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The
Middleware Gap



Secure comms & cryptography

e SDLS-(EP) is fundamental, but..
o Key distribution left to operators
o Most implementations private

o Doesn't address post-quantum risks
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High Flexibility

Low Flexibility

Adapted ground frameworks

o
Linux+K8s

o
Linux+K3s

[ )
Linux

Low Resource Efficiency

"Legacy" solutions
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High Resource Efficiency
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Unikernels



Hardware
FPGA, GPUs, etc.

MMX, SSE, SSE2,

SSESNCCCESS
SSE4, AVX, AES
FMA3, CLMUL

Intel
Memory

RdRand

Instruction sets

RISC/CISC, AVX, etc.

Transactional

Software
Networking, graphs,
etc.
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Typical OS:
general-purpose, “non-optimal”
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Typical OS: Knowhn user-space:
general-purpose, “non-optimal” dependency selection



UNIKERNEL
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dependency selection



VM VM Container Container

Hardware Hardware Hardware

Full OS, virtualized Containers Unikernels



Port an image inference application

o 100% replication

o 20% faster runtime

o Easyto deploy and update




OS-as-library and security



Interfaces and implementations

SMTP DKIM Protobuf
TCcP i
SPF p— GrraphQL YAML
UDP
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BeP HTTP
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Lnikraft

POSIX + Linux ABI

Performant but less portable

C/C++

J

SpaceOS

VvV Vv
MirageOS

e Clean slate interfaces
e Portable but less performant

e OCaml+ Formal Methods
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Use cases

e Networking and cryptography = simple module in unikernel
o Updatable
o Customizable

o Replaceable along well-defined interfaces

e \Within host
o Need for secure channel establishment

o Need for secure updates of unikernels



Open-source, formally
verified cryptography



HACL/HACL*

F* verification workflow do
Formally verified cryptographic ' v
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o AEAD, ECDH, Signatures, Hashes,

. Memory safety » "
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Correctness theorem [ICFP2017]




Libcrux

High-level, unified cryptographic
Rust library

Supports both classic and
post-quantum crypto (ML-KEM,
ML-DSA)

Formally verified

o Bringstogether verified artifacts (inc.

HACL)

o Itself verified with the HAX toolchain:

runtime safe, no panic, secret

independent

rust libraries

user code '
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Tests 3;, Code Module stdlib ‘_>J Tests
(rust) v (rust) (rust,C,asm) ] (rust)
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(rust)
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Libcrux usage

Either:

e Use Rust as-is

o Signal
e CompiledowntoC

o  Firefox, OpenSSH, Linux, WireGuard, ARM mbed, Python, etc.
e Cryptographic provider for other libraries



BERTIE

e TLS 1.3 implementation "A

e Formally verified "’ I I /5
o  Runtime safe, no panic '
o  Correctness of serialization, parsing

o Safe from classes of symbolic protocol attacks

e Post-quantum safe



Opportunities for integration
with unikernels



Use cases

e Key Establishment for SDLS-EP
o  Use libcrux/BERTIE to bootstrap SDLS comms

e Authenticated Channels for Quantum Key Distribution
o ML-DSA/ML-KEM-based channel to distribute keys

e Signed software updates
o  ML-DSA to ensure unikernel authenticity

e Secure channels between payloads and users

o Make BERTIE available to unikernels



Signed Software Updates

e Unikernels ensure isolation of software payloads

e Management of unikernels is a security-critical component

U oA

SpaceOS

e Implemented as Proof-of-Concept in SpaceOS distribution component

o OCaml bindings available



Secure channels between payloads and users

e |everage MirageOS' high-level interfaces and

type system

o  Libcrux as alternative crypto provider

o BERTIE as alternative TLS implementation
e \Whole crypto stack remains patchable with a .
software update erageOS
e Allow payload developers to choose and

customize their stack



Conclusion



Conclusion

e Memory safety, and formal methods!
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e Security opportunity of unikernels, and their clean slate interfaces

Unikraft

MirageOS Space

e Post-quantum cryptography, and open implementations

o Next: actually tackle SDLS

1Read “A Manifesto for Applicable Formal Methods”, M. Gleirscher, J. van de Pol, J. Woodcock
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