
DSNS: The Deep Space Network Simulator
Joshua Smailes

University of Oxford
joshua.smailes@cs.ox.ac.uk

Filip Futera
University of Oxford

filip.futera@cs.ox.ac.uk

Sebastian Köhler
University of Oxford

sebastian.kohler@cs.ox.ac.uk

Simon Birnbach
University of Oxford

simon.birnbach@cs.ox.ac.uk

Martin Strohmeier
armasuisse Science + Technology
martin.strohmeier@armasuisse.ch

Ivan Martinovic
University of Oxford

ivan.martinovic@cs.ox.ac.uk

Abstract—Simulation tools are commonly used in the develop-
ment and testing of new protocols or new networks. However,
as satellite networks start to grow to encompass thousands of
nodes, and as companies and space agencies begin to realize the
interplanetary internet, existing satellite and network simulation
tools have become impractical for use in this context.

We therefore present the Deep Space Network Simulator
(DSNS): a new network simulator with a focus on large-scale
satellite networks. We demonstrate its improved capabilities
compared to existing offerings, showcase its flexibility and exten-
sibility through an implementation of existing protocols and the
DTN simulation reference scenarios recommended by CCSDS,
and evaluate its scalability, showing that it exceeds existing tools
while providing better fidelity.

DSNS provides concrete usefulness to both standards bod-
ies and satellite operators, enabling fast iteration on protocol
development and testing of parameters under highly realistic
conditions. By removing roadblocks to research and innovation,
we can accelerate the development of upcoming satellite networks
and ensure that their communication is both fast and secure.

I. INTRODUCTION

As space becomes a critical component of global infras-
tructure, there is an increasing interest in new paradigms
of communication to support the scale and complexity of
upcoming networks. Protocols are being developed to support
the delay-tolerant nature of communication, and space agen-
cies such as ESA and NASA are starting to introduce Lunar
communication [1–3] and interplanetary networks [4] (cf.
Figure 1 for a visualization of such an interplanetary network).
The presence of sporadic long-distance relay links in these
networks, alongside the inherent difficulty of communication
across highly distributed internet-scale networks in space,
means new protocols and approaches must be taken.

Standards bodies and research organizations like the Con-
sultative Committee for Space Data Systems (CCSDS) and In-
ternet Research Task Force (IRTF) have been working to build
standards supporting communication in the face of these new
network paradigms. For example, the Bundle Protocol (BP)
provides message forwarding and delivery in networks with
interrupted links [5], and the Licklider Transmission Protocol
(LTP) enables reliable message transmission across individual
network segments [6] – however, it is becoming increasingly
difficult to test these protocols to ensure their correct and effi-
cient operation in the large-scale, highly distributed networks

Fig. 1. An interplanetary network simulated in and visualized by DSNS,
with communication between Earth and Mars constellations via a relay link.

predicted to emerge in the coming decades. Simulation tools
are a crucial component of protocol development and testing,
but existing offerings do not meet all the requirements for this
purpose in these new networks. There is thus a real need for
new tools capable of simulating protocols at the scale of a
future interplanetary internet.

A. Requirements

We identify the following core requirements for any network
simulation tool in order for it to be able to effectively aid
protocol development, with a particular focus on large-scale
networks and interplanetary networking:
R1: Orbital simulation. The simulator must be able to

simulate the movement and connectivity of satellite con-
stellations, including LEO megaconstellations.

R2: Interplanetary network simulation. The simulator must
be able to handle nodes orbiting different planets, and
connectivity between them.

R3: Dynamic connectivity. Links in the simulation must be
configurable based on distance, line of sight, and/or oc-
clusion, to ensure realistic connectivity with interruptions.

R4: Dynamic timesteps. In order to support long-distance
interplanetary links, in addition to short-distance local
links, the simulator must be able to skip forward by

TABLE I
SUMMARY OF THE DIFFERENT SATELLITE NETWORK SIMULATORS CURRENTLY AVAILABLE.

Name Created by Language License Released Maintained Summary

ONE
Simulator [7]

TKK Java GPLv3 2007 ✗ Lightweight DTN network simulator. Focused on small numbers of
nodes with random movement.

NOS3 [8] NASA C NOSA 2019 ✓ Small satellite operational simulator. Simulates flight and ground
software for single missions with high fidelity.

SpaceSecLab/
NSE2 [9]

ESA — Unreleased — — Containerized satellite simulator with integrated network simulation.
Realistic and configurable, possible integration with real hardware.

