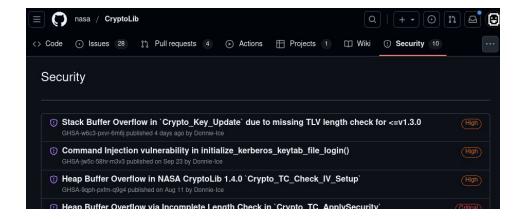
Secure Satellite Software-Defined Payloads with High-Assurance Post-Quantum Cryptography

K. Bhargavan, T. Gazagnaire, F. Kiefer, V. Robles



The Middleware Gap

Secure comms & cryptography

- SDLS-(EP) is fundamental, but..
 - Key distribution left to operators
 - Most implementations private
 - Doesn't address post-quantum risks

Low Flexibility

High Resource Efficiency

Controlled

Flexible

Performant Secure

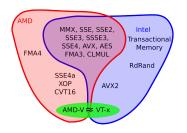
Ad-hoc

Constrained

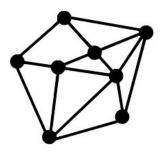
General-purpose

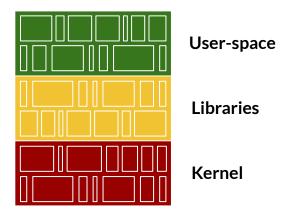
Reusable

Made with ground in mind

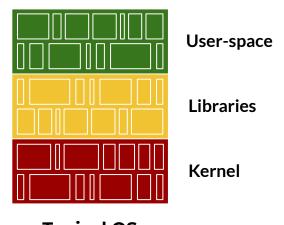

Secure?

Performance overhead

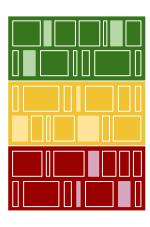

Unikernels


Hardware FPGA, GPUs, etc.

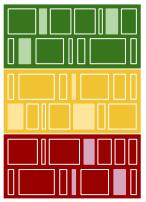
Instruction sets
RISC/CISC, AVX, etc.



SoftwareNetworking, graphs, etc.

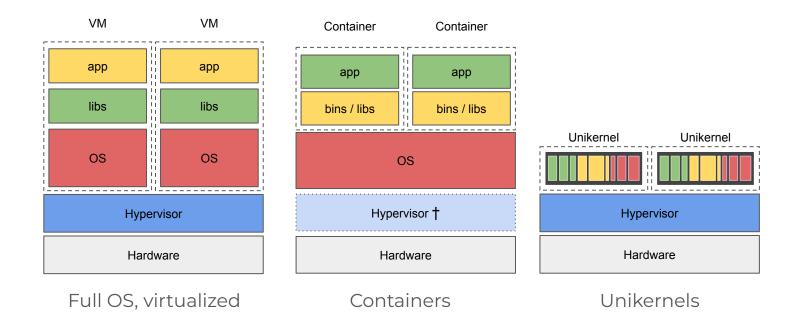


Typical OS:

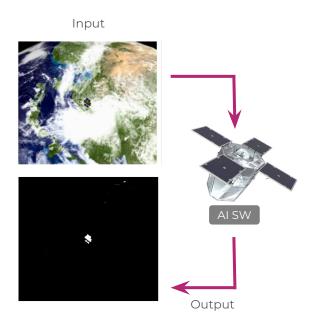

general-purpose, "non-optimal"

Typical OS: general-purpose, "non-optimal"

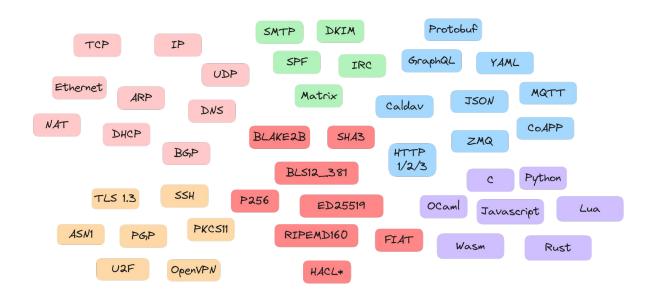
Known user-space: dependency selection


UNIKERNEL

Specialized micro-VM


Known user-space:

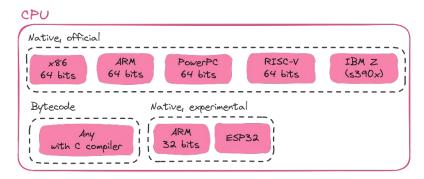
dependency selection

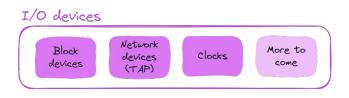

Port an image inference application

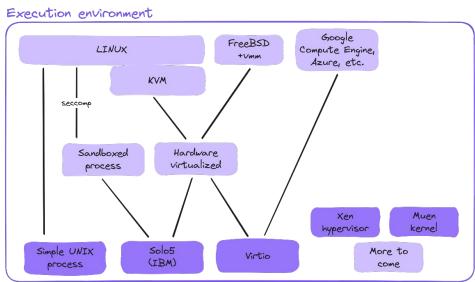
- o 100% replication
- o 20x smaller binary size
- 2.5x smaller memory footprint
- 20% faster runtime
- o Easy to deploy and update

