Towards Minimal Certificates for Federated Space Public Key Infrastructure

Alin-Petru Roșu (Delft University of Technology)

Oana-Alexandra Graur (European Space Agency)

Security for Space Systems (3S) 2025 ESTEC, The Netherlands November 05, 2025

01

Introduction

Context Problem Statement Objectives

04

Results

X.509 vs. C509 Comparative Analysis 02

Preliminaries

Background

05

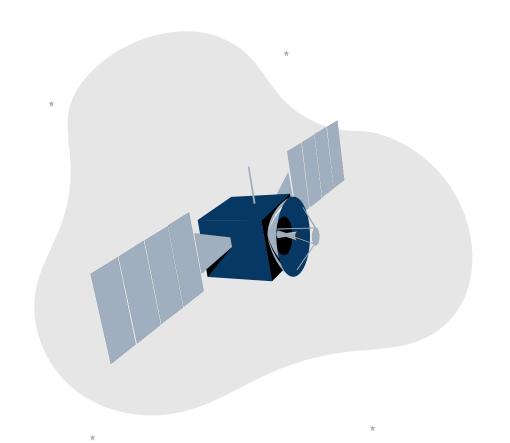
Discussion

Implications

03

Methodology

PQ Certificates Federal Profiles C509 Tooling


06

Conclusion

Future Work Summary

Introduction

Context **Problem Statement** Objectives

Context

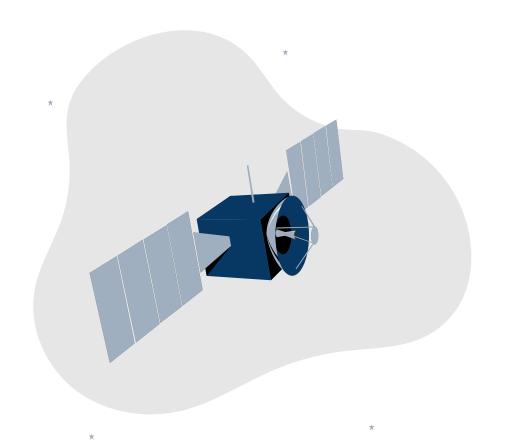
- Space missions increasingly require international collaboration (e.g., Artemis)
- Interoperability becomes critical and harder to achieve
- ECSS & CCSDS key management limited to symmetric cryptography which lacks scalability
- PKI deployment in space is challenging; federated PKI, even more
- CCSDS Intergovernmental Certification Authority (IGCA) aims to enable federated, trusted cooperation

4/45

Problem Statement

- Space standards adopt the X.509 Internet Profile for interoperability
- X.509 certificates are verbose and complex (extension mechanism)
- "200 different extensions exist in real life" [1]
- "11M X.509 certificates (...) 21.5% are syntactically incorrect" [2]
- Improper parser implementation are linked to multiple attacks-[3]
- Post-Quantum (PQ) Cryptography complicates the matter

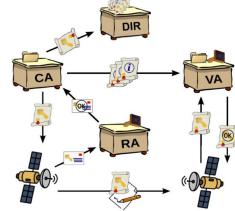
Objectives



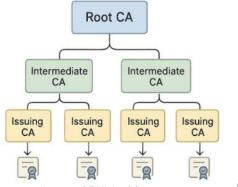
"What is the minimal, interoperable certificate profile capable of bridging traditional and PQ cryptography while supporting cross-domain space federation?"

- 1) Analyse PQ certificate formats for federated space PKI
- 2) Review extension configurations from terrestrial federations to design minimal profiles for space
- 3) Compare X.509 and C509 for space deployment suitability

Preliminaries

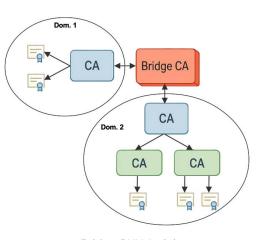

Background Foundational Work

Public Key Infrastructure



- **PKI:** Trust framework using digital certificates to bind identities to public keys
- Core roles: Certification Authority (CA), Registration Authority (RA), Validation Authority (VA), Certificate Repository (DIR), End Entities (EE)
- Single-tier PKI: One CA, simpler but less scalable (first image)
- Hierarchical PKI: Root CA → Intermediate CAs → Issuing CAs; enables scalable segmented trust (second image)

Single CA PKI. Adapted from [1] under CC BY-SA 3.0



Federated PKI

- Federated PKI enables trust across independent domains without a shared root
- Bridge CA model: one central CA cross-certified by all domains → centralised but scalable (see image)
- IGCA (Intergovernmental Certification Authority): bridge-CA-based PKI for space missions, balancing interoperability and organisational autonomy

Bridge PKI Model

*

X.509 Certificates

- X.509 standard (by ITU-T) defines public-key certificate syntax using ASN.1 and encoded with **DER**
- X.509 Internet profile (by IETF) restricts features and defines validation rules for Internet interoperability
- Main fields: version, serial number, issuer, subject, public key, validity, signature, extensions
- **Extensions:** additional information (critical / non-critical)

- Version: 3 (0x2)
- ② Serial Number:

2b:9b:61:9f:01:76:3c:6f:71:2a:40:cc:49:a9:db:8a:8e:2b:39:8c

- Signature Algorithm: ecdsa-with-SHA256
- 4 Issuer: CN=root
- Validity

Not Before: Dec 30 14:16:52 2024 GMT Not After : Dec 30 14:16:52 2025 GMT

- 6 Subject: CN=x509dos.com, emailAddress=test@x509dos.com
- Subject Public Key Info:
- Public Key Algorithm: id-ecPublicKey Public-Key: (256 bit)