Hypatia [10] ETH Zürich C++/Python GPLv2/MIT 2020 ✗ Extension to ns-3, provides LEO constellation mobility for fixed
ISLs. Now part of “SNS3” [11].

Celestial [12] TU Berlin Python GPLv3 2022 ✓ LEO system testbed based on micro-VMs, supporting software
emulation for LEO networks.

StarryNet [13] Tsinghua Python MIT 2023 ✓ Simulator for integrated space and terrestrial networks, combining
orbital simulation with Docker and network emulation.

xeoverse [14] Surrey Python Non-commercial 2025 ✓ LEO megaconstellation simulator based on Mininet [15]. Real-time
simulation of large networks including dynamic ISLs.

Stardust [16] TU Wien C# Apache 2.0 2025 ✓ Scalable 3D network routing simulator, plugins to extend
functionality. Fast, supports many nodes.

SatScope [17] NUDT China Python Non-commercial 2025 — LEO constellation network simulator based on VTK with a focus
on satellite internet routing/coverage.

DSNS Oxford Python GPLv3 2025 ✓ Scalable network simulator supporting arbitrary interplanetary
networks. High-level protocol simulation to support development.

TABLE II
COMPARISON OF THE FEATURES PROVIDED BY EACH OF THE SATELLITE/DTN NETWORK SIMULATORS.

Simulator Orbital Simulation (R1) Interplanetary (R2) Dynamic connectivity (R3) Dynamic Timesteps (R4) Extensible (R5) Scalable (R6) Abstracted network stack (R7)

ONE Simulator [7]
NOS3 [8]
SpaceSecLab/NSE2 [9]
Hypatia [10]
Celestial [12]
StarryNet [13]
xeoverse [14]
Stardust [16]
SatScope [17]

DSNS

large timesteps when no activity is occurring, while also
supporting fine-grained simulation of traffic over short-
distance links.

R5: Extensible. It must be straightforward to extend the
simulator to support new protocols, routing strategies,
constellations, etc.

R6: Scalable. The simulator must be able to handle large
numbers of nodes (at least hundreds, if not thousands
or more), with large traffic volumes.

R7: Abstracted network stack. In service of R5, and to
enable faster protocol development and testing, simula-
tion tools benefit from supporting abstracted or reduced
network stacks (potentially in addition to full-stack sim-
ulation or emulation).

B. Contributions

In this paper we present the Deep Space Network Simulator
(DSNS): a new network simulator optimized for interplanetary
networks that satisfies all the requirements established above.
In contrast to existing offerings, explored in Section II, DSNS
scales well to large numbers of nodes, supports arbitrary
network topologies with interplanetary links, and uses an

underlying event-based simulation to enable simulations to run
faster than real time. Furthermore, DSNS is easily extensible
thanks to its modular architecture – new protocols can be
added, removed, and swapped out, and new layers of the
network stack can be implemented by simply defining new
sets of rules upon which messages and events are matched.
To facilitate future research, DSNS has been made fully open
source, released under the GNU GPLv3 license.1

II. BACKGROUND

Simulators are used in the development and evaluation of
protocols in satellite and interplanetary networks, as they en-
able testing in networks much larger than otherwise possible,
under a wide range of configurations, and without risking
damage to real-world systems. Depending on the use case,
simulations may be performed purely in software, paired with
hardware simulation, or connected to real-world hardware.

Several satellite network simulators are already in use; in
Table I we describe each at a high level, and in Table II we as-
sess them against the requirements established in Section I-A.

1The source code and documentation can be found at https://github.com/
ssloxford/DSNS.

We justify these assessments below. In addition to these, there
are also some more generalized network simulation tools, such
as ns-3 [18] and OMNeT++ [19]. However, these do not scale
well to large numbers of nodes with many connections, so we
do not consider them by themselves in this paper.2

The “ONE Simulator” [7] is a lightweight network simulator
designed with DTNs in mind, primarily supporting scenarios
with randomly moving nodes connecting based on proximity,
with a well-defined extension framework. However, it does
not natively support orbital simulation or satellite movement,
and scalability is limited, with tested configurations limited to
approximately 1000 nodes.

More recently, NASA have released their “NOS3” simula-
tor, designed to be a satellite digital twin for developing and
testing onboard software [8]. Although highly suited to this
purpose, it is not feasible to run it at scale to test network
protocols between many nodes. ESA are also planning to
release their “Network Simulation and Emulation Environment
(NSE2)” as part of their “SpaceSecLab” [9], providing a
Docker-based network simulation that supports highly realistic
emulation of the network stack and connectivity for small
numbers of nodes. This is useful for testing implementation-
specific details and small-scale mission control, but is not as
practical for large satellite networks.

