
1

Security for Space Systems (3S) 
Conference 2025

November 6, 2025

Junbeom Park¹, Zizung Yoon² and Jongsou Park¹

¹Department of Computer Engineering, Korea Aerospace University  
²Department of Smart Drone Engineering, Korea Aerospace University 

Semantic-Aware Anomaly Detection 

for Satellite–IoT Networks:

A Lightweight Transformer-Based Approach

Korea Aerospace University



Introduction1

Related Work2

Proposed Methodology3

Experimental Results and Discussion4

Conclusion and Future Work5



3

1

Introduction
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Architectural and Security Challenges

4

❖ Satellite–IoT networks face severe architectural and resource constraints, 

limiting the deployment of conventional security mechanisms.

▪ Resource limitations and restricted access

• Hinder timely software updates and end-to-end protection, exposing devices as vulnerable 

endpoints.

▪ Segmented and heterogeneous architectures

• Diverse operating systems and communication protocols hinder unified security enforcement 

across ground, space, and user segments.

▪ Lack of built-in security features

• Many IoT and user-segment devices omit intrusion detection or encryption due to hardware

and cost constraints.

▪ Absence of runtime anomaly detection

• Limits real-time response and structured threat assessment.

❖ These challenges emphasize the urgent need for lightweight and integrated 

security mechanisms specifically tailored to Satellite–IoT environments.
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Motivation for Semantic-Aware Detection

5

❖ Traditional IDSs fail to capture semantic dependencies across structured packet 

fields.

▪ Rule-based or statistical IDSs

• Restricted to syntactic validation and unable to interpret contextual relationships among fields.

▪ Deep learning–based IDSs

• Computationally heavy and less robust when packets are incomplete or degraded.

❖ Proposed Semantic-Aware Approach for Satellite–IoT

▪ Sentence-based packet representation

• Converts structured packets into natural-language-like sentences preserving contextual semantics.

▪ Lightweight DistilBERT model

• Performs semantic inference with reduced latency and memory usage.

▪ Scenario-driven dataset design

• Constructed with 15 protocol- and security-aware fields derived from CSP, CCSDS, MIOTY, and TON-IoT

specifications.

❖ This approach enables accurate and interpretable anomaly detection, ensuring 

practical feasibility for real-time deployment in Satellite–IoT systems.
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Related Work
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Related Work and Research Gap
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❖ Existing studies on Satellite–IoT security

▪ Rule-based and statistical IDSs focus on syntax-level anomalies in telemetry and command traffic.

▪ They lack semantic reasoning and do not adapt well to multi-segment Satellite–IoT links.

❖ LLM-based detection approaches

▪ Language-model-based IDSs capture contextual dependencies, improving detection accuracy.

▪ However, most rely on synthetic datasets and overlook efficiency under resource constraints.

❖ Identified gaps

▪ Lightweight, real-time frameworks that encode protocol-level semantics for Satellite–IoT are still 

lacking.

▪ Validation under realistic, resource-constrained environments remains limited.

❖ Our contribution

▪ We propose a DistilBERT-based semantic anomaly detection approach tailored for Satellite–IoT

networks.

▪ The model learns inter-field dependencies in structured packets, enabling accurate and efficient 

detection even under missing-field conditions.
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Proposed Methodology
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End-to-End Process
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❖ Our detection pipeline integrates three main 

stages to achieve semantic-aware classification.

❖ Packet-to-Sentence Construction

▪ Structured packets parsed into 15 protocol-aware fields

(CSP, MIOTY, CCSDS, TON_IoT).

▪ Serialized into sentences preserving inter-field 

dependencies.

❖ Semantic Inference & Anomaly Classification

▪ DistilBERT (6-layer) encodes contextual relations via 

WordPiece tokenization.

▪ [CLS] token output classified as Benign or Anomalous.

❖ Attack Type Classification & Logging

▪ Anomalous packets categorized into Injection, Replay, or 

Privilege Abuse.