04:f7:1c:6e:dc:c9:ad:9a:85:c8:2f:ca:06: 53: e1: c7:59:64:30:2a:a8:72:a8:94:69:f6:7a:72:40: 9f eb:d3:30:72:76:2b:92:b0:43:f9:a2:53:ce:a1:d3: f5:9a:d0:f8:d1:39:29:27:11:29:6f:af:b5: a4: a6: 6f-a9-00-5d-98

- @ ASN1 OID: secp256k1
- 11 X509v3 extensions:
 - X509v3 Subject Alternative Name:
 - DNS:a.x509dos.com, DNS:b.x509dos.com
 - (3) X509v3 Name Constraints: critical

Permitted:

DNS:permitted@x509dos.com Excluded:

DNS:excluded@x509dos.com

(4) X509v3 Certificate Policies:

Policy: 1.2.3.4 Policy: 1.2.3.5

(5) X509v3 Policy Mappings:

1.2.3.4:1.2.3.5, 1.2.3.5:1.2.3.4

thsCertificate

Signature Algorithm: ecdsa-with-SHA256

30:45:02:21:00:f8:07:50:9e:00:70:11:21:c9:d5:68:82:16: c6:3e:00:43:46:4b:a0:3a:ba:62:8b:a8:97:5d:20:16:85:12: 55:02:20:52:52:86:0f:6d:ac:45:24:2a:c5:b7:ac:a3:7d: bb: 8a:40:5d:97:9c:86:d8:42:c8:c9:74:5e:78:13:ae:f1:1d

C509 Certificates

C509: a subset of X.509 encoded with CBOR; optimised for constrained devices

"CBOR encoding can reduce the size of (...) certificates with over 50% while also significantly reducing memory and code size compared to ASN.1"

- CBOR Encoded X.509 Certificates (C509 Certificates), COSE working group

Natively Signed

- Signature: computed on the CBORencoded TBS structure
- **Encoding:** CBOR only
- Compatibility: backwards incompatible to X.509-only clients

Re-encoded

- Signature: computed on the DERencoded TBS structure
- Encoding: parsing CBOR serialising CBOR/DER
- Compatibility: backwards compatible (via re-encoding)

C509 vs. X.509 Signature


```
Certificate:
   Data:
        Version: 3 (0x2)
        Serial Number: 128269 (0x1f50d)
        Signature Algorithm: ecdsa-with-SHA256
        Issuer: CN=RFC test CA
           Not Before: Jan 1 00:00:00 2023 GMT
           Not After : Jan 1 00:00:00 2026 GMT
        Subject: CN=01-23-45-FF-FE-67-89-AB
        Subject Public Key Info:
            Public Key Algorithm: id-ecPublicKey
               Public-Key: (256 bit)
                    04:b1:21:6a:b9:6e:5b:3b:33:40:f5:bd:f0:2e:69
                    3f:16:21:3a:04:52:5e:d4:44:50:b1:01:9c:2d:fd:
                    38:38:ab:ac:4e:14:d8:6c:09:83:ed:5e:9e:ef:24:
                    48:c6:86:1c:c4:06:54:71:77:e6:02:60:30:d0:51:
                    f7:79:2a:c2:06
                ASN1 OID: prime256v1
               NIST CURVE: P-256
        X509v3 extensions:
           X509v3 Key Usage
    Signature Algorithm: ecdsa-with-SHA256
        30:46:02:21:00:d4:32:0b:1d:68:49:e3:09:21:9d:30:03:7e
        13:81:66:f2:50:82:47:dd:da:e7:6c:ce:ea:55:05:3c:10:8e:
        90:02:21:00:d5:51:f6:d6:01:06:f1:ab:b4:84:cf:be:62:56
        c1:78:e4:ac:33:14:ea:19:19:1e:8b:60:7d:a5:ae:3b:da:16
```

X.509

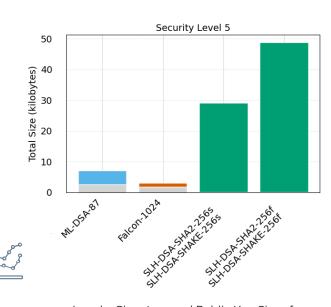
```
2,
h'01f50d',
0,
"RFC test CA",
1672531200,
1767225600,
48(h'0123456789AB'),
1,
h'02B1216AB96E5B3B3340F5BDF02E693F16213A04525ED44450
B1019C2DFD3838AB',
```

h[†]EB0D472731F689BC00F5880B12C68B3F9FD38B23FADFCA2095 0F3F241B60A202579CAC28CD3B7494D5FA5D8BBAB4600357E5 50AB9FA9A65D9BA2B3B82E668CC6[†] _/\