There has also been recent academic interest in satellite
network simulators, with a range of newly released simulators
since 2020 – summarized in Tables I and II. Notably, the
vast majority of these simulators either use fixed timesteps
or tie the simulation to a real-world clock. This makes the
simulation of interplanetary networks particularly difficult,
since they include short-distance local links alongside very
long interplanetary links – to support both of these, a very
small timestep will need to be chosen, increasing the simu-
lation runtime to impractical levels. Event-driven simulators
including “Hypatia”, “ONE Simulator” and “NSE2” do not
do this, but still struggle when large amounts of events are
generated in a short timespan, triggering unnecessary position
updates. This can be improved upon by only recomputing
connectivity graphs once a minimum time delta has passed.

Also notable is that many of the simulators make use of
virtualization or emulation to simulate real network stacks
– this can be useful when protocols are being tested at the
implementation level, but is not necessary for the vast majority
of research and development tasks, slowing down development
by requiring a full implementation of the protocol even at the
earliest stages of testing. Furthermore, interplanetary networks
often involve new protocols across the whole stack which
do not always have mature implementations, so it may not
even be possible to achieve a full network stack, especially
as many components will differ from the traditional IP stack.
This is of particular concern to simulators like “xeoverse” and
“Celestial”, as their underlying virtualization platforms make

2There is also an extension to ns-3 called SNS3 [11] which provides
satellite spot beam simulation and an implementation of the DVB-S2 protocol;
however, it does not solve its scalability issues, so it is only suitable for
simulating smaller networks.

Simulation

Data
t1Event

Data
t2Event

Data
t3Event

Data
t1Event

Constellation
ISLHelper

ILLHelper DataProviderActor

MultiConstellation
EventQueue

update(t1)

handle event_ list[Event]

Fig. 2. Overall structure of DSNS and its high-level operation.

use of the host network stack – this is unlikely to match the
tested networks. Similarly, “Stardust” cannot be used for traffic
simulation or emulation, since it focuses instead on deploying
computation tasks for edge computing cases.

Finally, we highlight that none of the existing simulators
support interplanetary networks and many of them only have
limited scalability. Both of these features are critical to en-
sure communication protocols and management systems can
handle the high latencies and frequent interruptions involved
in interplanetary settings, and adapt to the predicted scale of
these networks in coming decades.

Although these simulators are highly capable for the tasks
they were designed for, none provide all the features required
for effective interplanetary network simulation. Some struggle
to scale to large numbers of nodes, some do not simulate mo-
bility, and others do not support dynamic links or multi-planet
systems, severely limiting the range of network configurations
that can be tested. The simulators that support some of these
features often require simulation of the entire network stack,
even when a much smaller number of layers is sufficient.
Others do not support simulation of protocols that deviate too
far from the IP stack – which are those that we are most
interested in testing and optimizing.

In contrast, the Deep Space Network Simulator supports
arbitrary mobility and connectivity models, including fixed
networks, LEO constellations, and interplanetary networking.
The links between nodes can be defined from a fixed list of
edges or programmatically, based on distance, line of sight,
angle of elevation, or planetary occlusion. Its event-based
architecture with optional minimum timesteps enables large
spans of time to be fast-forwarded when messages travel a
long distance alongside simulating large numbers of messages
across shorter links within the same simulation scenario. It is
easily extensible through a simple Python interface, scalable to
many thousands of nodes (demonstrated in Section V-B), and
simulates an abstracted network stack to improve efficiency
and simplify development and iteration, while also supporting
full-stack implementation of protocols if needed.

III. SIMULATOR DESIGN

In this section we describe the design of the Deep Space
Network Simulator, demonstrating its underlying functionality,
usage, and the ways in which it fulfills each of the require-
ments established in Section I-A.

A. Architecture

Figure 2 shows the overall architecture of DSNS. The
simulation is highly modular, underpinned by a simple event-
based simulation: components can be switched out to alter
behavior, or entirely new components can be added for addi-
tional functionality. Mobility and connectivity are managed by
the MultiConstellation class and its components, and
all other functionality is handled by an event-based simulation
and associated Actors and DataProviders. Everything
in the simulation, including message creation/routing/delivery,
link changes, routing table updates, and scenario-specific
changes, are stored in a priority queue as Events with
attached timestamps. These events are processed by Actors,
which implement all complex functionality by matching and
processing events – for example, a single instance of the
MessageRoutingActor handles message routing and de-
livery for all nodes in the simulation.

