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Abstract—Communication protocols are integral to space sys-
tems. As such, their implementations should be thoroughly
tested for conformance, interoperability, and security issues.
This work-in-progress presents a novel differential approach for
protocol testing and preliminary results from its application. Our
approach takes as input multiple implementations of the same
protocol, executes the implementations on a large number of
inputs, and identifies deviation inputs that are accepted (i.e.,
successfully parsed and validated) by some implementations but
rejected by other implementations. We have applied our ap-
proach to test three implementations of Bundle Protocol version
7, identifying 51,373 deviation inputs grouped into 432 clusters.
So far, we have reported 14 manually verified conformance issues
and vulnerabilities. Ten have already been fixed.

I. INTRODUCTION

Robust communication is vital to the operation of space
systems. As such, protocol implementations should be thor-
oughly tested to ensure that they function as described in their
specification (i.e., protocol conformance testing [1], [2]) and
that they properly communicate with other implementations
of the same protocol (i.e., interoperability testing [3], [4]).
Such testing is fundamental because communication protocols
can be complex containing many mandatory and optional
features. Furthermore, protocol specifications are written in
accessible but informal text. Despite guidelines on how to
write specifications [5]-[7] and much effort by working groups
to make specifications clear, ambiguity can still creep in,
leading to diverging interpretations by different developers [8].

Protocol conformance and interoperability testing are fre-
quent activities. In fact, both the Internet Standards Process [3]
and the Committee for Space Data Systems (CCSDS) [4]
require two independent and interoperable implementations
for a protocol specification to become a full standard. Cur-
rently, the CCSDS is performing interoperability tests of the
Bundle Protocol version 7 (BPv7) [9], a store-and-forward
protocol designed for Delay/Disruption-Tolerant Networking
(DTN) across networks with intermittent connectivity and long
delays such as those in space communication. BPv7 is a
critical part of initiatives to build communication networks
beyond Earth like Moonlight [10], LunaNet [11], and the Solar
System Internet [12]. Conformance and interoperability issues
in forwarding protocols such as BPv7 can introduce subtle
security issues. For example, BPv7 provides fragmentation
and reassembly functionality that has often been leveraged
for attacks against other protocols [13]-[15] and for bypassing

defenses such as firewalls and intrusion detection systems [16].
Conformance issues can also be used for uniquely fingerprint-
ing implementations [17]. Furthermore, given the intermittent
communication windows and limited bandwidth of space links,
conformance issues can be leveraged by attackers to exhaust
resources leading to denial of service (DoS) attacks.

Protocol conformance and interoperability testing are highly
manual processes. Previous works have proposed automated
approaches using formal methods [18]-[20] and symbolic
execution [17], [21], [22]. However, those approaches have not
been largely adopted likely due to their complexity and the re-
quirement of a formal protocol specification for formal method
approaches [23]. Other works present fuzzers to identify
inputs that crash network protocol implementations [24]-[27].
Fuzzing approaches are simpler since they do not require a
formal specification or symbolic execution. However, protocol
conformance and interoperability issues do not typically crash
an implementation. Instead, they may introduce logical bugs
that are hard to identify.

This work presents a novel differential approach for au-
tomated protocol testing that leverages the simplicity and
efficiency of state-of-the-art fuzzing approaches. Our approach
takes as input multiple implementations of the same protocol
and automatically identifies deviations, that is, inputs that are
accepted (i.e., successfully parsed and validated) by some
implementations but are rejected by other implementations.
The identified deviations are typically caused by at least
one implementation violating the specification, i.e., accepting
invalid inputs or rejecting valid inputs.

The problem of finding deviations among implementations
of the same network protocol was first introduced by Brum-
ley et al. [17]. The key difference is that our approach
avoids the use of symbolic execution. Instead, our approach
leverages input generation techniques used by fuzzers (e.g.,
mutational [28], coverage-guided [29], grammar-based [30]).
Since our approach does not use symbolic execution, it is faster
and simpler to use. It does not require access to the source
code and can be applied to implementations written in different
programming languages.

