
SPACECOP

System for Performance Assessment
in Challenging Environments

of Cryptographic Operations and Protocols

Jacob Appelbaum, Eindhoven University of Technology (TU/e)
Daniel J. Bernstein, University of Illinois Chicago (UIC)

Tanja Lange, Eindhoven University of Technology (TU/e)

SPACECOP 1

Figure: Photo credit: Dr. Trevor Paglen. Pictured: Thuraya and a companion

SPACECOP 2

Our contribution: SPACECOP

• A new tool: spacecop
• spacecop predicts the performance of post-quantum

cryptography in space
• spacecop generates reports based on user supplied

cryptographic choices

SPACECOP 3

Our contribution: SPACECOP

• A new tool: spacecop
• Cost analysis using structured decomposition including:

• Environmental constraints such as radio channel
bandwidth and latency

• Example: LEO is 10-30ms rtt, 100Mb/s to
1000Mb/s

• Size in bytes and round-trip considerations
• Example: Estimate if extra costs due to post-quantum

cryptographic primitives PQC are affordable and if so,
for which system

• Calculate computational costs of individual operations
at relevant API levels

• Example: generating key pairs, generating ciphertexts,
performing encapsulation, etc

SPACECOP 4

Our contribution: SPACECOP

All Constructions Are Benchmarkable:
• Designed to assist analysis, practical systems integrators,

cryptographic protocol designers, and other users.
• We consider a protocol in a user-defined scenario with

environmental time and latency considerations
decomposed into cryptographic primitive operations with
measurements running on selected processor

• We analyze post-quantum cryptographic primitives such as
KEMs and signatures.

• We measure a variety of CPUs as selected including
arm32, arm64, amd64, and sparcv8. Additional CPU
support exists and is expanding; gathering your own data
is supported but not required

SPACECOP 5

Our contribution: SPACECOP
• We automate report generation of the chosen

measurement matrix over implementations (e.g.: generic,
optimized, etc), compilers, CPU architectures, and more

• Easy to use: simple configuration to generate reporting for
your space scenarios, your specific processors, and
customizable protocols

• How easy to use?
• Protocols: protocol modeling by writing down the

steps or as in a Noise-style
• Processors: select the CPUs of interest
• Scenarios: describe the context as a scenario

• Produce a comprehensive report for your selections by
running spacecop

• Picking protocols, processors, and scenarios are easy
configuration options

• There are additional advanced usage considerations
SPACECOP 6

Figure: Photo credit: (Unknown; USA-207) 2010; Dr. Trevor Paglen. PAN also known as Palladium at Night or NEMESIS has been
written about by Dr. Marco Langbroek and by others.

SPACECOP 7

https://www.thespacereview.com/article/3095/1
https://space.skyrocket.de/doc_sdat/nemesis-1.htm

Protocols: SPACECOP

Protocols:
• Use one of the provided protocol definitions, or ...
• Describe a protocol:

• ... give it a name
• ... select the cryptographic primitives to compare
• ... describe it as a protocol narration

SPACECOP 8

Protocol: a-minimal

minimal protocol
no authentication of C
no forward secrecy

use kem

in advance, S computes and provides a KEM key:
S: Spk,Ssk = kem.keypair()
S: send Spk

online phase, what the cost table is measuring:
C: c,result = kem.enc(Spk)
C: send c
S: result = kem.dec(c,Ssk)

now C and S have the same result, a shared session key

SPACECOP 9

Protocols: SPACECOP
KEMs:

• bikel1
• bikel3
• hqc128
• hqc192
• hqc256
• kyber1024
• kyber512
• kyber768
• mceliece348864f

• mceliece460896f
• mceliece6960119f
• ntruhps2048677
• ntruhps4096821
• ntruhrss701
• sikep434
• sntrup1277
• sntrup761

Selecting other KEMs within those that have been
benchmarked is as easy as adding one line to a text file:

crypto_kem sntrup1277
SPACECOP 10

Protocols: SPACECOP

Signatures:
• dilithium2
• dilithium3
• dilithium5
• falcon1024dyn
• falcon1024tree
• falcon512dyn
• falcon512tree

• sphincsf128shake256simple
• sphincsf192shake256simple
• sphincsf256shake256simple
• sphincss128shake256simple
• sphincss192shake256simple
• sphincss256shake256simple

Selecting other signature systems within those that have been
benchmarked is as easy as as adding one line to a text file:

crypto_sign ed25519

SPACECOP 11

Protocols: SPACECOP

Included protocols:
• a-minimal
• b-twoway
• c-3kem
• n-concise
• x-signed

Adding additional protocols for analysis is straightforward and
easy in spacecop. The n-concise is an example in a

Noise-protocol framework style.

