

Semantic-Aware Anomaly Detection for Satellite-IoT Networks:

A Lightweight Transformer-Based Approach

Security for Space Systems (3S) Conference 2025

November 6, 2025

Junbeom Park¹, Zizung Yoon² and Jongsou Park¹

¹Department of Computer Engineering, Korea Aerospace University ²Department of Smart Drone Engineering, Korea Aerospace University

CONTENTS

- 1 Introduction
- 2 Related Work
- 3 Proposed Methodology
- 4 Experimental Results and Discussion
- **5** Conclusion and Future Work

Introduction

Architectural and Security Challenges

- Satellite—IoT networks face severe architectural and resource constraints, limiting the deployment of conventional security mechanisms.
 - Resource limitations and restricted access
 - Hinder timely software updates and end-to-end protection, exposing devices as vulnerable endpoints.
 - Segmented and heterogeneous architectures
 - Diverse operating systems and communication protocols hinder unified security enforcement across **ground**, **space**, and **user segments**.
 - Lack of built-in security features
 - Many IoT and user-segment devices omit **intrusion detection** or **encryption** due to *hardware* and *cost constraints*.
 - Absence of runtime anomaly detection
 - Limits real-time response and structured threat assessment.
- These challenges emphasize the urgent need for lightweight and integrated security mechanisms specifically tailored to Satellite-IoT environments.

Motivation for Semantic-Aware Detection

- **Traditional IDSs** fail to capture **semantic dependencies** across structured packet fields.
 - Rule-based or statistical IDSs
 - Restricted to syntactic validation and unable to interpret **contextual relationships** among fields.
 - Deep learning-based IDSs
 - Computationally heavy and less robust when packets are incomplete or degraded.
- Proposed Semantic-Aware Approach for Satellite-IoT
 - Sentence-based packet representation
 - Converts structured packets into natural-language-like sentences preserving contextual semantics.
 - Lightweight DistilBERT model
 - Performs **semantic inference** with *reduced latency* and *memory usage*.
 - Scenario-driven dataset design
 - Constructed with 15 protocol- and security-aware fields derived from CSP, CCSDS, MIOTY, and TON-IoT specifications.
- This approach enables accurate and interpretable anomaly detection, ensuring practical feasibility for real-time deployment in Satellite-IoT systems.

Related Work

Related Work and Research Gap

Existing studies on Satellite-IoT security

- Rule-based and statistical IDSs focus on syntax-level anomalies in telemetry and command traffic.
- They lack semantic reasoning and do not adapt well to multi-segment Satellite-IoT links.

LLM-based detection approaches

- Language-model-based IDSs capture contextual dependencies, improving detection accuracy.
- However, most rely on synthetic datasets and overlook efficiency under resource constraints.

Identified gaps

- Lightweight, real-time frameworks that encode protocol-level semantics for Satellite—IoT are still lacking.
- Validation under realistic, resource-constrained environments remains limited.

Our contribution

- We propose a DistilBERT-based semantic anomaly detection approach tailored for Satellite-IoT networks.
- The model learns inter-field dependencies in structured packets, enabling accurate and efficient detection even under missing-field conditions.

Proposed Methodology

End-to-End Process

Our detection pipeline integrates three main stages to achieve semantic-aware classification.

Packet-to-Sentence Construction

- Structured packets parsed into 15 protocol-aware fields (CSP, MIOTY, CCSDS, TON_IoT).
- Serialized into sentences preserving inter-field dependencies.

Semantic Inference & Anomaly Classification

- DistilBERT (6-layer) encodes contextual relations via
 WordPiece tokenization.
- [CLS] token output classified as Benign or Anomalous.

Attack Type Classification & Logging

- Anomalous packets categorized into Injection, Replay, or Privilege Abuse.
- Logged for forensic analysis and response.