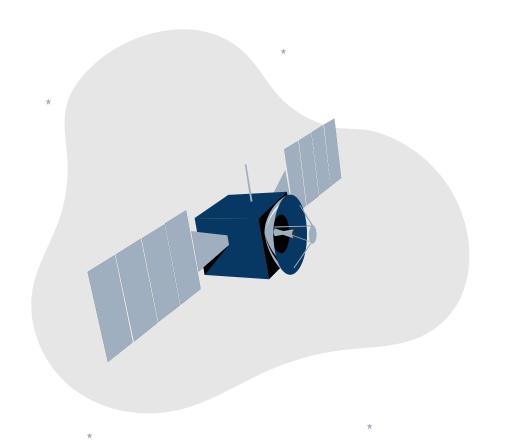
/ version and certificate type / h'01f50d'. serialNumber / signatureAlgorithm / "RFC test CA", / issuer / 1672531200, / notBefore / 1767225600. notAfter / 48(h'0123456789AB') / subject, EUI-64 / subjectPublicKeyAlgorithm / h'FEB1216AB96E5B3B3340E5BDE02E693E16213A04525ED44450 B1019C2DFD3838AB / single extension: non-critical keyUsage digitalSignature /

h'D4320B1D6849E309219D30037E138166F2508247DDDAE76CCE EA55053C108E90D551F6D60106F1ABB484CFBE6256C178E4AC 3314EA19191E8B607DA5AE3BDA16'

Natively Signed


Re-encoded

Post-Quantum Cryptography


- PQC standardisation: NIST selected ML-DSA, SLH-DSA; Falcon (FN-DSA), ML-KEM, HQC
- Deployment challenges: large key/signature sizes, intensive operations
- Hybridisation debate:
 - Europe (BSI, ANSSI, EU): hybrid recommended
 - USA (NSA): pure PQ allowed
- Interoperability need: flexible certificate profiles supporting both hybrid and standalone PQ deployments

Level 5 Signature and Public Key Sizes for NIST Standardized Signature Schemes

Methodology

PQ Certificates Federal Profiles C509 Tooling

Post-Quantum Certificates

Pure

one post-quantum component

Hybrid Certificate Formats

Catalyst

alternative public key and signature extensions

Composite

unique OID for each hybrid combination

One certificate chain

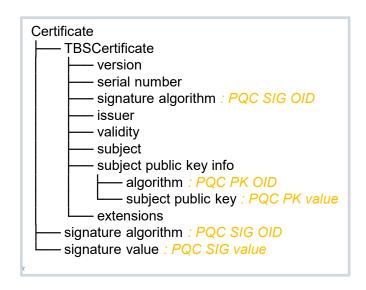
Chameleon

Delta (certificate differences) extension

Bound

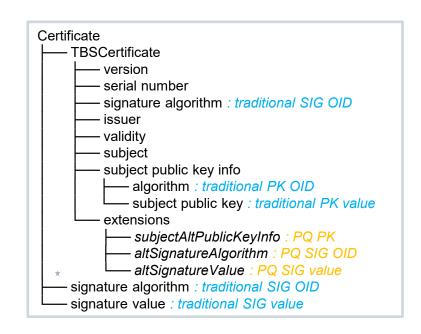
related (linked) certificate extension

Separate certificate chains



Pure

- A single post-quantum component; same format as X.509
- Backwards compatibility: Incompatible with legacy systems, (must recognise the new OIDs)
- **Security:** Based on the security of the post-quantum algorithm
- Use case: Used in quantum-safe PKIs; the transition end goal



Hybrid Catalyst

- PQ component stored in alternative algorithm extensions.
- Status: ITU-T X.509 standard; not adopted by IETF

("ISARA Dedicates Four Hybrid Certificate Patents to the Public")

- Backwards compatibility: Extensions marked as non-critical
- Security: Either traditional or PQ component (not both)
- Use case: Gradual transition to quantum-safe PKI (simplified certificate management)
- Disadvantage: Potential bandwidth waste (PQ*component is not used recognized)

Hybrid Composite

- PQ and traditional keys/signatures are concatenated; each combination has a unique OID; same format as X.509
- Status: IETF drafts for ML-KEM and ML-DSA composite OIDs
- Backwards compatibility: Incompatible with legacy systems
- Security: Based on both PQ and traditional components.
- **Use case:** The component algorithms cannot be trusted alone (prohibits separability to increase security).

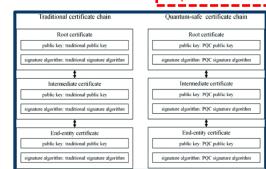
Certificate

TBSCertificate

version
serial number
signature algorithm: composite SIG OID
issuer
validity
subject
subject public key info
algorithm: composite PK OID
subject public key: PQC PK value ||
traditional PK value
signature algorithm: composite SIG OID
signature value: PQC SIG value || traditional SIG value

- **Bound** (RFC9763): The PQ certificate is linked to the traditional one using an extension that contains the hash of the classical certificate. The certificates are independently managed.
- Chameleon (Internet draft, no longer IETF endorsed): Encode and embed differences between PQ and traditional certificate in an extension in the latter.
- Backwards compatibility: compatible and highly flexible; extensions should be non-critical.
- Security: Based on the capabilities of each party (either traditional or PQ)
- Disadvantages:
 - Parallel chains/multiple certificates lead to complicated lifecycle and management
 - "paired certificates could have different validity periods, and the usable overlap is the subscriber's concern" (Bound)
 - Increased bandwidth usage and processing for validation

Chameleon


Delta (certificate differences) extension

Bound

related (linked)
certificate extension

Separate certificate chains

Wang et al., Integration of Quantum-Safe Algorithms into X.509v3 Certificates [1] *

IETF draft, Related Certificates for Use in Multiple Authentications within a Protocol (Bound)

IETF draft, A Mechanism for Encoding Differences in Paired Certificates (Chameleon)