▪ Logged for forensic analysis and response.
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❖ Design Overview

▪ Defines 15 protocol-aware fields combining temporal, spatial, and semantic attributes.

▪ Derived from CSP, MIOTY, CCSDS, and TON_IoT standards.

❖ Field Groups

▪ Metadata – node identity and timing (timestamp, src, dst, ports).

▪ Semantics – protocol intent and control (msg_type, payload, priority, flags).

▪ Context – orbital and security attributes (orbit_class, regions, ttl, label).

Protocol-Aware Packet Structure (15 Fields)

10
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❖ Motivation

▪ Satellite–IoT systems require on-board inference under strict CPU, memory, and power 

constraints.

▪ Full-scale LLMs such as BERT or RoBERTa offer strong contextual reasoning but are too heavy 

for real-time embedded deployment.

▪ An effective model must preserve semantic understanding while operating within limited 

computational resources.

❖ Model Selection: DistilBERT

▪ Compact six-layer architecture retains BERT-level accuracy while reducing model size and 

inference latency.

▪ 40 % smaller and ~60 % faster than BERT, using ≈ 480 MB memory and ≈ 25 ms inference

per packet on Jetson Nano / Raspberry Pi 4 with MIOTY-based sensor inputs.

▪ Maintains contextual reasoning across packet fields, enabling semantic anomaly detection in 

constrained edge environments.

▪ Lighter RNN- or CNN-based IDSs lack this field-level semantic awareness and fail to 

generalize.

Model Choice: DistilBERT for Semantic Inference

11
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❖ Concept Overview

▪ Structured packets are converted into sentence-like representations, allowing DistilBERT to 

capture contextual semantics and inter-field dependencies beyond conventional IDSs.

❖ Example Sentences

▪ Normal: “Telemetry message from leo to gcs carrying TEMP=22.5 with priority HIGH and flag 

ENC at 2025-07-10T08:30:00Z.”

▪ Privilege Abuse: “At 2025-07-10T08:45:12Z, node iot sent command=RESET to gcs with flag 

SYN, violating access control policies.”

❖ DistilBERT Encoding Process

▪ Tokenize → Decompose field–value pairs via WordPiece with [CLS]/[SEP] tokens.

▪ Encode → Six-layer Transformer models contextual relations among fields.

▪ Classify → [CLS] embedding produces an anomaly score and threat label.

❖ Main Observation

▪ Sentence-based formulation bridges structured syntax and semantic reasoning, enabling accurate packet-

level anomaly detection in Satellite–IoT networks.

Sentence-Based Representation and Semantic Encoding

12
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❖ Main Concept

▪ DistilBERT performs semantic reasoning over tokenized packet sentences and classifies them 

into four security-relevant categories reflecting real Satellite–IoT behaviors.

❖ Threat Label Descriptions

▪ Normal: Packets follow expected communication flows with valid field values (src, dst, 

msg_type, payload).

• Example: leo → gcs, msg_type = telemetry, payload = TEMP = 22.5, flag = ENC.

▪ Injection: Packets include malformed or semantically inconsistent payloads that violate 

protocol or structure rules.

• Example: iot → gw1, msg_type = command, payload = CALIBRATE, flag = URG.

▪ Replay: Previously transmitted timestamps or payloads are reused, disrupting temporal 

consistency.

• Example: uav → gw2, repeating telemetry with payload = POS = 37.4,127.1.

▪ Privilege Abuse: Low-privilege nodes (e.g., iot) issue control-level commands (e.g., RESET, 

SHUTDOWN) to high-privilege nodes (e.g., gcs), violating access policies.

• Example: iot → gcs, command = SHUTDOWN.

Semantic Inference and Threat Classification

13
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❖ Classification Workflow

▪ The final [CLS] embedding from DistilBERT is passed to a softmax-based classification 

head, producing one of four threat labels that represent operational threat types in 

Satellite–IoT systems.