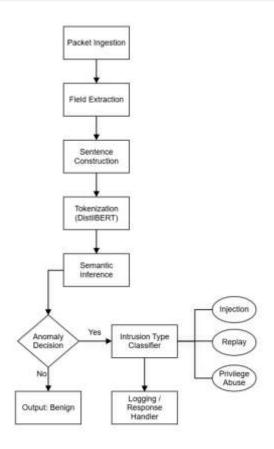


Fig. 1. End-to-end flow diagram of the proposed sentence-based intrusion detection process.

Protocol-Aware Packet Structure (15 Fields)

TABLE I
STRUCTURE AND DESCRIPTION OF THE 15-FIELD UAV-SATELLITE DATASET SCHEMA

Field Name	Description	Example Values		
timestamp	Packet generation time in ISO 8601 format	2025-07-01T03:15:20		
src / dst	Valid communication nodes from NORMAL_LINKS	gw l→iot, leo→gcs ^a		
priority	Message priority determined by msg_type	LOW, MEDIUM, HIGH, CRITICAL		
src_port / dst_port	Ports assigned per node from SRC_PORT_MAP / DST_PORT_MAP	gw1:1883, leo:3001 ^b		
src_region / dst_region	Region code from REGION_MAP	AS→AF, EQ→SP		
orbit_class	Orbit category derived from ORBIT_CLASS_MAP	LEO, MEO, N/A		
msg_type	Message type based on VALID_MSG_TYPES per src-dst pair	telemetry, data, command, status, ack, alerte		
payload_type	Field type determined by msg_type	TEMP, SIZE, MOVE, SIGNAL LOSS, NORMAL ^d		
payload	Formatted content generated per payload type	TEMP=24.5, command=RESET		
label	Class label for anomaly detection	Normal, Injection, Replay, Privilege Abuse, Jamming, Spoofing		
ttl (time-to-live)	TTL value based on src/dst role	64, 128, 200, 255		
flags	Control flags by msg_type	ACK, SYN, RST ^o		

b Port numbers are statically assigned per node based on system design; for example, ground nodes use ports in the 1000 range (e.g., gw1:1883), while space-segment nodes use ports in the 3000 range (e.g., leo:3001).

Design Overview

- Defines 15 protocol-aware fields combining temporal, spatial, and semantic attributes.
- Derived from CSP, MIOTY, CCSDS, and TON_IoT standards.

Field Groups

- Metadata node identity and timing (timestamp, src, dst, ports).
- Semantics protocol intent and control (msg_type, payload, priority, flags).
- Context orbital and security attributes (orbit_class, regions, ttl, label).

^c Allowed message types are predefined for each src-dst pair in the system design.

d Mapping: telemetry→{TEMP, HUM, POS, BATT}; data→{COORD, SIZE, DATA_TYPE, REF_ID}; command→{ACTIVATE, MOVE, RESET, ...}; ack→{RECEIVED, EXECUTED}; alert→{ANOMALY_DETECTED, ...}; status→{NORMAL, LOW_BATTERY, ...}.
g Flag options include ACK, PSH, ENC, SYN, and RST, as listed in FLAGS_BY_MSGTYPE.

Model Choice: DistilBERT for Semantic Inference

Motivation

- Satellite-IoT systems require on-board inference under strict CPU, memory, and power constraints.
- Full-scale LLMs such as BERT or RoBERTa offer strong contextual reasoning but are too heavy for real-time embedded deployment.
- An effective model must preserve semantic understanding while operating within limited computational resources.

Model Selection: DistilBERT

- Compact six-layer architecture retains BERT-level accuracy while reducing model size and inference latency.
- 40 % smaller and ~60 % faster than BERT, using ≈ 480 MB memory and ≈ 25 ms inference per packet on Jetson Nano / Raspberry Pi 4 with MIOTY-based sensor inputs.
- Maintains contextual reasoning across packet fields, enabling semantic anomaly detection in constrained edge environments.
- Lighter RNN- or CNN-based IDSs lack this field-level semantic awareness and fail to generalize.

