‘&
\iy

Secure Satellite Software-Defined &\**
Payloads with High-Assurance }
Post-Quantum Cryptography |

K. Bhargavan, T. Gazagnaire, F. Kiefer, V. Robles

#" Parsimoni C/R% BE N/



The
Middleware Gap



Secure comms & cryptography

e SDLS-(EP) is fundamental, but..
o Key distribution left to operators
o Most implementations private

o Doesn't address post-quantum risks

= O nasa CryptoLib

<> Code () Issues 28 {9 Pullrequests 4 (® Actions [ Projects 1 0 Wiki ) Security 10

Security

() Stack Buffer Overflow in "Crypto_Key_ Update’ due to missing TLV length check for <=v1.3.0

SHSA-w OXVI-61T

© Command Injection vulnerability in initialize_kerberos_keytab_file_login()

() Heap Buffer Overflow in NASA CryptoLib 1.4.0 ‘Crypto_TC_Check_IV_Setup’
HSA-9gph-pxfm-q9g4 publishe Aug 11 by Donnie-Ice




High Flexibility

Low Flexibility

Adapted ground frameworks

o
Linux+K8s

o
Linux+K3s

[ )
Linux

Low Resource Efficiency

"Legacy" solutions

set4

RTgMS

va%rks

PikgOS

High Resource Efficiency



Controlled Flexible
- =

Performant General-purpose
Secure Reusable

Constrained
Performance overhead



Unikernels



Hardware
FPGA, GPUs, etc.

MMX, SSE, SSE2,

SSESNCCCESS
SSE4, AVX, AES
FMA3, CLMUL

Intel
Memory

RdRand

Instruction sets

RISC/CISC, AVX, etc.

Transactional

Software
Networking, graphs,
etc.



I:H]DDHDD User-space
JUL 000

Libraries

L JO0dG

Kernel

JLJUIL J0L

Typical OS:
general-purpose, “non-optimal”



(IO IO
I THCTI0C ]

Libraries

L JO0dG

I i

Kernel

JLJUIL J0L

JL_ oIt

Typical OS: Knowhn user-space:
general-purpose, “non-optimal” dependency selection



UNIKERNEL

— [LLIIT]

I:”]I:ll[“:”] Specialized micro-V

JLJUIL_ I

Known user-space:
dependency selection



VM VM Container Container

Hardware Hardware Hardware

Full OS, virtualized Containers Unikernels



Port an image inference application

o 100% replication

o 20% faster runtime

o Easyto deploy and update




OS-as-library and security



Interfaces and implementations

SMTP DKIM Protobuf
TCcP i
SPF p— GrraphQL YAML
UDP
Ethemet
NS Caldav
NAT CoAPP
DHCP BLAKE2B SHA3 ZMa .
BeP HTTP
BLs12_3%1 VeV ¢ Python
S 1. SSH
KLl Fass ED25519 OComl o mseript o
ASH1 PeP Bkt RIPEMDI60 e
Wasm Rust

UF OpenVPN HACL*



Lnikraft

POSIX + Linux ABI

Performant but less portable

C/C++

J

SpaceOS

VvV Vv
MirageOS

e Clean slate interfaces
e Portable but less performant

e OCaml+ Formal Methods



CPU

\
Bl{tecoo(e Native, e)cpeﬁmental
----------- \ /__---—-----_-\
R e
| [ 1
|
\ )\ e ’

Execution environment

@

LINUX

I/0 devices

-

More to
come

Unikeme_l

—_——, e e e e e, ——————




Use cases

e Networking and cryptography = simple module in unikernel
o Updatable
o Customizable

o Replaceable along well-defined interfaces

e \Within host
o Need for secure channel establishment

o Need for secure updates of unikernels



Open-source, formally
verified cryptography



HACL/HACL*

F* verification workflow do
Formally verified cryptographic ' v
P &

primitives == /7'\ ]

o AEAD, ECDH, Signatures, Hashes,

. Memory safety » "
KD F, Ci P he rs, MACS Functional r:orrectness < Ve".'fy "";;% potential bug
.. Secret independence \»\7(\“)///"’
Written, specified, verified in F* ‘"““?1, 7
-~ fu‘:";ﬂ? N ﬂ'ﬂ Cannot be compiled to C

g

success I

| Verified Code J
©

Compiled to C

Correctness theorem [ICFP2017]




Libcrux

High-level, unified cryptographic
Rust library

Supports both classic and
post-quantum crypto (ML-KEM,
ML-DSA)

Formally verified

o Bringstogether verified artifacts (inc.

HACL)

o Itself verified with the HAX toolchain:

runtime safe, no panic, secret

independent

rust libraries

user code '
Specification

Tests 3;, Code Module stdlib ‘_>J Tests
(rust) v (rust) (rust,C,asm) ] (rust)
R——— J —
& [ P |
hax stdlib
(rust)

hax frontend (parsing and typechecking)

Rust AST hax AST
(rust) (json)

code model stdlib model @ model tests

Fx or ﬁrcq or ProVerif or SSProve

X PN
D / \ . .
> / \ Potential
Bug in hax ~ fa11 g y N fail czriZCz:eszagiCI
translation «— Test p ( Verify >—— e f19,
or stdlib model \\\\\\v////// . % or security flaw
D > in user code

proof l

Correctness or Security Theorem




Libcrux usage

Either:

e Use Rust as-is

o Signal
e CompiledowntoC

o  Firefox, OpenSSH, Linux, WireGuard, ARM mbed, Python, etc.
e Cryptographic provider for other libraries



BERTIE

e TLS 1.3 implementation "A

e Formally verified "’ I I /5
o  Runtime safe, no panic '
o  Correctness of serialization, parsing

o Safe from classes of symbolic protocol attacks

e Post-quantum safe



Opportunities for integration
with unikernels



Use cases

e Key Establishment for SDLS-EP
o  Use libcrux/BERTIE to bootstrap SDLS comms

e Authenticated Channels for Quantum Key Distribution
o ML-DSA/ML-KEM-based channel to distribute keys

e Signed software updates
o  ML-DSA to ensure unikernel authenticity

e Secure channels between payloads and users

o Make BERTIE available to unikernels



Signed Software Updates

e Unikernels ensure isolation of software payloads

e Management of unikernels is a security-critical component

U oA

SpaceOS

e Implemented as Proof-of-Concept in SpaceOS distribution component

o OCaml bindings available



Secure channels between payloads and users

e |everage MirageOS' high-level interfaces and

type system

o  Libcrux as alternative crypto provider

o BERTIE as alternative TLS implementation
e \Whole crypto stack remains patchable with a .
software update erageOS
e Allow payload developers to choose and

customize their stack



Conclusion



Conclusion

e Memory safety, and formal methods!

5,': H A
vl v

e Security opportunity of unikernels, and their clean slate interfaces

Unikraft

MirageOS Space

e Post-quantum cryptography, and open implementations

o Next: actually tackle SDLS

1Read “A Manifesto for Applicable Formal Methods”, M. Gleirscher, J. van de Pol, J. Woodcock

/






