
HG anisotropy weight	f	0.5

Secrecy Capacity Heatmaps



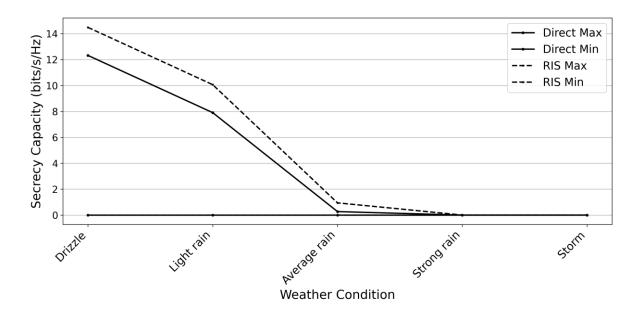
Secrecy Capacity Heatmaps



Secrecy Capacity Heatmaps

Results

Integrating a RIS-enabled HAPS reduces the area vulnerable to eavesdropping attacks below the HAPS. It eliminates physical-layer eavesdropping above the RIS-enabled HAPS since the physical phenomenon that cause scattering are not present at higher altitudes. Additionally, it increases the maximum secrecy capacity.

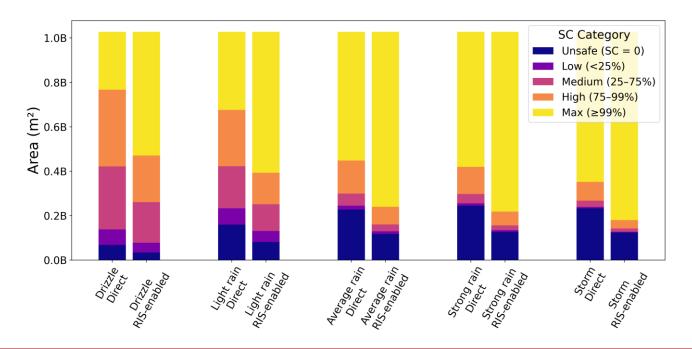


Spatial Metrics in Weather Conditions

Results

In all weather conditions, the maximum SC is higher for the RIS-enabled HAPS scenario. However, the minimum SC is always zero, indicating a weakness to eavesdropping.

Label	Rain Rate [mm/h]	Visibility [m]
Drizzle	0.25	18100
Light rain	2.5	5900
Average rain	12.5	2800
Strong rain	25	1900
Storm	100	770



Spatial Metrics in Weather Conditions

Results

In lighter weather conditions, the **insecure area is larger** for both scenarios. The RIS-enabled HAPS scenario has a **smaller insecure area** compared to the direct scenario.

1 Background

4 Security analysis

2 Threat model

5 Results

3 Atmospheric scattering

6 Conclusions

Conclusions

- Terahertz satellite uplinks are **vulnerable to eavesdropping attacks** within a non-negligible area around the communication signal,
- Integrating an active RIS-enabled HAPS reduces the insecure area by 48% compared to direct transmission,
- There exists a strategic **trade-off between spatial secrecy and data rates**: lighter weather conditions have larger insecure regions but allow higher secrecy rates.

Eavesdropping of Terahertz RIS-enabled HAPS-integrated satellite communication

Security for Space Systems (3S) 2025

November 4-6, 2025 – ESTEC in Noordwijk, The Netherlands

D. van der Eijk*, S. Soderi*†, M. Conti*‡

daanjannes.vandereijk@studenti.unipd.it

