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A Basic Overview of QKD

Quantum computers threaten

modern classical cryptography [1]. EAGLE-1:

e (Q-day, could be right around the
corner

e Thankfully, Quantum Key
Distribution (QKD) offers a
solution!

e Eagle-1 [2] and SAGA [3] projects
both aim to further QKD

development
[1] P. W. Shor, “Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum
Computer,” SIAM Journal on Computing, vol. 26, no. 5, Oct. 1997. DoOI: 10.1137/S0097539795293172.
[2] ESA, "Eagle-1 Mission”, [Online|. Available:
https://wuw.esa.int/Applications/Connectivity_and_Secure_Communications/Eagle-1.
[38] ESA, "SAGA Mission”, [Online]. Available:

https://connectivity.esa.int/ultrasecure-communications-saga.
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Challenging the Common Security Assumption

Alice's QKD Device Bob's QKD Device
Quantum
n Channel
. N B Ra
e QKD assumes the classical device is
contained in a secure perimeter Classical
Channel
e Research is active on quantum attacks
Secure
[4] L7 Perimeter
e A more robust threat model considers =——=====4  Ebee—====
classical attacks also
e PQC schemes consider a similar threat Alice's QKD Device Quantum
Channel
mOdel . @ Raw Key Exchange @
[4] V. Zapatero, A. Navarrete, et al., “Implementation
Security in Quantum Key Distribution,” en, Classical
Advanced Quantum Technologies, Oct. 2023. DOI: Channel
10.1002/qute . 202300380. il PostProcessing [G3 10l PostProcessing |03
Secure
= Perimeter
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Side Channel Analysis

Mean Traces for the 9 Different Hamming Weights

e Power Side Channel Analysis (SCA) can
reveal sensitive information [5]

e A SCA attack aims to recover the QKD
key

Voltage [mV]

e QKD classical protocols have received
little consideration against such attacks 00 ‘ . ‘ (

[5] S. Mangard and E. Oswald, Power Analysis 0 100 200 300 400 500
Attacks: Revealing the Secrets of Smart Cards, Time [ns]
English. Springer, 2007.

Figure from [5]
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Privacy Amplification
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Privacy Amplification (PA) removes any
leaked information from the error
corrected key, Kgc.

Toeplitz hashing based PA is the most
popular scheme

A Toeplitz matrix is shared between
genuine QKD parties, defined by
random binary seed, S € {0,1}".

Naive matrix vector multiplication in
O(n?) is not good enough...

Toeplitz Hashing

S Sr+1 Sr42 .- Sr4n
Sr—1 Sy Sr41 Sr4+n—1
Sp—2 Sp—1 Sp Sr4n—2

S3 S4 S5 cee Sn+2

S9 S3 Sq e Sn+41

S1 S92 S3 . Sn

Kps =T(S)Kgce

9/24



DIT-FFT Optimisation

Stage 1 Stage 2 Stage 3

e High performance Toeplitz hashing

schemes use the Decimation in Time Zo
Fast Fourier Transform (DIT-FFT),
. . T4
scaling in O(nlogn)
e Matrix and vector, «, are projected into To
FFT domain, X, for pointwise
multiplication and back into original Tg
domain after.
e The butterfly operation is at the core of 1
DIT-FFT
5
a - 4 > a+ wb
b o > a— wb T7
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Stage 1 Stage 2 Stage 3
|

Y%V

Algorithm 1: FFT Toeplitz Hash

Input: Kgc, S, n, r
QOutput: Kp 4

v < FFT(S)

U+ voy

Kpy < IFFT(u) mod 2

Kec A

A U B W N =

e Considering FFF'T(Kg¢), the inputs,
(a,b), to each butterfly are always
binary at stage 1




Hypothetical Information Leakage

[EEE 754 Representation

a|b | Bla,bw) | HW In | HW Out | HD
e Distinct Hamming Weight (HW) or 010 (0,0) 0 0 0
Hamming Distance (HD) for each input 011 (1,-1) 7 15 8
may lead to leakage in the power trace 1 (1) (;v(l)) 174 114 173
e We examine HW and HD for stage 1 (2,0)
butterfly operations Q8.8 Fixed-Point Representation
° dE.a(;.h otf gl%f/o;;]r)posmble inputs have “ ‘ b ‘ Bla, b, ) ‘ HW In ‘ HW Out ‘ HD
1Shne 00| (0,0 0 0 0
011 (1,-1) 2 10 8
110 (1,1) 2 5
11| (20 4 1 3
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Proposed Attack Strategy