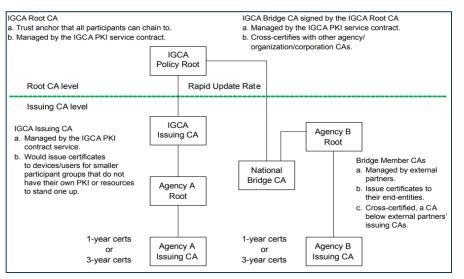
Space Considerations

- Current standards do not mention any format to be used for transition.
- Bandwidth impact of each format is negligible (see Table).
- Backwards compatibility should come second to security and interoperability (no space PKI deployed)
- Divergent security guidelines on hybridisation
- Mitigation: Enforce a single (preferably composite) format for the federation (update Cryptographic Algorithms Blue Book)

Comparison of certificate sizes (bytes) for pure ML-DSA:44 and hybrid ML-DSA:44 + ECDSA:secp256r1. Body size = total size minus key and signature.

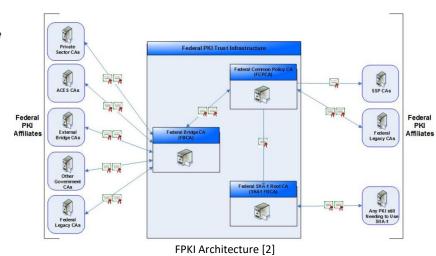
Relative Increase = size overhead (bytes) over pure PQ certificate.

Reduite increase - 5/20 overhead (by 1007 over pare) a certaincate.				
Format	Cert. Size (bytes)	Body Size (bytes)	Relative Increase (bytes)	
Pure ¹	3894	152	-	
Hybrid Composite ¹	4045	158	6	
Hybrid with Extensions ²	4112	229	77	
Hybrid Chameleon ³	4193	310	158	
Hybrid Bound (Approx.) ¹	4247	363	211	


Federal Profiles

IGCA

- policy and requirements necessary for the IGCA and affiliated CAs to issue and manage trusted certificates
- certificates for systems, software, spacecraft, instruments, ground stations, relay spacecraft, people, and other entities


IGCA Architecture [1]

FBCA

- U.S. FPKI includes organisations that work together to provide services for the benefit of the federal government - [1]
- Personal Identity Verification (PIV) and device identity **certificates**
- The **Federal Common Policy Certification** Authority (FCPCA) established trust using the Federal Bridge Certification Authority (FBCA) and defines the policies and standards to be used by the affiliated CAs

IGCA

Authentication Credentials Requirements – [1]

Item#	Feature	Status	Support
1	ASN1	М	
2	DER	М	
3	X.509.V3	М	
4	tbsCertificate	М	
5	Version	М	
6	Serial number	М	
7	algorithm identification	М	
8	Issuer Signature	М	
9	Validity from	М	
10	Validity to	М	
11	Subject	М	
12	Subject algorithm identification	М	
13	Subject public Key	М	
14	Issuer Unique ID	0	
15	Subject Unique ID Public Key Info	0	
16	Universal Time Coordinated Time Certificate	М	
17	Generalized Time	М	
18	object identifiers (OID)	0	
19	Policy Mapping	0	
20	Subject Alternative Name	0	
	Certificate Revocation Lists distribution		
21	points	0	
22	signatureAlgorithim	М	
23	signatureValue	M	

- Uses CCSDS Authentication Credentials [2]
- Provides minimal guidelines on extensions
- Still an experimental specification

CCSDS 357.0-B-1, CCSDS Authentication Credentials – [1]
CCSDS 357.1-O-1, Intergovernmental Certification Authority – [2]
Federal Bridge Certification Authority (FBCA) X.509 Certificate and CRL Extensions Profile – [3]

FBCA Certificate Profiles (subset) - [3]

Worksheet #	Profile	Description
1	Self-Signed CA Certificate	Self-signed certificate issued by CAs primarily for establishing a trust anchor.
2	Self-Issued CA Certificate	Key rollover certificate, sometimes called a link certificate, that is self-issued by a CA but not self-signed.
3	Cross Certificate	Issued by a CA in one PKI domain to a CA in another PKI domain to enable interoperability through certificate policy mapping.
4	Intermediate/Signing CA Certificate	CA certificate issued to a subordinate CA
5	Signature Certificate	Subscriber certificate used to verify signatures.
6	Key Management Certificate	Subscriber certificate used to perform key management operations (e.g., key transport using RSA or Diffie-Hellman key agreement).

- Mandatory and optional extensions of certificates and CRLs
- All fields and extensions listed should be implemented.
- Extensions that are not mandatory or optional should not be included." – [3]

Proposed Federal Profiles for IGCA

Minimal certificate profiles for federated space PKI with RFC5280 standardised extensions (M – Mandatory, O – Optional, Empty - Disallowed)

Extension	Self-Signed	Self-Issued	Cross	Intermediate	Signature	Key Exchange
Authority Key Identifier		М	M	М	M	M
Subject Key Identifier	М	М	M	М	M	M
Key Usage	M (critical)					
Certificate Policies		М	M	М	M	М
Policy Mappings			M			
Subject Alternative Name	0	0	0	0	0	0
Issuer Alternative Name						
Subject Directory Attributes						
Basic Constraints	M (critical)	M (critical)	M (critical)	M (critical)		
Name Constraints				O (critical)		
Policy Constraints			M (critical)	O (critical)		
Extended Key Usage					0	0
CRL Distribution Points		М	M	M	М	M
Inhibit anyPolicy			M (critical)	O (critical)		
Delta CRL Distribution Point						
Authority Information Access		М	M	М	M	М
Subject Information Access	М	М	М	М		