We apply our approach to the latest version (at the time of
testing) of three implementations of BPv7, detailed in Table I.
Two of these implementations (ESA BP and pD3TN) are part
of current BPv7 interoperability tests. One is developed by
the European Space Agency (ESA) in Java and the other by



TABLE I
BPV7 IMPLEMENTATIONS TESTED.

Program Org. Lang. SLOC Public Version
ESA BP ESA Java 60K X 448f180
uD3TN [33] D3TN C 51K v 0.14.2
bp7-rs [34] (O Rust 42K v 0.10.7

a company in C. The third one (bp7-rs) is an open-source
project written in Rust [31], which we select to illustrate
that Rust’s memory-safety properties do not protect against
conformance issues. BPv7 poses several challenges. First, by
default, BPv7 messages (called bundles) do not generate a
response. This complicates observing whether an input was
accepted or rejected by an implementation. To address this, we
build error checkers that apply regular expressions to the con-
tent of the produced logs. Furthermore, BPv7 encodes fields
using the Concise Binary Object Representation (CBOR) [32].
This complicates input generation as valid bundles need to be
properly CBOR-encoded.

We have applied our approach to generate 15M inputs
using three input generation strategies (mutational, coverage-
guided, and grammar-based), identifying 51,373 deviation
inputs grouped into 432 clusters. Until now, we have manually
examined a small subset of the clusters. Some clusters cap-
ture DoS vulnerabilities triggered by malformed bundles. In
most other examined clusters, two implementations correctly
followed the specification while a third did not. However, in
three clusters, the majority was incorrect, so we had to file
two bug reports for the same cluster. So far, we have reported
14 bugs, 10 of which have already been fixed.

II. APPROACH

Figure 1 summarizes our approach. It takes as input multiple
(at least two) implementations of the same protocol. It outputs
deviations, i.e., inputs that are accepted by some of the
implementations but rejected by others, which are grouped in
clusters with the same underlying cause.

In detail, our approach comprises four modules: input
generator, executor, deviation detector, and clustering. The
input generator produces a large number of concrete inputs
corresponding to both valid and invalid bundles. It implements
three popular input generation strategies: mutational [28],
coverage-guided [29], and grammar-based [30]. The generated
inputs are stored to form an input corpus for each strategy.
The executor runs all implementations on the produced inputs
and collects the generated logs. For each implementation, we
build an error checker that examines its logs using regular
expressions to determine whether the processed input was
accepted or rejected. The deviation detector applies the error
checker to each log. If all implementations accept or reject the
input, the input is discarded as it does not trigger a deviation.
If at least one implementation disagrees with the rest (e.g.,
two implementations accept the input and one rejects it) then
the deviation input and the logs are stored.

After all generated inputs have been processed, the cluster-
ing module groups the identified deviation inputs having the
same underlying root cause. For this, it leverages the stored
logs, which often detail why an input was rejected.

A. Input Generator

The goal of the input generator is to produce large numbers
of inputs. The generated inputs may be valid or invalid
messages according to the protocol specification. Generating
both valid and invalid inputs is important to identify both
implementations that are too strict, i.e., may reject inputs that
the specification states are allowed, and implementations that
are too lax, i.e., may accept inputs that the specification states
should not be allowed. The module provides three input gener-
ation strategies leveraging two popular fuzzers. It uses AFL++
[35] for mutational and coverage-guided input generation and
Peach [36] for grammar-based input generation.

Mutational. This strategy takes a set of seed inputs and applies
mutations to those seeds to generate new inputs, e.g., flipping
bits, replacing bytes with interesting edge cases (e.g., zero,
O0xFF), or combining two inputs. To implement this strategy
we run AFL++ in non-instrumented mode and build a custom
mutator that receives the generated input after the AFL++
default mutators have been applied, writes it to file, and stops
the input generation process after a configurable maximum
number of inputs is reached. We feed AFL++ with three seed
BPv7 bundles, each taken from the documentation of one of
the implementations.