Sentence-Based Representation and Semantic Encoding

Concept Overview

 Structured packets are converted into sentence-like representations, allowing DistilBERT to capture contextual semantics and inter-field dependencies beyond conventional IDSs.

Example Sentences

- Normal: "Telemetry message from leo to gcs carrying TEMP=22.5 with priority HIGH and flag ENC at 2025-07-10T08:30:00Z."
- Privilege Abuse: "At 2025-07-10T08:45:12Z, node iot sent command=RESET to gcs with flag SYN, violating access control policies."

DistilBERT Encoding Process

- Tokenize → Decompose field-value pairs via WordPiece with [CLS]/[SEP] tokens.
- Encode → Six-layer Transformer models contextual relations among fields.
- Classify → [CLS] embedding produces an anomaly score and threat label.

Main Observation

 Sentence-based formulation bridges structured syntax and semantic reasoning, enabling accurate packetlevel anomaly detection in Satellite-IoT networks.

Semantic Inference and Threat Classification

Main Concept

 DistilBERT performs semantic reasoning over tokenized packet sentences and classifies them into four security-relevant categories reflecting real Satellite-IoT behaviors.

Threat Label Descriptions

- Normal: Packets follow expected communication flows with valid field values (src, dst, msg_type, payload).
 - Example: leo → gcs, msg_type = telemetry, payload = TEMP = 22.5, flag = ENC.
- Injection: Packets include malformed or semantically inconsistent payloads that violate protocol or structure rules.
 - Example: iot → gw1, msg_type = command, payload = CALIBRATE, flag = URG.
- Replay: Previously transmitted timestamps or payloads are reused, disrupting temporal consistency.
 - Example: uav → gw2, repeating telemetry with payload = POS = 37.4,127.1.
- Privilege Abuse: Low-privilege nodes (e.g., iot) issue control-level commands (e.g., RESET,
 SHUTDOWN) to high-privilege nodes (e.g., gcs), violating access policies.
 - Example: iot → gcs, command = SHUTDOWN.

Classifier Output and Logging

Classification Workflow

 The final [CLS] embedding from DistilBERT is passed to a softmax-based classification head, producing one of four threat labels that represent operational threat types in Satellite—IoT systems.

Process Summary

- [CLS] → Softmax: Computes the most probable threat class from semantic embeddings.
- Label Assignment: Classifies as Normal, Injection, Replay, or Privilege Abuse.
- **Logging:** Appends the predicted label with timestamp and metadata for forensic analysis.
- Modularity: The classifier is lightweight and can be retrained as new labels emerge.

Interpretation

 This stage consolidates semantic reasoning into an interpretable classification outcome, forming the bridge between sentence-level inference and system-level event analysis for situational awareness in Satellite-IoT networks.

EXPERIMENTAL RESULTS AND DISCUSSION

Dataset Construction

Dataset & Setup

- Dataset: 15-field Satellite—IoT packet dataset (25 K training / 10 K testing).
- Labels: Normal, Injection, Replay, Privilege Abuse.
- Sources: Derived from CSP, MIOTY, CCSDS, TON-IoT under unified protocol constraints.
- Model: DistilBERT-base-uncased, fine-tuned for four-class sentence classification.
- **Training:** AdamW (5 \times 10⁻⁵ LR), batch 16, 10 epochs, weighted cross-entropy.
- Metrics: Accuracy & F1-score (average of five runs).

Test Scenarios

- Evaluation performed on fully structured packets (5 K) and missing-field packets (5 K) to assess detection robustness.
- Each experiment was repeated five times with fixed train/test splits for consistent evaluation.

Robustness Evaluation Strategy

- Random 2–5 fields per packet were removed to simulate incomplete telemetry and corrupted payloads.
- DistilBERT maintained stable accuracy and semantic consistency under these incompleteinput conditions.