Space Considerations

- Constrained space systems often can't support full RFC 5280 validation or complex X.509 profiles
- Rigid, minimal certificate designs help meet hardware and mission-specific limitations
- Fixed algorithms, fixed-length subject/issuer fields, and minimal extensions reduce parsing complexity
- Mission-specific adaptations are sometimes unavoidable, risking federation-wide inconsistency
- **Conclusion:** Proposed profiles offer a structured foundation for IGCA, but broader alignment and standardisation are needed to address diverse mission requirements

A Tool for Natively Signed C509

- Functional requirements:
 - O Generate, sign, verify C509 certs, CSRs, CRLs
 - O CLI mirroring OpenSSL workflows (subset)
 - O Support ML-DSA, ML-KEM, and hybrid (ECDSA, ECDH)
- Non-functional requirements
 - O Deterministic CBOR encoding, no dynamic memory
 - O Minimal C++: avoid inheritance, dynamic dispatch, exceptions
 - Permissive MIT License, unit-tested core (structures, codecs)
 - O Integrated schema-driven generation with zcbor
- Command-line interface (CLI)
 - O Commands: genpkey, req, crl, parse
 - O OpenSSL-like flags: e.g., -key, -subj, -days, -set_serial

crypto

core

argparse

brotti

Legend:

transitive dependency
private dependency
c509-native module
external library

c509-native Design
Usage: c509_cli req [--help] [--version] [-in VAR] [-verify] [-new] [-c509] [-CA VAR] [-CAkey

VAR] [-subj VAR] [-days VAR] [-set_serial VAR] [-addext VAR...] [-key VAR] [-out VAR] [batchl [-compressed] Optional arguments: -h. --help shows help message and exits -v, --version prints version information and exits C509 request input file -verify Verify self-signature on the request -new -c509 Output an C509 certificate structure instead of a cert request -CA Issuer cert to use for signing a cert, implies -c509 -CAkey Issuer private key to use with -CA Specify the subject (Distinguished Name) in OpenSSL format: "/C=XX/ST=State/ L=City/O=Organization/OU=OrgUnit/CN=CommonName/emailAddress=email@example.com". -days Number of days cert is valid for. Default: 365 days [nargs=0..1] [default: -set_serial Serial number to use -addext Additional cert extension key=value pair [nargs: 0 or more]

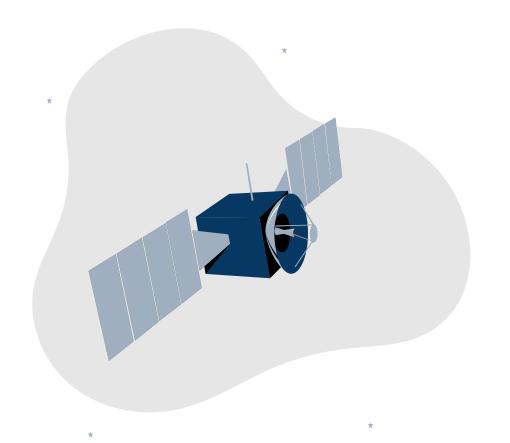
Key for signing, and to include unless -in given

Do not ask anything during request generation

-key

-out

-batch


-compressed

Output file

Use Brotli compression

Results

X.509 vs. C509 Comparative Analysis

C509 prevents structural encoding overhead

X.509	C509	DER	CBOR
Certificate	Certificate	4	1
tbsCertificate		4	0
version	version	5	1
serialNumber	serialNumber	- 3	2
- signature		12	1
issuer (commonName)		28	Ī Ī
│		<u>-</u> 2	ō
notBefore	notBefore	17	5
notAfter	notAfter	17	<u>-</u> 9
subject (commonName)	— subject (commonName)	28	16
		2	0
algorithm algorithm	— publicKeyAlgorithm	21	1
subjectPublicKey	— publicKeyValue	68	67
extensions	extensions	4	Ī Ī
keyUsage	├— keyUsage	16	3
— basicConstraints	— basicConstraints	17	2
subjectKeyIdentifier	subjectKeyIdentifier	31	22
subjectInformationAccess	subjectInformationAccess	58	34
		12	ō
└— signatureValue	└— signatureValue	75	- 66

- C509 prevents structural encoding overhead
- C509 removes duplication
 - o A self-signed certificate will mark the issuer as *null*
 - o *signatureAlgorithm* is no longer duplicated

X.509	C509	DER	CBOR
Certificate	Certificate	4	1
tbsCertificate		4	ō
version	version	- 5	1 1
serialNumber	serialNumber	3	<u>-</u> 2
- signature		12	<u> </u>
issuer (commonName)	issuer (commonName)	28	1
— validity		2	0
notBefore	notBefore	17	5
│	notAfter	17	9
subject (commonName)		28	16
subjectPublicKeyInfo		<u>-</u> 2	ō
algorithm	publicKeyAlgorithm	21	1
subjectPublicKey	— publicKeyValue	68	67
extensions	extensions	- - -	<u>1</u>
keyUsage	├── keyUsage	16	<u>-</u> <u>3</u>
basicConstraints	— basicConstraints	_ <u>1</u> 7 -	<u>-</u> <u>-</u>
subjectKeyldentifier	subjectKeyldentifier	31	
subjectInformationAccess	subjectInformationAccess	58	34
		12	Ō
signatureValue	signatureValue	75	66