SPACECOP 12

Protocol: b-twoway
use kem
use hash

C: Cpk,Csk = kem.keypair()
C: send Cpk
S: Spk,Ssk = kem.keypair()
S: send Spk
C+S: pkhash = hash(Cpk,Spk)

C: c1,k1 = kem.enc(Spk)
C: send c1
S: k1 = kem.dec(c1,Ssk)
S: c2,k2 = kem.enc(Cpk)
S: result = hash(pkhash,c1,c2,k1,k2)
S: send c2
C: k2 = kem.dec(c2,Csk)
C: result = hash(pkhash,c1,c2,k1,k2)

SPACECOP 13

Protocol: c-3kem (0)
use hash
use aead
use kem
use ekem

pre-shared key and general setup:
C: C_key = randombytes(32)
C: send C_key
S: S_key = randombytes(32)
S: send S_key

C+S: psk = hash(C_key,S_key)
C+S: h_0 = hash(’example c-3kem protocol token’)
C+S: k_0 = hash(psk) # simplification
C+S: nonce0 = ’000000000000’
C+S: nonce1 = ’000000000001’

long-term identities:
C: C_pk,C_sk = kem.keypair()
C: send C_pk
S: S_pk,S_sk = kem.keypair()
S: send S_pk

send_1:
C: S_c,S_k = kem.enc(S_pk)
C: c_0 = aead.enc(S_c,h_0,nonce0,k_0)

Protocol: c-3kem (1)
C: h_1 = hash(h_0,c_0)
C: k_1 = hash(k_0,S_k) # simplification
C: E_pk,E_sk = ekem.keypair()
C: c_1 = aead.enc(E_pk,h_1,nonce0,k_1)
C: h_2 = hash(h_1,c_1)
C: send c_0,c_1

receive_1:
S: S_c = aead.dec(c_0,h_0,nonce0,k_0)
S: S_k = kem.dec(S_c,S_sk)
S: h_1 = hash(h_0,c_0)
S: k_1 = hash(k_0,S_k) # simplification
S: E_pk = aead.dec(c_1,h_1,nonce0,k_1)
S: h_2 = hash(h_1,c_1)

send_2:
S: E_c,E_k = ekem.enc(E_pk)
S: c_2 = aead.enc(E_c,h_2,nonce1,k_1)
S: h_3 = hash(h_2,c_2)
S: k_2 = hash(k_1,E_k)
S: C_c,C_k = kem.enc(C_pk)
S: c_3 = aead.enc(C_c,h_3,nonce0,k_2)
S: h_4 = hash(h_3,c_3)
S: k_3 = hash(k_2,C_k)
S: c_4 = aead.enc(’’,h_4,nonce0,k_3)
S: h_5 = hash(h_4,c_4)

Protocol: c-3kem (2)
S: send c_2,c_3,c_4

receive_2:
C: E_c = aead.dec(c_2,h_2,nonce1,k_1)
C: E_k = ekem.dec(E_c,E_sk)
C: h_3 = hash(h_2,c_2)
C: k_2 = hash(k_1,E_k) # simplification
C: C_c = aead.dec(c_3,h_3,nonce0,k_2)
C: C_k = kem.dec(C_c,C_sk)
C: h_4 = hash(h_3,c_3)
C: k_3 = hash(k_2,C_k) # simplification
C: n = aead.dec(c_4,h_4,nonce0,k_3)
C: assert n == ’’
C: h_5 = hash(h_4,c_4)

send_3:
C: c_5 = aead.enc(’’,h_5,nonce1,k_3)
C: result = hash(k_3,c_5) # simplification
C: send c_5

receive_3:
S: n = aead.dec(c_5,h_5,nonce1,k_3)
S: assert n == ’’
S: result = hash(k_3,c_5) # simplification

SPACECOP 16

Protocol: n-concise
use kem
use ekem
use aead
use hash

C+S: result = hash(’example n-concise protocol token’)
-> psk
<- psk

-> kempk
<- kempk

-> kemct ekempk
<- kemct ekemct confirm
-> confirm

SPACECOP 17

Protocol: x-signeduse kem
use sign

one-time setup of long-term identities
S: Sidpk,Sidsk = sign.keypair()
S: send Sidpk
C: Cidpk,Cidsk = sign.keypair()
C: send Cidpk
C+S: idhash = hash(hash(Sidpk),hash(Cidpk))

periodic broadcasts
S: encpk,encsk = kem.keypair()
S: signedencpk = sign(encpk,Sidsk)
S: send signedencpk
C: encpk = sign.open(signedencpk,Sidpk)
C+S: pkhash = hash(hash(encpk),idhash)

online key exchange
C: c,k = kem.enc(encpk)
C: signedc = sign(c,Cidsk)
C: send signedc
S: c = sign.open(signedc,Cidpk)
S: k = kem.dec(c,encsk)
C+S: result = hash(k,pkhash,hash(signedc))