❖ Process Summary

▪ [CLS] → Softmax: Computes the most probable threat class from semantic embeddings.

▪ Label Assignment: Classifies as Normal, Injection, Replay, or Privilege Abuse.

▪ Logging: Appends the predicted label with timestamp and metadata for forensic 

analysis.

▪ Modularity: The classifier is lightweight and can be retrained as new labels emerge.

❖ Interpretation

▪ This stage consolidates semantic reasoning into an interpretable classification outcome, 

forming the bridge between sentence-level inference and system-level event analysis

for situational awareness in Satellite–IoT networks.

Classifier Output and Logging

14
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EXPERIMENTAL RESULTS 
AND DISCUSSION



Korea Aerospace University

❖ Dataset & Setup

▪ Dataset: 15-field Satellite–IoT packet dataset (25 K training / 10 K testing).

▪ Labels: Normal, Injection, Replay, Privilege Abuse.

▪ Sources: Derived from CSP, MIOTY, CCSDS, TON-IoT under unified protocol constraints.

▪ Model: DistilBERT-base-uncased, fine-tuned for four-class sentence classification.

▪ Training: AdamW (5 × 10⁻⁵ LR), batch 16, 10 epochs, weighted cross-entropy.

▪ Metrics: Accuracy & F1-score (average of five runs).

❖ Test Scenarios

▪ Evaluation performed on fully structured packets (5 K) and missing-field packets (5 K) to 

assess detection robustness.

▪ Each experiment was repeated five times with fixed train/test splits for consistent evaluation.

❖ Robustness Evaluation Strategy

▪ Random 2–5 fields per packet were removed to simulate incomplete telemetry and 

corrupted payloads.

▪ DistilBERT maintained stable accuracy and semantic consistency under these incomplete-

input conditions.

Dataset Construction

16
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❖ Experimental Setup

▪ Hardware: Intel Core i7-11700 CPU / 64 GB RAM / NVIDIA RTX 3060 (12 GB VRAM).

▪ Framework: Python 3.11 with PyTorch and Hugging Face Transformers.

▪ Training: 10 epochs, batch size = 16, sequence length = 128.

▪ Optimizer: AdamW with weight-decay regularization.

❖ Resource Utilization

▪ Training memory: ≈ 789 MB (including optimizer states)

▪ Inference latency: ≈ 26 ms per packet

▪ Model size: ≈ 66 M parameters (≈ 250–300 MB)

▪ Edge devices: Runs smoothly on Jetson Nano and Raspberry Pi 4B (8 GB RAM)

❖ Performance Interpretation

▪ DistilBERT achieves real-time inference with approximately 75 % lower runtime memory

than BERT-base, while maintaining comparable accuracy.

▪ Training is conducted offline, and only fine-tuned weights are deployed on edge devices.

▪ The lightweight architecture enables practical, near real-time anomaly detection for 

resource-limited Satellite–IoT environments.

Computational Efficiency and Edge Feasibility

17
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❖ Detection Results and Semantic Insights

▪ DistilBERT captures cross-field semantic dependencies that rule-based and 

traditional ML models cannot learn.

▪ Detects contextual anomalies where individual fields appear valid but their 

combinations are inconsistent.

▪ Maintains high precision–recall consistency, showing strong generalization 

across diverse packet structures.

▪ Confirms the effectiveness of semantic representations for protocol-level 

anomaly detection in Satellite–IoT networks.

Performance Comparison on Satellite–IoT Packets

18
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❖ Observations

▪ Fast Convergence: Accuracy surpasses 

90 % by epoch 3 under both normal 

and missing-field conditions.

▪ Resilient to Missing Data: Even with 

2–5 fields removed, accuracy stays ≈

78–80 %, showing strong robustness.

▪ Stable Generalization: Only ≈ 20 % 

performance gap under incomplete 

inputs demonstrates semantic 

retention.