- C509 prevents structural encoding overhead
- C509 removes duplication
 - o A self-signed certificate will mark the issuer as null
 - o signatureAlgorithm is no longer duplicated
- C509 optimises extension, signature and public key encoding
 - o e.g., point compression for ECC

X.509	C509	DER	CBOR
Certificate	Certificate	4	1
tbsCertificate		4	ō
version	version	5	1
serialNumber	serialNumber	<u>-</u> 3	<u>-</u> 2
- signature	signatureAlgorithm	12	1
issuer (commonName)	issuer (commonName)	28	1
— validity		<u>-</u> 2	ō
notBefore	notBefore	17	5
└── notAfter	notAfter	17	<u>-</u> 9
— subject (commonName)	subject (commonName)	28	16
		<u>-</u> - <u>-</u> - <u>-</u>	ō
algorithm	publicKeyAlgorithm	21	1
subjectPublicKey	publicKeyValue	68	67
extensions	extensions	4	1
— keyUsage	├── keyUsage	16	
— basicConstraints	— basicConstraints	17	<u>-</u> <u>-</u>
subjectKeyldentifier	- subjectKeyIdentifier	31	22
subjectInformationAccess	subjectInformationAccess	58	34
		12	ō
─_ signatureValue	signatureValue	75	66

- C509 prevents structural encoding overhead
- C509 removes duplication
 - o A self-signed certificate will mark the issuer as null
 - o signatureAlgorithm is no longer duplicated
- C509 optimises extension, signature and public key encoding
 - o e.g., point compression for ECC
- C509 defines registries for extensions, attributes and policies to replace verbose OIDs with one integer
 - C509 saves at least 6 bytes / replaced OID

(.509	C509	DER	CBOF
Certificate	Certificate	4	
— tbsCertificate		4	(
version	version	5	
serialNumber	serialNumber	<u>-</u> 3	
signature	signatureAlgorithm	12	
issuer (commonName)	issuer (commonName)	28	
— validity		<u>-</u> - <u>-</u> -	
notBefore	notBefore	_ <u>17</u>	
notAfter	notAfter	17	
— subject (commonName)	subject (commonName)	28	1
		<u>-</u> - <u>-</u> -	
algorithm	publicKeyAlgorithm	21	
subjectPublicKey	publicKeyValue	68	- 6
extensions	extensions	- 4	
keyUsage	├── keyUsage	16	
— basicConstraints	— basicConstraints	17	
subjectKeyIdentifier	subjectKeyIdentifier	31	2
└── subjectInformationAccess	subjectInformationAccess	58	- 3
— signatureAlgorithm		12	T
— signatureValue	└── signatureValue	75	6

X.509 vs. C509 – Object Size

Certificate sizes (bytes) and Brotli compression rates (%) for traditional and PQ algorithms

Certificate	Size (bytes)			Compression (%)				
Certificate	X.509	C509	Red. (%)	X.509	C509			
	ECDSA/ECDH with secp256r1							
Self-Signed	424	232	45.3	16.7	-1.7			
Self-Issued	578	323	44.1	20.9	10.8			
Cross	631	358	43.2	16.0	12.3			
Intermediate	581	334	42.5	24.6	13.2			
Signature	497	290	41.6	14.3	4.5			
Key Exchange	491	284	42.1	14.7	1.1			
		ML-DS	A:44					
Self-Signed	4019	3 855	4.1	1.3	0.0			
Self-Issued	4 174	3 946	5.5	3.3	1.1			
Cross	4 2 2 7	3 981	5.8	3.1	1.3			
Intermediate	4 177	3 957	5.3	3.1	1.2			
Signature	4 094	3 913	4.4	1.4	0.3			
Key Exchange	4 0 7 6	3 945	3.2	1.2	0.3			

- C509 savings stem from CBOR encoding, OID removal, and structural optimisations
- Compression shows X.509 has more redundancy than C509

Absolute size reductions (bytes) for pure PQ/hybrid composite end-entity certificates

Signature	Public Key	X.509	C509	Difference
	Security Level 1/2			
mldsa44	mldsa44	4 094	3913	181
mldsa44	mldsa44_ecdsa_p256	4 173	3 980	193
mldsa44	mlkem512	3 5 7 6	3 395	181
mldsa44	ecdh_p256_mlkem512	3 647	3 466	181
mldsa44_ecdsa_p256	mldsa44	4 181	3 998	183
mldsa44_ecdsa_p256	mldsa44_ecdsa_p256	4 259	4064	195
mldsa44_ecdsa_p256	mlkem512	3 664	3 4 7 9	185
mldsa44_ecdsa_p256	ecdh_p256_mlkem512	3 734	3 550	184
Security Level 3				
mldsa65	mldsa65	5 623	5442	181
mldsa65	mldsa65_p256	5702	5 509	193
mldsa65	mlkem768	4 849	4 668	181
mldsa65_ecdsa_p256	mldsa65	5710	5 528	182
mldsa65_ecdsa_p256	mldsa65_p256	5 7 9 0	5 593	197
mldsa65_ecdsa_p256	mlkem768	4 936	4 753	183
	Security Level 5			
mldsa87	mldsa87	7 581	7 4 0 0	181
mldsa87	mldsa87_ecdsa_p384	7 692	7 499	193
mldsa87	mlkem1024	6 551	6370	181
mldsa87_ecdsa_p384	mldsa87	7 700	7517	183
mldsa87_ecdsa_p384	mldsa87_ecdsa_p384	7811	7616	195
mldsa87_ecdsa_p384	mlkem1024	6 6 7 0	6487	183