Figure: Photo credit: NSA/GCHQ Surveillance Base, Bude, Cornwall, UK, 2014; Dr. Trevor Paglen

SPACECOP 19

Processors: SPACECOP
Processors:

• Choose the processor for the mission control
• Choose the processor for the satellite or another orbital

object
• Gathering data on large and small devices in a systematic

and rigorous manner
• Don’t have a specific hardware device? Cryptographic

measurement with EMUCOP
• Easy microbenchmarking over the network made easy
• Device access is no problem? The cryptographic

measurement process runs locally or remotely by ssh.
• Physical device measurement instruction and cycle

counting with SUPERCOP if the underlying Operating
System (OS) supports it for the specific CPU under
test

SPACECOP 20

Figure: Photo credit: Singleton/SBWASS-R1 and Three Unidentified Spacecraft (Space Based Wide Area Surveillance System; USA 32),
2012; Dr. Trevor Paglen

SPACECOP 21

Scenarios: SPACECOP

Scenarios:
• Use one of the provided scenario definitions, or ...
• Describe a scenario:

• ... give it a name
• ... adjust the space environment
• ... describe the participants, their CPU(s), and their

bandwidth constraints

SPACECOP 22

Scenarios: SPACECOP

Included scenarios:
• 01-ops-sat
• 02-starlink
• 03-galileo
• 04-mtg-s1
• 05-ariel

Adding additional scenarios for analysis which are already well
defined is straightforward. Describing well understood

scenarios as new scenarios in spacecop is easy.

SPACECOP 23

Scenarios: 01-ops-sat

only 515km above ground
so allowed very low latency depending on ground location
rtt 30ms

C send 256 kbps
S send 1 Mbps
https://esoc.esa.int/content/ops-sat

S cpuspeed 800MHz
S cpu armeabi-berry2
actual CPU is a cortex-a9, so somewhat more powerful

assume high-powered server at mission control
C cpu amd64-samba
C cpuspeed 3GHz

SPACECOP 24

Scenarios: 02-starlink

typical leo latency
rtt 40ms

C send 10Mbps
S send 100Mbps

C cpu aarch64-pi3aplus
C cpuspeed 1ghz

S cpu aarch64-pi3aplus
S cpuspeed 100mhz

Scenarios: 03-galileo

galileo is 23222km above surface, but not always straight up
rtt 170ms

https://space.oscar.wmo.int/satellites/view/mtg_s1
C send 2 kbps
S send 7.164 kbps

S cpu sparcv8-gr740
S cpuspeed 100MHz

assume high-powered server at mission control
C cpu amd64-rome0
C cpuspeed 2.245GHz

SPACECOP 26

Scenarios: 04-mtg-s1

geosynchronous is 35786km above equator (120ms one-way)
but latency is higher at non-equator regions
rtt 250ms

https://space.oscar.wmo.int/satellites/view/mtg_s1
C send 2 kbps
S send 7.164 kbps

S cpu sparcv8-gr740
S cpuspeed 100MHz

assume high-powered server at mission control
C cpu amd64-rome0
C cpuspeed 2.245GHz

SPACECOP 27

Scenarios: 05-ariel

ariel will be at l2 (1.5 million kilometers away from Earth)
light travels 0.3 million kilometers per second
rtt 10 s

C send 16 kbps
S send 26 kbps

various ariel documents say gr712 at 100mhz
which should be fairly close to gr740 at 100mhz
S cpu sparcv8-gr740
S cpuspeed 100MHz

assume high-powered server at mission control
C cpu amd64-samba
C cpuspeed 3GHz

Report generation

SPACECOP provides automatically generated numerical analysis
of each protocol in each scenario for all permutations of the
desired cryptographic primitives. The output makes a visual
distinction between input from the user and output of the
analysis based on that input.
How easy is the reporting?
One command produces a pdf with the selected protocols
running on the selected processors for any number of
scenarios.

SPACECOP 29

Reporting

Figure: Protocol a-minimal cost estimates for scenario 03-galileo

SPACECOP 30

SPACECOP: advanced considerations

• spacecop is implemented in /bin/sh, C, Python, and with
a little LATEX

• spacecop to be released as Free/Libre Open Source
Software (FL/OSS) and it optionally uses qemu,
dietlibc, and other fine FL/OSS software packages

• Extending spacecop is straightforward

SPACECOP 31

Questions?

Figure: Photo credit: They watch the moon, 2010; Dr. Trevor Paglen. Additional relevant works of art by Dr. Paglen are on display in
Earth’s top museums and on the world wide web

.SPACECOP 32

https://paglen.studio/2020/05/22/the-other-night-sky/