Computational Efficiency and Edge Feasibility

Experimental Setup

- Hardware: Intel Core i7-11700 CPU / 64 GB RAM / NVIDIA RTX 3060 (12 GB VRAM).
- Framework: Python 3.11 with PyTorch and Hugging Face Transformers.
- Training: 10 epochs, batch size = 16, sequence length = 128.
- **Optimizer:** AdamW with weight-decay regularization.

Resource Utilization

- **Training memory:** \approx 789 MB (including optimizer states)
- Inference latency: ≈ 26 ms per packet
- **Model size:** \approx 66 M parameters (\approx 250–300 MB)
- Edge devices: Runs smoothly on Jetson Nano and Raspberry Pi 4B (8 GB RAM)

Performance Interpretation

- DistilBERT achieves real-time inference with approximately 75 % lower runtime memory than BERT-base, while maintaining comparable accuracy.
- Training is conducted offline, and only fine-tuned weights are deployed on edge devices.
- The lightweight architecture enables practical, near real-time anomaly detection for resource-limited Satellite-IoT environments.

Performance Comparison on Satellite-IoT Packets

TABLE II
PERFORMANCE COMPARISON OF DETECTION MODELS ON SATELLITE-IOT
PACKET CLASSIFICATION.

Model	Accuracy (%)	Precision (%)	Recall (%)	F1-score (%)	
Snort	48.1	48.0	39.0	34.0	
Random Forest	87.6	88.0	87.0	87.0	
LSTM	92.8	95.0	91.0	92.3	
DistilBERT	99.0	99.0	99.0	98.9	

Detection Results and Semantic Insights

- DistilBERT captures cross-field semantic dependencies that rule-based and traditional ML models cannot learn.
- Detects contextual anomalies where individual fields appear valid but their combinations are inconsistent.
- Maintains high precision-recall consistency, showing strong generalization across diverse packet structures.
- Confirms the effectiveness of semantic representations for protocol-level anomaly detection in Satellite—IoT networks.

Scenario-based Robustness

Observations

- Fast Convergence: Accuracy surpasses
 90 % by epoch 3 under both normal
 and missing-field conditions.
- Resilient to Missing Data: Even with 2-5 fields removed, accuracy stays ≈ 78-80 %, showing strong robustness.
- Stable Generalization: Only ≈ 20 % performance gap under incomplete inputs demonstrates semantic retention.

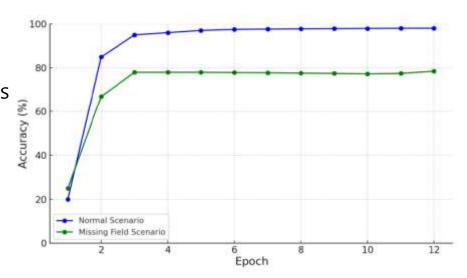


Fig. 2. Validation accuracy trends across epochs for normal and missing-field scenarios in Satellite—IoT packet classification.

Interpretation

• **Contextual encoding** allows field-level redundancy — semantic tokens compensate for missing ones, ensuring reliable packet-level reasoning in lossy Satellite–IoT links.

Scenario-based Robustness

Observations

- Rapid Convergence: Both curves reach ≈ 99 % accuracy by epoch 3, confirming efficient finetuning.
- No Overfitting: Training and validation curves overlap closely, showing strong generalization.
- Stable Optimization: Accuracy variance stays within ± 0.5 % after epoch 4, indicating convergence stability.

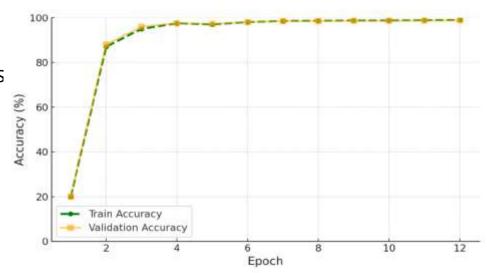


Fig. 3. Training and validation accuracy per epoch under normal packet conditions.

Interpretation

 The alignment between training and validation trends demonstrates stable semantic learning and absence of memorization bias.