Coverage-guided. One implementation is instrumented to
track which parts of the code are executed on a given input.
When a mutated input triggers new coverage, i.e., executes
new code paths, the input is saved and prioritized as a basis
for further mutations. To implement this strategy we use our
custom AFL++ mutator but with coverage tracking enabled.
We use the same three seeds as in the mutational strategy.
Since the instrumentation of AFL++ is largely designed for
C/C++ programs, we apply AFL++ on uD3TN, which is
written in C. The executor will run all three implementations
on the generated inputs. While the produced inputs maximize
coverage on UD3TN, we still expect them to execute multiple
branches on the other two implementations. For example, we
expect that some (but not all) of the uD3TN validation checks
may be shared with the other implementations.

Grammar-based. This strategy produces inputs using a pre-
defined protocol grammar. The grammar allows generating
syntactically valid inputs that are more likely to pass initial
parsing stages and reach deeper logic in the implementations.
Unfortunately, a protocol grammar is typically not available.
However, in this case, we could leverage a BPv7 grammar
for the Peach fuzzer (i.e., a Peach pir) we had developed in
a recent vulnerability-finding project [37]. Peach pits include
a data model describing the format of the messages and a
state model describing the sequence of messages to send to the
target. For each message, the data model captures the sequence
of fields with their type and length, and which fields capture
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Fig. 1. Overview of the differential testing pipeline.

relations to other fields, such as length fields. To generate valid
inputs, the pit is complemented with C# plugins that encode
the fields using CBOR and compute the checksums. The state
model simply requests the fuzzer to send the built input to
the target on top of UDP. While Peach uses the grammar to
generate valid protocol messages, it also applies mutators that
may convert valid inputs into invalid inputs.

B. Executor

The executor runs each protocol implementation on the
generated inputs and saves the logs of the execution. BPv7
implementations can be large, as illustrated in Table I. How-
ever, we expect many deviations to originate from the input
processing code. Thus, as a starting point, we focus on
finding deviations in the parsing stage. Both uD3TN and bp7-
rs provide stand-alone executables that only implement the
parsing of bundles. These executables are typically provided
so that the parsing code can be easily fuzzed since parsers
are known to frequently contain vulnerabilities. For these
two implementations, we can simply run the stand-alone
executables with the bundle (as a hexadecimal string) passed
as a parameter on the command line and redirect standard
output and standard error to a log file. Since the executable is
re-run on each input, this guarantees all inputs are processed
from the same initial state. ESA BP does not provide a stand-
alone parser executable, so we implemented a Java harness that
directly invokes the main parsing function with the bundle read
from a file. The harness outputs a predefined success message
if the parsing function successfully returns and a predefined
error message if an uncaught Java exception happens.

Our goal is not to detect crashes since a differential ap-
proach is not needed for that, i.e., each implementation can
be fuzzed independently. However, some generated inputs may
cause the implementations to terminate unexpectedly (e.g.,
a segmentation fault in C/C++ programs or an unhandled
exception in Java programs). If the executor detects unexpected
termination, it flags the input as rejected. In Section III, we
show that our approach indeed detects some denial-of-service
vulnerabilities among the identified deviations.

C. Deviation Detector

To determine if an input is accepted or rejected by an
implementation we need an observable property. In protocols
that trigger a response, whether the input was accepted can
often be determined from the response to the input, e.g.,

using the status code in an HTTP response [17]. However,
by default BPv7 nodes do not provide a response when a
bundle is received. There is an option in BPv7 to request
status reports but since we focus on the parser component
of the implementations status reports are not available.

To address this issue, we build an error checker for each
implementation. It applies regular expressions to the content
of the produced logs to identify error messages. If an error
is found, the input is rejected. The absence of errors means
the input was accepted. For example, in bp7-rs if the log
contains sentences starting with “Error decoding bundle!”,
“Error validating bundle:”, or “Unknown crc type” then the
input was rejected, else it was accepted. If the input is accepted
or rejected by all implementations, then it is discarded as it
does not trigger a deviation. If an implementation disagrees
with the others, the deviation input and the logs are saved.

D. Clustering

Multiple deviation inputs may be due to the same underlying
cause, e.g., the same protocol conformance violation. We
cluster the deviation inputs using a two-step approach. First,
we generate a vector for each deviation with the accept/reject
decisions by each implementation and group the deviations
with the same vector. Since we test three implementations and
each deviation requires at least one accepting and one rejecting
implementation, there are six possible initial clusters.

