
Secure Satellite Software-Defined 
Payloads with High-Assurance 
Post-Quantum Cryptography

K. Bhargavan, T. Gazagnaire, F. Kiefer, V. Robles



The
Middleware Gap



● SDLS-(EP) is fundamental, but..

○ Key distribution left to operators

○ Most implementations private

○ Doesn’t address post-quantum risks

Secure comms & cryptography





Performant
Secure
Ad-hoc
Constrained

General-purpose
Reusable
Made with ground in mind
Secure?
Performance overhead



Unikernels



Hardware
FPGA, GPUs, etc.

Instruction sets
RISC/CISC , AVX, etc.

Software
Networking, graphs, 

etc.



Typical OS :
general-purpose, “non-optimal”

User-space

Libraries

Kernel



User-space

Libraries

Kernel

Known user-space:
dependency selection

Typical OS :
general-purpose, “non-optimal”



Specialized micro-VM

UNIKERNEL

Known user-space:
dependency selection



Hypervisor

Hardware

app

VM

OS

libs

app

OS

libs

VM

Hardware

OS

Container

app

bins / libs

app

bins / libs

Container

Hypervisor † Hypervisor

Hardware

Unikernel Unikernel

Full OS, virtualized Containers Unikernels



Port an image inference application

○ 100% replication

○ 20x smaller binary size

○ 2.5x smaller memory footprint

○ 20% faster runtime

○ Easy to deploy and update

Input

Output

AI SW



OS-as-library and security



Interfaces and implementations



MirageOS

● POSIX + Linux ABI

● Performant but less portable

● C/C++

● Clean slate interfaces

● Portable but less performant

● OCaml + Formal Methods





● Networking and cryptography = simple module in unikernel

○ Updatable

○ Customizable

○ Replaceable along well-defined interfaces

● Within host

○ Need for secure channel establishment

○ Need for secure updates of unikernels

Use cases



Open-source, formally 
verified cryptography



● Formally verified cryptographic 

primitives
○ AEAD, ECDH, Signatures, Hashes, 

KDF, Ciphers, MACS

● Written, specified, verified in F*

● Compiled to C

HACL/HACL*



● High-level, unified cryptographic 

Rust library

● Supports both classic and 

post-quantum crypto (ML-KEM, 

ML-DSA)

● Formally verified
○ Brings together verified artifacts (inc. 

HACL*)

○ Itself verified with the HAX toolchain: 

runtime safe, no panic, secret 

independent

Libcrux



Either:

● Use Rust as-is
○ Signal

● Compile down to C
○ Firefox, OpenSSH, Linux, WireGuard, ARM mbed, Python, etc.

● Cryptographic provider for other libraries

Libcrux usage



● TLS 1.3 implementation

● Formally verified
○ Runtime safe, no panic

○ Correctness of serialization, parsing

○ Safe from classes of symbolic protocol attacks

● Post-quantum safe

BERTIE



Opportunities for integration 
with unikernels



● Key Establishment for SDLS-EP
○ Use libcrux/BERTIE to bootstrap SDLS comms

● Authenticated Channels for Quantum Key Distribution
○ ML-DSA/ML-KEM-based channel to distribute keys

● Signed software updates
○ ML-DSA to ensure unikernel authenticity

● Secure channels between payloads and users
○ Make BERTIE available to unikernels

Use cases



● Unikernels ensure isolation of software payloads

● Management of unikernels is a security-critical component

● Implemented as Proof-of-Concept in SpaceOS distribution component
○ OCaml bindings available

Signed Software Updates



● Leverage MirageOS’ high-level interfaces and 

type system
○ Libcrux as alternative crypto provider

○ BERTIE as alternative TLS implementation

● Whole crypto stack remains patchable with a 

software update

● Allow payload developers to choose and 

customize their stack

Secure channels between payloads and users

MirageOS



Conclusion



● Memory safety, and formal methods¹

● Security opportunity of unikernels, and their clean slate interfaces

● Post-quantum cryptography, and open implementations

○ Next: actually tackle SDLS

Conclusion

¹Read “A Manifesto for Applicable Formal Methods”, M. Gleirscher, J. van de Pol, J. Woodcock

MirageOS