At each step of the simulation, the topmost event is removed
from the queue and passed to all actors, which use pattern
matching to decide whether to process the event, and option-
ally add further events to the queue. They may also query data
providers to gain additional information (e.g., routing tables),
or the mobility model to get distances between nodes and
the state of links. This process repeats until the simulation
terminates. The modular implementation of complex function-
ality and protocols makes it easy to add new features without
requiring a deep understanding of the rest of the simulation.

This architecture is highly efficient, as only the required
components of the stack are simulated and simulation time can
be advanced by large steps if needed. The latter is particularly
useful in interplanetary settings as these often have long
periods of little to no activity while a relay link is unavailable.
To further improve efficiency for high-traffic scenarios, we also
provide an optional minimum time delta: with this setting,
mobility and routing models will not be updated more than
once within this timespan, reducing the amount of unnecessary
updates, thus satisfying R4. The actor model also makes
DSNS highly extensible (R5), as we demonstrate through our
implementation of LTP in Section III-D – we also explore
further extension opportunities in Section VI.

B. Mobility

Mobility and connectivity are handled by the Multi-
Constellation class, which simulates any number of
constellations, the Inter-Satellite Links (ISLs) within con-
stellations, and the Inter-Layer Links (ILLs) between con-
stellations. Constellations can be created from fixed points,
Walker constellation parameters, or by importing Two Line
Element (TLE) sets for full orbital simulation using the
SGP4 propagator [20]. Each of these inherits from the
Constellation class, defining the positions of satellites in
the constellation or segment over time. Each constellation also
has an OrbitalCenter, defined as the parent around which
satellites orbit, enabling complex movement and simulation
of satellites around many different planets or other bodies,

A LTPA LTPB B

Message 1

Segment 1

Segment 2

Segment 3 (CP)

Timeout (CP)

Timeout (RS)Segment 4 (RS)

Segment 5 (ACK)
Segment 2 (CP)

MessageReceivedEvent (Message 1)

Fig. 3. Sequence diagram for LTP message retransmission. Segment 2 is lost
in-transit and retransmitted to guarantee the message reaches its destination.

without loss of precision when communicating over short
distances. This satisfies R1 and R2.

Inter-satellite links can be fixed (for ground systems or
Walker constellations) or dynamic (connecting to satellites
within view), by using one of the pre-built ISLHelper
classes or defining the links manually. The ILLHelper
works almost identically, but defines instead the links between
different constellations or planets. Each time the simulation
time is updated, positions of satellites and connectivity of links
are updated to reflect the new state – satisfying R3.

C. Message Delivery

Message routing and delivery in DSNS is modeled re-
alistically by simulating propagation along each link in
the network, for both point-to-point and broadcast mes-
sages. This is handled for all nodes in the simulation by a
MessageRoutingActor that, when a message is received,
figures out the next hop in its path and forwards it on. Propaga-
tion delays are modeled using speed-of-light distances between
nodes, and the LinkTransmissionActor manages link
bandwidth and transmission delays, queueing messages if the
link is busy or buffering them if the link goes down. All
parameters including routing strategy, bandwidth, and error
rate can be customized on a global or per-link basis.

Routing is handled by a RoutingDataProvider, which
builds a connectivity graph for the network and computes
optimal next-hop routing. We provide routing systems for best-
effort and store-and-forward delivery – the latter looks ahead
to future states of the network, enabling messages to be stored
until the link becomes available. We discuss in Section VII
how future work can build upon this system to provide realistic
implementations of current and proposed routing protocols.

D. Protocol Design

It is easy to extend DSNS to support new protocols (R5);
we demonstrate this by implementing the Licklider Transmis-
sion Protocol (LTP) for reliable per-hop message transmission,
demonstrated in Figure 3 [6, 21]. All functionality is contained
within the LTPActor – when enabled, this actor breaks the
underlying message into green (unreliable) followed by red

(reliable) LTPDataSegments and queues them for trans-
mission. This segmentation follows a configurable maximum
segment size. The last red data segment (if any) is marked
as a checkpoint. This aligns with the mandatory checkpoint
requirements of the protocol, while support for optional dis-
cretionary checkpoints is left to future work.