Second, we split the initial clusters so that inputs in the
same cluster produce the same normalized error messages in
the implementations that reject the input. Intuitively, if an
implementation reports different errors for different inputs,
those inputs are unlikely to be due to the same root cause
and should be in different clusters. The normalization replaces
dates and numbers in the error messages with placeholders.
Inputs rejected by two implementations only end up in the
same cluster if both normalized error messages are the same.

III. EVALUATION

We evaluate our approach on the three implementations in
Table I. We first detail the deviations found in Section III-A
and then discuss the identified bugs in Section III-B.

A. Deviations Found

Table II compares the efficacy of the three input gener-
ation approaches for finding deviations. We use each input
generation technique to produce 1M inputs, execute the three



TABLE 11
COMPARISON OF INPUT GENERATION STRATEGIES. EACH ROW PRESENTS AN AVERAGE OF 5 ROUNDS, EACH GENERATING I M INPUTS, EXCEPT THE TWO
RIGHTMOST COLUMNS THAT CAPTURE THE TOTAL NUMBER OF UNIQUE DEVIATION INPUTS AND CLUSTERS ACROSS THE 5 ROUNDS.

Accepted Inputs Rejected Inputs | Deviation Total Deviations

Strategy Tool Runtime | bp7-rs uD3TN ESA BP All All Inputs | Inputs Clusters

Mutational AFL++ Sm 27s 2.50% 2.79% 3.22%  2.44% 96.46% 1.10% | 19,516 118

Coverage-guided ~ AFL++ 1m 47s 1.29% 1.58% 1.40%  1.09% 98.06% 0.85% | 28,615 313

Grammar-based Peach 11h 55m 29s 1.22% 1.62% 1.50% 1.18% 98.11% 0.71% 4,364 149
implementations on those inputs and examine how many TABLE III

deviations are found. Since input generation techniques are
non-deterministic, we repeat the process five times and average
the results. Thus, in total, we generated 15M inputs.

The larger ratio of deviation inputs is found with the muta-
tional strategy (1.10%) followed by coverage-guided (0.85%)
and grammar-based (0.71%). The vast majority (96.46%-
98.11%) of generated inputs are rejected by all three imple-
mentations (e.g., due to encoding, checksum, and logic vio-
lations), while 1.09%-2.44% inputs are accepted by the three
implementations. Those inputs are discarded as they do not
manifest deviations. The coverage-guided strategy generates
more accepted inputs on UD3TN (1.58%) since coverage is
maximized for that implementation, but the accepted inputs on
the other two implementations (1.29%—1.40%) is still larger
than those of the grammar-based strategy (1.22%-1.50%).

The same input may be produced by different strategies.
After removing such duplicates, we are left with 51,373 unique
deviation inputs, grouped into 432 clusters. The median cluster
size is 3 inputs, with a mean of 118.9. Of the 432 clusters,
127 (29.4%) have a single input, 167 (38.7%) have between
2 and 10 inputs, 86 (19.9%) have between 10 and 100 inputs,
38 (8.8%) between 100 and 1K, and 14 (3.2%) have over 1K
inputs.

Table IIT shows the split of the deviation inputs and clusters
by initial cluster type. The most common case, responsible for
36.1% of deviation inputs and 68.3% of clusters, is that both
bp7-rs and ESA BP reject the input but uD3TN accepts it. The
three implementations first decode the received bundle using
a third-party CBOR library and then validate the decoded
fields. Based on the error messages, we estimate that 87%
of the clusters capture deviations in the CBOR decoding (i.e.,
libraries disagree on whether the input is valid CBOR content)
and 13% capture deviations in the validation checks.

B. Bugs Reported (So Far)

We have identified 28 clusters where the ESA BP parser
throws a Java exception such as NullPointerException or
IndexOutOfBoundsException. We replayed deviations in these
clusters against a full ESA BP node. The parser exceptions
are not caught upstream causing the main parsing thread to
crash and stop parsing bundles, leading to a DoS. While the
exception causes are varied, the fix is likely the same, i.e.,
catch all exceptions from the parser. Thus, we have filed a
single bug report to ESA BP to fix these vulnerabilities.