Field-Level Attention Analysis

Field-Level Attention

- flags show the strongest attention across all classes → control-flag semantics are key anomaly indicators.
- timestamp gains higher weight in
 Privilege Abuse and Injection, reflecting sequence and timing misuse.
- src / src_region receive higher scores under *Injection*, highlighting spoofedorigin detection.

TABLE III
AVERAGE ATTENTION WEIGHTS PER FIELD ACROSS FOUR
CLASSIFICATION LABELS

Field Name	Normal	Injection	Privilege Abuse	Replay
flags	0.0231	0.0140	0.0091	0.0097
timestamp	0.0060	0.0102	0.0105	0.0088
src	0.0080	0.0103	0.0098	0.0078
src_region	0.0092	0.0087	0.0091	0.0084
payload	0.0049	0.0080	0.0087	0.0083
priority	0.0037	0.0073	0.0103	0.0081
orbit_class	0.0049	0.0071	0.0091	0.0076
dst_region	0.0072	0.0069	0.0087	0.0078
src_port	0.0048	0.0070	0.0086	0.0078
msg_type	0.0074	0.0068	0.0082	0.0083
payload_type	0.0032	0.0052	0.0082	0.0079
dst_port	0.0033	0.0057	0.0083	0.0075
ttl	0.0027	0.0050	0.0084	0.0066
dst	0.0025	0.0052	0.0086	0.0062

Semantic Differentiation

- Each attack class triggers a unique attention pattern, proving DistilBERT's context-aware field reasoning.
- Attention aligns with real protocol logic (flags ↔ control, timestamp ↔ replay), confirming transparent and explainable inference.

Experimental Summary & Contributions

Performance Summary

- 99 % accuracy and 98.9 % F1, outperforming baseline IDS models.
- Maintained ≈ 80 % accuracy under missing-field conditions → robust to lossy telemetry.
- 26 ms latency / 250–300 MB footprint → real-time feasibility on Satellite–IoT gateways.

Interpretation of Results

- Semantic encoding > feature-based methods captures cross-field dependencies unseen by classical IDS.
- Attention focus on flags and timestamp aligns with actual protocol logic.
- Stable Precision/Recall ≈ 99 %, ensuring reliable operational detection.

Main Contributions

- Proposed sentence-based packet representation enabling contextual anomaly reasoning.
- Utilized lightweight DistilBERT, achieving near-BERT accuracy with ~75 % lower memory.
- Demonstrated interpretable and robust detection, establishing groundwork for future temporal-sequence analysis.

Conclusion and Future Work

Conclusion

Summary of Proposed Approach

- Developed a lightweight semantic anomaly detection approach for Satellite-IoT networks.
- Integrated protocol-level semantics through sentence-based packet representation.

Overall Contribution

- Demonstrated that semantic encoding enables accurate, explainable, and real-time anomaly detection.
- Validated deployability on resource-limited gateways, bridging model design with operational needs.
- **Established a foundation for mission-aware, context-driven security** in next-generation Satellite–IoT systems.
- As shown in previous results, the model maintained high accuracy and robustness under incomplete telemetry.

Future Work

Limitation & Temporal Context

- **Limitation:** The current approach operates on **single-packet inference**, without modeling **temporal dependencies** across sequential packets.
- Future Direction: Extend the framework to multi-packet and time-series analysis to incorporate session-level context and achieve more reliable anomaly detection over time.

Enhancing Interpretability & Scope

- Integrate with hierarchical threat modeling for system-wide propagation analysis across communication layers.
- Explore TTP (Tactics, Techniques, and Procedures)—based abstraction to connect detected anomalies with adversarial behaviors and tactics.

Expanding Coverage & Validation

- Extend semantic reasoning to cross-layer threats (e.g., spoofing, signal manipulation, jamming) for broader coverage of Satellite—IoT environments.
- Validate computational feasibility on real onboard processors, confirming performance under practical operational constraints.

Thank you for your attention.

Junbeom Park

Korea Aerospace University

jbpark@kau.kr