 C509 is inherently limited by PQ cryptographic payloads CRL sizes (bytes) and Brotli compression rates (%) for traditional and PQ algorithms

and					
Revocations		Size (bytes)	Comp	ression (%)
Revocations	DER	CBOR	Red. (%)	DER	CBOR
ECDSA/ECDH with secp256r1					
1	183	107	41.5	0.5	-3.7
10	413	197	52.3	26.2	-2.0
100	2 664	1 098	58.8	54.8	6.0
1 000	25 159	10 100	59.9	60.8	10.7
10 000	250 118	100 099	60.0	62.1	12.2
20 000	500 066	200 099	60.0	62.4	12.3
30 000	750 035	300 100	60.0	62.5	12.3
		ML-DSA	1:44		
1	2 538	2 466	2.8	0.6	-0.2
10	2 766	2 5 5 6	7.6	3.0	0.0
100	5 017	3 457	31.1	28.7	1.0
1 000	27 512	12 458	54.7	55.6	8.6
10 000	252 471	102 458	59.4	61.5	11.8
20 000	502 419	202 458	59.7	62.1	12.1
30 000	752 388	302 458	59.8	62.3	12.2

- CBOR CRLs cut size vs. DER through efficient time encoding
- PQ signature overhead is minor for large CRLs

X.509 vs. C509 - Software Complexity Cesa

Logical Lines of Code (LLOC)

Measures code size; higher → more storage, maintenance, testing.

Cyclomatic Complexity (CCN)

Counts independent execution paths; higher → harder testing, more bug risk.

Halstead Volume

➤ Captures token-level cognitive load; larger volume → more code and logic.

Halstead Difficulty

Estimates comprehension effort; sensitive to unique vs. total token ratio

Function Count

Counts declared functions; shows modularity, useful for context.

Corpus

Implementation	Lang.	Profile	Description
x509-parser ²	С	X.509	ANSSI, open-source, custom, runtime-error-free parser-only implementation (no serialisation) including the DER decoding layer and no external dependencies, formally verified using Frama-C and ACSL annotation comments that do not affect the analysis [9].
ASN1C (generated) ³	С	X.509	ASN.1 schema [6] generated parser and serialiser using the commercial Objective Systems asn1c compiler generating industry-grade code for BER/DER with the encoding layer delivered as a pre-compiled library.
c509-native ⁴	(C-like) C++	C509	The custom parser and serialiser proposed in this work, relying on zcbor for the encoding layer, optimised for embedded systems (Chapter 5).
zcbor (generated) ⁵	С	C509	CDDL schema [8] generated parser using the open- source zcbor generator producing low-footprint C en- coders/decoders for CBOR.

X.509 vs. C509 – Software Complexity Cesa TuDelft

Comparison of certificate and CRL parser(-serializer) implementations

Implementation	Total LLOC	Mean CCN	Total CCN	Total Volume	Median Diff	Q-95 Diff	Func Count				
Setting 1: Parser-only including binary encoding layer (Tool 1: ccccc)											
x509-parser	8019	7.80	1 622	243 775.46	28.67	62.28	208				
c509-native	1 939	2.99	535	66 309.72	7.88	25.14	179				
Setting 1: Parser-only including binary encoding layer (Tool 2: rust-code-analysis)											
x509-parser	7 432	7.69	1 630	214 955.33	26.39	56.57	212				
c509-native	1 346	3.34	565	55 192.19	7.50	25.23	169				
Setting 2: Parser-only excluding binary encoding layer (Tool 1: ccccc)											
ASN1C (generated)	4611	6.73	1 090	181 210.87	12.23	52.73	162				
zcbor (generated)	538	9.02	379	47 710.39	12.29	16.36	42				
Setting 2: Parser-only excluding binary encoding layer (Tool 2: rust-code-analysis)											
ASN1C (generated)	4 421	6.73	1 090	161 474.18	10.80	47.62	162				
zcbor (generated)	243	10.21	429	35 456.66	10.47	14.31	42				
Setting 3: Parser and serializer excluding binary encoding layer (Tool 1: ccccc)											
ASN1C (generated)	6991	7.09	1 752	277 721.04	19.72	48.92	247				
zcbor (generated)	1 041	7.70	647	89 113.70	11.84	16.36	84				
Setting 3: Parser and serializer excluding binary encoding layer (Tool 2: rust-code-analysis)											
ASN1C (generated)	6389	7.09	1 752	247 644.75	17.60	45.33	247				
zcbor (generated)	441	8.94	751	65 836.81	10.45	14.80	84				

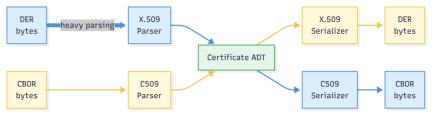
X.509 vs. C509 - Software Complexity Cesa

• **Smaller codebase:** C509 parsers show significantly lower LLOC and CCN vs. X.509, improving verifiability and testability.