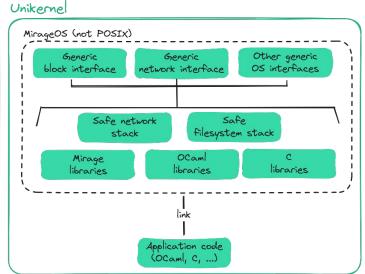
OS-as-library and security

Interfaces and implementations

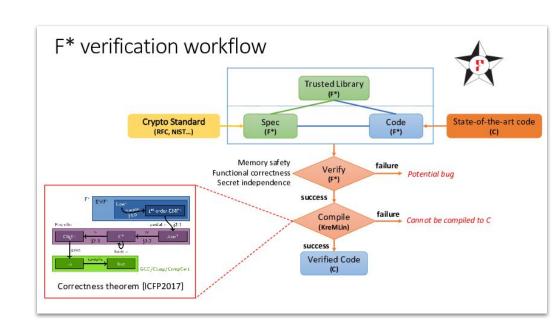





- POSIX + Linux ABI
- Performant but less portable
- C/C++

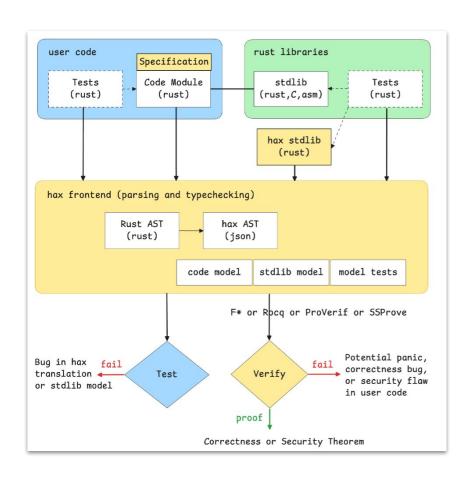

- Clean slate interfaces
- Portable but less performant
- OCaml + Formal Methods

Use cases


- Networking and cryptography = simple module in unikernel
 - Updatable
 - Customizable
 - **Replaceable** along well-defined interfaces

- Within host
 - Need for secure channel establishment
 - Need for secure updates of unikernels

Open-source, formally verified cryptography


HACL/HACL*

- Formally verified cryptographic primitives
 - AEAD, ECDH, Signatures, Hashes,
 KDF, Ciphers, MACS
- Written, specified, verified in F*
- Compiled to C

Libcrux

- High-level, unified cryptographic
 Rust library
- Supports both classic and post-quantum crypto (ML-KEM, ML-DSA)
- Formally verified
 - Brings together verified artifacts (inc. HACL*)
 - Itself verified with the HAX toolchain:
 runtime safe, no panic, secret
 independent

Libcrux usage

Either:

- Use Rust as-is
 - Signal
- Compile down to C
 - Firefox, OpenSSH, Linux, WireGuard, ARM mbed, Python, etc.
- Cryptographic provider for other libraries

BERTIE

- TLS 1.3 implementation
- Formally verified
 - o Runtime safe, no panic
 - Correctness of serialization, parsing
 - Safe from classes of symbolic protocol attacks
- Post-quantum safe

Opportunities for integration with unikernels

Use cases

- Key Establishment for SDLS-EP
 - Use libcrux/BERTIE to bootstrap SDLS comms
- Authenticated Channels for Quantum Key Distribution
 - ML-DSA/ML-KEM-based channel to distribute keys
- Signed software updates
 - ML-DSA to ensure unikernel authenticity
- Secure channels between payloads and users
 - Make BERTIE available to unikernels

Signed Software Updates

- Unikernels ensure isolation of software payloads
- Management of unikernels is a security-critical component

- Implemented as Proof-of-Concept in SpaceOS distribution component
 - o OCaml bindings available

Secure channels between payloads and users

- Leverage MirageOS' high-level interfaces and type system
 - Libcrux as alternative crypto provider
 - BERTIE as alternative TLS implementation
- Whole crypto stack remains patchable with a software update
- Allow payload developers to choose and customize their stack

Conclusion

Conclusion

Memory safety, and formal methods¹

• Security opportunity of unikernels, and their clean slate interfaces

Post-quantum cryptography, and open implementations

Next: actually tackle SDLS