Scenario-based Robustness

19

❖ Interpretation

▪ Contextual encoding allows field-level redundancy — semantic tokens compensate 

for missing ones, ensuring reliable packet-level reasoning in lossy Satellite–IoT links.
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❖ Observations

▪ Rapid Convergence: Both curves 

reach ≈ 99 % accuracy by epoch 

3, confirming efficient fine-

tuning.

▪ No Overfitting: Training and 

validation curves overlap closely, 

showing strong generalization.

▪ Stable Optimization: Accuracy 

variance stays within ± 0.5 % 

after epoch 4, indicating 

convergence stability.

Scenario-based Robustness

20

❖ Interpretation

▪ The alignment between training and validation trends demonstrates stable 

semantic learning and absence of memorization bias.
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❖ Field-Level Attention

▪ flags show the strongest attention 

across all classes → control-flag 

semantics are key anomaly indicators.

▪ timestamp gains higher weight in 

Privilege Abuse and Injection, reflecting 

sequence and timing misuse.

▪ src / src_region receive higher scores 

under Injection, highlighting spoofed-

origin detection.

Field-Level Attention Analysis

21

❖ Semantic Differentiation

▪ Each attack class triggers a unique attention pattern, proving DistilBERT’s context-aware field 

reasoning.

▪ Attention aligns with real protocol logic (flags control, timestamp replay), confirming 

transparent and explainable inference.
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❖ Performance Summary

▪ 99 % accuracy and 98.9 % F1, outperforming baseline IDS models.

▪ Maintained ≈ 80 % accuracy under missing-field conditions → robust to lossy telemetry.

▪ 26 ms latency / 250–300 MB footprint → real-time feasibility on Satellite–IoT gateways.

❖ Interpretation of Results

▪ Semantic encoding > feature-based methods — captures cross-field dependencies unseen 

by classical IDS.

▪ Attention focus on flags and timestamp aligns with actual protocol logic.

▪ Stable Precision/Recall ≈ 99 %, ensuring reliable operational detection.

❖ Main Contributions

▪ Proposed sentence-based packet representation enabling contextual anomaly reasoning.

▪ Utilized lightweight DistilBERT, achieving near-BERT accuracy with ~75 % lower memory.

▪ Demonstrated interpretable and robust detection, establishing groundwork for future 

temporal-sequence analysis.

Experimental Summary & Contributions

22
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Conclusion and Future Work
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Conclusion
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❖ Summary of Proposed Approach

▪ Developed a lightweight semantic anomaly detection approach for 

Satellite–IoT networks.

▪ Integrated protocol-level semantics through sentence-based packet 

representation.

❖ Overall Contribution

▪ Demonstrated that semantic encoding enables accurate, explainable, and 

real-time anomaly detection.

▪ Validated deployability on resource-limited gateways, bridging model design 

with operational needs.

▪ Established a foundation for mission-aware, context-driven security in next-

generation Satellite–IoT systems.

❖ As shown in previous results, the model maintained high accuracy 

and robustness under incomplete telemetry.
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Future Work
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❖ Limitation & Temporal Context

▪ Limitation: The current approach operates on single-packet inference, without 

modeling temporal dependencies across sequential packets.

▪ Future Direction: Extend the framework to multi-packet and time-series analysis to 

incorporate session-level context and achieve more reliable anomaly detection over 

time.

❖ Enhancing Interpretability & Scope

▪ Integrate with hierarchical threat modeling for system-wide propagation analysis

across communication layers.

▪ Explore TTP (Tactics, Techniques, and Procedures)–based abstraction to connect 

detected anomalies with adversarial behaviors and tactics.

❖ Expanding Coverage & Validation

▪ Extend semantic reasoning to cross-layer threats (e.g., spoofing, signal manipulation, 

jamming) for broader coverage of Satellite–IoT environments.

▪ Validate computational feasibility on real onboard processors, confirming 

performance under practical operational constraints.
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Thank you 
for your attention. 

Junbeom Park

Korea Aerospace University 

jbpark@kau.kr
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