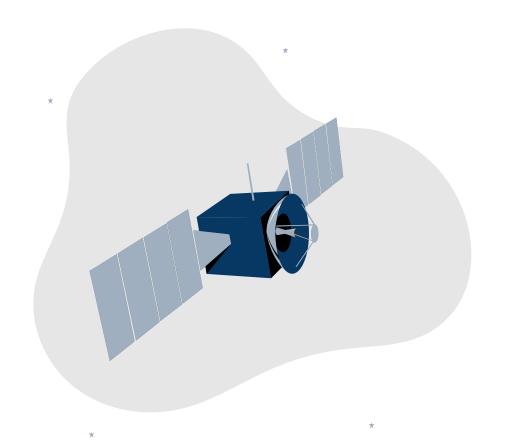
 Lower token complexity: Halstead Volume and Difficulty decrease notably, reducing token-level complexity and enhancing maintainability.

Comparison of certificate and CRL parser(-serializer) implementations

Implementation	Total LLOC	Mean CCN	Total CCN	Total Volume	Median Diff	Q-95 Diff	Func Count				
Setting 1: Parser-only including binary encoding layer (Tool 1: ccccc)											
x509-parser	8 0 1 9	7.80	1 622	243 775.46	28.67	62.28	208				
c509-native	1 939	2.99	535	66 309.72	7.88	25.14	179				
Setting 1: Parser-only including binary encoding layer (Tool 2: rust-code-analysis)											
x509-parser	7 432	7.69	1 630	214 955.33	26.39	56.57	212				
c509-native	1 346	3.34	565	55 192.19	7.50	25.23	169				
Setting 2: Parser-only excluding binary encoding layer (Tool 1: ccccc)											
ASN1C (generated)	4611	6.73	1 090	181 210.87	12.23	52.73	162				
zcbor (generated)	538	9.02	379	47 710.39	12.29	16.36	42				
Setting 2: Parser-only excluding binary encoding layer (Tool 2: rust-code-analysis)											
ASN1C (generated)	4 421	6.73	1 090	161 474.18	10.80	47.62	162				
zcbor (generated)	243	10.21	429	35 456.66	10.47	14.31	42				
Setting 3: Parser and serializer excluding binary encoding layer (Tool 1: ccccc)											
ASN1C (generated)	6991	7.09	1 752	277 721.04	19.72	48.92	247				
zcbor (generated)	1 041	7.70	647	89 113.70	11.84	16.36	84				
Setting 3: Parser and serializer excluding binary encoding layer (Tool 2: rust-code-analysis)											
ASN1C (generated)	6389	7.09	1 752	247 644.75	17.60	45.33	247				
zcbor (generated)	441	8.94	751	65 836.81	10.45	14.80	84				


*

C509 Space Considerations

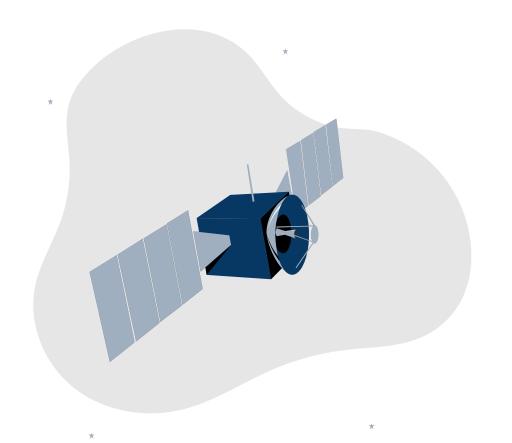

- **Natively Signed:** Direct signatures over CBOR data; removes ASN.1/DER dependency but limits interoperability in federated X.509 environments.
- Re-encoded: DER-signed certificates re-encoded to CBOR; maintains X.509 compatibility.
- **DER Parsing Elimination**: Ground gateway parses heavy DER, converts to CBOR (blue); spacecraft parses CBOR, serialises DER for signature verification (yellow).
- Standardisation limitation: C509 is still an IETF draft; lacks mature revocation standards.
- Limited bandwidth gains: While CRLs shrink notably, PQ certificate saving are limited.
- Hardware constraints: Offset-based parsing does not benefit from software simplicity.

X.509 vs. C509 Parsing and Serialising.

Discussion

Implications Limitations

Discussion



- Designing a unified profile is challenging, requiring alignment of cryptography, encoding, profiles and policies.
- Progress depends on broad multi-stakeholder agreement; C509's promise is limited by early maturity and low adoption.
- **Current standards** could benefit from **updates and further detailing** to aid the interoperability, implementation and deployment of future federated PKI.
- Patching X.509 often leads to over-restriction, delivering little real compatibility.
- Diverging incompatible complicates **COTS integration** and creates technical debt if future interoperability is needed.
- `c509-native is a prototype and lacks support for some algorithms

Conclusion

Future Work Summary

Conclusions

- Reviewed and proposed guidelines on PQ formats
- Proposed a preliminary minimal set of extension profiles tailored for CCSDS IGCA
- Developed *c509-native*, an open-source prototype
- C509 cuts size (~60% CRLs yet negligible for PQ certificates) and software complexity (~80% smaller codebase, 2–3x lower cyclomatic complexity) vs. X.509.
- Proposed a potential gateway-based re-encoding C509 deployment; C509 adoption is limited by early maturity
- Provided insights to help standardisation bodies shape minimal, interoperable space PKI profiles for PQ migration and cross-domain operation.

Future Work

- Main bottleneck in space PKIs: certificate validation
- SCVP (RFC5055) enables **delegated validation**; used in commercial and mobile networks
- Signed/MAC-protection, nonces, and client-specified time references
- **Relayed requests** (e.g., lunar-to-Earth)
- Further research is needed on latency, security, and compatibility for space

THANK YOU!

Questions?

esa

. Contact