SPLIT OF DEVIATION INPUTS AND CLUSTERS, A CHECK MARK (V)
INDICATES ACCEPTANCE, A CROSS (X) REJECTION OF THE INPUT.

bp7-rs uD3TN  ESA BP | Deviation Inputs Clusters
X v X 18,560 (36.1%) 295 (68.3%)
X X v 18,745 (36.5%) 37 ( 8.6%)
v X X 7,383 (14.4%) 32 (7.4%)
X v v 4,858 ( 9.5%) 28 ( 6.5%)
v v X 1,346 ( 2.6%) 37 ( 8.6%)
v X v 481 ( 0.9%) 3.(0.7%)

All deviations 51,373 (100%) 432 (100%)

For the remaining clusters, we aim to determine which
implementations are responsible for the deviations and file
them a bug report. For this, we compare the error messages
of the rejecting implementations with the deviation inputs and
the BPv7 specification. If the error messages match the spec-
ification, then the accepting implementations are responsible.
Otherwise, the rejecting implementations are responsible.

So far, we have analyzed 11 clusters. We have focused on
validation deviations since CBOR-decoding deviations should
be reported to the external libraries. All 11 clusters reveal
protocol conformance issues. In eight clusters, one imple-
mentation violates the specification. In the other three, two
implementations are at fault. Thus, the majority is often right,
but not always. We have filed 14 bug reports summarized in
Table IV. Of those, 10 have already been fixed.

Of the reported bugs, 11 are due to overly lenient receivers,
i.e., implementations accepting invalid inputs. It is often men-
tioned that protocol implementations should be strict in what
they send and lenient in what they receive [38]. However, a
recent RFC argues that implementations being too lenient may
affect protocol robustness [39]. One example bug already fixed
was a conformance issue in UD3TN where bundles with their
source node set to dtn:none were allowed to request status
reports. The specification explicitly prohibits this, as it is not
clear where the status reports should be sent. Both ESA BP
and bp7-rs rejected such bundles but uD3TN accepted them.

IV. FUTURE WORK

As a work-in-progress, we plan to explore multiple issues
next. First, we plan to examine the remaining clusters. Since
some bugs have already been patched, we plan to re-test
the patched implementations and use the results to evaluate
our clustering, e.g., whether fixing one cluster removes other
clusters or if fixing a cluster does not eliminate a cluster.



We

TABLE IV
REPORTED BUGS.

Impl. Issue Reason Status
uD3TN Accepts invalid BP version numbers Too lenient receiver  Fixed
uD3TN Accepts set status report flags with Source ID none Too lenient receiver  Fixed
uD3TN Accepts invalid payload block number Too lenient receiver  Fixed
uD3TN Accepts bundle w/ zero timestamp and no Bundle Age block Too lenient receiver  Fixed
uD3TN Accepts duplicate block numbers Too lenient receiver  Fixed
bp7-rs Accepts invalid block ordering Too lenient receiver  Fixed
bp7-rs Accepts malformed dtn:none EIDs Too lenient receiver  Fixed
bp7-1s Rejects zero timestamp w/ bundle age block present Incorrect validation ~ Fixed
bp7-rs Rejects legal processing flag combination (fragmentation flags)  Incorrect validation  Fixed
ESA BP  Accepts malformed dtn:none EIDs Too lenient receiver  Reported
ESA BP  Accepts invalid CRC type value and wrong CBOR type Too lenient receiver ~ Reported
ESA BP  Accepts duplicate block numbers Too lenient receiver  Reported
ESA BP  Accepts bundle w/ zero timestamp and no Bundle Age block Too lenient receiver  Reported
ESA BP  IndexOutOfBoundsException kills parsing thread Uncaught exception  Fixed

also plan to test full BPv7 nodes. This would allow

us to identify deviations beyond the parsing stage and to
determine if status reports can replace the log error checkers.
We also plan to test other protocols to show how the approach
generalizes. Finally, we plan to discuss our results with the
relevant CCSDS groups and to release our implementation
once the project is completed.
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