Algorithm 2: DIT-FFT Template Attack

e Only a single target power trace is t Input: t, n, L

. . .. . Output: K/
available in a realistic PA setting z {tl; ;:111 ”;0/2} it
k) R i £

e Template attacks allow characterising 4 Ky < {0}"
each stage 1 butterfly operation 5 G1 ¢ (0,0),Gs = (0,1), G5 + (1,0), Gy = (1,1)
6 for i in n/2 do
e Templates are generated for each input 7 | for jin 4 do
on an identical device controlled by an 8 Ko  setGuess(Kio, Gj, i)
adversary 9 T; + genTemplate(vK’Ec7 L,1)
10 sj « compare(T;, t")

e The best template match to target trace 1| Goew

is recorded as the value of Kgc best((G1,51), (G2, 82), (G, 83), (G4 84))
2 Ko « setGuess(Kpe, Gpest, i)
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Experimental Setup

Hardware
e ChipWhisperer Husky oscilliscope [6]

e CW312 target board (Arm Cortex-M4
MCU)

e CW305 target board (Artix-7 FPGA)
Software

e Custom unprotected implementations

[6] C. O’Flynn and Z. Chen, “ChipWhisperer: An
Open-Source Platform for Hardware Embedded
Security Research,” en, in E. Prouff, Ed., vol. 8622,
Cham: Springer International Publishing, 2014.
DOI: 10.1007/978-3-319-10175-0_17.
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Capturing Traces

8 Bit DIT-FFT Power trace

-é,:“ 02 B
é_
Eoof .
. . 0 1 0(;00 20000 30(;00 40(‘)00 50(‘)00
e Traces are recorded for each variation of Sample index
input on target butterfly Stage 1 Power trace
e Each trace is aligned in time 3
e First layer is isolated and further :% m
separated into butterfly operations . . ‘ .
1000 2000 3000 4000 5000 6000
e Average of each input on target Sample index
butterfly is the template Bulterﬂy 1 Power trace
3021 ‘\ \H‘ ﬂ ‘W” \ M
=
£ | “"H\ N N \‘h”\\\
= W A ‘nu LN HHH |l Hl
Eoof F ‘“ v i
600 700 8(‘)0 900 1 000 1100
Sample index
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TVLA Test

ARM Cortex-M4

L
e A TVLA test measures the %
statistical difference between a . . . .
fixed input and random inputs 0 10000 20000 30000
e Fach sample point has a t-score Sample Point
e Input data information leaks at AI‘tiX—7 XC7A100T
a sample point if [t| > 4.5 sE
e Both platforms leak, MCU g ok
Q
more SO x
—5F

1000 2000 3000 4000 5000
Sample Point
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FPGA Templates

e Traces for each template, Tj,
are distinct

e Signal to noise ratio is high

e Target traces cannot be reliably
matched to a template with a
single trace

Voltage, mV

0.02

0.01

0.00

—0.01

—0.02

20 40
Sample Point of Interest

60
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Attack Performance

Segment 0

Guess 0. MSE: 0.026930091417854338,
PC: 0.4978433287673936

Guess 1. MSE: 0.03299193977045687,

e Individual butterfly input recovery is
PC: 0.3856896788187195

reliably possible with single trace on Guess 2. MSE: 0.04104327327827073,
MCU PC: 0.2338513997655182
) ) ) Guess 3. MSE: 0.00018392346275788736,
e Full key attack time scales linearly with PC: 0.9965736472717602
key size n
e ~ 1s per butterfly, ~ 4s for 8 bit key Segment 1

e Attack cannot currently reliably recover
key on FPGA under current
experimental setup (10111110] : Eve's Guess

[10111110] : Correct Key

Successfull Key Recovery
Time Taken: 4.05157208442688s
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Conclusions

e QKD is coming closer to real world use, practical attacks on devices should be
considered

e Side channel leakage of QKD post-processing algorithms remain largely unknown

e DIT-FFT optimised Toeplitz hashing based PA is leaky on unprotected
implementations

e Full QKD can be recovered on Cortex ARM-M4 using a single target trace

e Future work could refine the FPGA attack to recover enough useable information
from a single trace
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Thank You!

Scan the link for my paper and contact
details!

.. or email me, ncanavan815Qqub.ac.uk
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