Each segment is received through a LTPSegment-
ReceivedEvent and buffered until message reassembly
is invoked. This in turn occurs when all expected red
LTPDataSegments are received, or in the case of an all-
green message, an end-of-block green LTPDataSegment
is received. At that point, the underlying message is re-
assembled and a MessageReceivedEvent is emitted.
Although standard LTP uses block offsets and lengths
to compute missing byte ranges, our implementation ab-
stracts this by having the checkpoint segment explicitly
list the UIDs of sent LTPDataSegments, simplifying
the receiver logic. Upon receiving a checkpoint segment,
the receiver responds with a LTPReportSegment listing
the UIDs of the LTPDataSegments it received. When
the sender receives a LTPReportSegment, it sends a
LTPReportAcknowledgementSegment and retransmits
any missing LTPDataSegments.

Both the checkpoint and report segments have config-
urable timeouts, which trigger retransmissions if the cor-
responding responses are not received within the allot-
ted time. The actor can also be configured with a max-
imum number of retransmission attempts for each check-
point or report segment. If this limit is exceeded, the ses-
sion is canceled and the message is dropped at the sender
(MessageDroppedEvent) and/or has its reception aborted
at the receiver (MessageReceptionCanceledEvent).

E. Visualization

DSNS also contains a visualization tool using the “pyren-
der” library, enabling a 3D view of any interplanetary network
to provide a better understanding of how satellite network
topologies evolve over time, and assist in the construction of
new constellations or simulations. This tool was used to create
the visualization of an Earth-Mars network in Figure 1.

IV. REFERENCE SCENARIOS

In this section we describe and implement a number of
reference scenarios to demonstrate the capabilities and per-
formance of DSNS, which can be used as a starting point for
protocol development and optimization. These scenarios define
a network topology, bandwidth limitations, traffic models, and
an error model, each of which can be mixed and matched,
modified, or extended.

Each scenario is constructed from a simple Python script,
examples of which are given in Appendix A. Upon completion,
they produce a log file detailing all events generated during
the simulation (or aggregate statistics), from which further
information can be extracted. Metrics include message latency
and hop count, bandwidth usage, and link saturation. These
can be used to assess the performance of different protocols

or configurations, or to see how the characteristics of a given
network topology change over time.

Finally, we also demonstrate the performance and scalability
of DSNS itself (satisfying R6), by running simulations with
large numbers of nodes and high levels of traffic, and com-
paring to performance figures quoted for other simulators.

A. CCSDS Reference Scenarios

We start by implementing the network topologies specified
in the DTN reference scenarios proposed by CCSDS [22].3

In these scenarios, the nodes, links, data rates, and traffic
types are all well-defined, enabling consistent implementation
for testing and development purposes. The document specifies
three scenarios:

• Earth Observation: A payload control center and mis-
sion control center are each connected to two ground
stations, which connect to an Earth observation satellite.

• Lunar Communication: A lunar base, rover, two relay
satellites and a lunar gateway communicate with control
centers and ground stations based on Earth.

• Mars Communication: Two rovers and three relay satel-
lites are based on and around Mars, communicating with
Earth-based control centers and ground stations.

B. Custom Scenarios

Although useful for testing protocols against long- and
short-distance communication, the above reference scenarios
are very small in scale. We therefore provide our own cus-
tom scenarios alongside these, focusing in particular on the
scalability of DSNS applied to interplanetary networks – the
number of devices in each scenario can be scaled to suit the
use case. We implement the following scenarios:

• Walker Constellation: A Walker constellation in LEO
around Earth is connected to 12 ground stations and
within itself via ISLs in a plus-grid topology. By default
we use 66 satellites matching the Iridium constellation.

• CubeSat Constellation: Using data from CelesTrak [23]
and the SGP4 orbital propagator [20], we construct a
federated network composed of the 98 CubeSats currently
in orbit, connected to 12 ground stations, and to each
other via opportunistic ISLs with a range of 2500 km.4

• Lunar-Mars Communication: The “Walker Constella-
tion” scenario is augmented with Lunar connectivity,
with a Walker constellation of 8 satellites connected to
12 Lunar ground stations, and a single relay satellite
connecting to three ground systems on Earth. A network
around Mars is also added, with 66 satellites and 12
ground stations, and its own relay satellite.

For these scenarios, we assume a uniform data rate of
25Mbit/s by default, matching the reported bandwidth of
Iridium’s ISLs [24] – as with the CCSDS scenarios, this

3These scenarios are currently in draft form; our implementations in DSNS
will be updated to reflect the final document.

4We use data provided on 2025-06-27 and propagated from 2025-06-
27T00:00:00Z. Up-to-date TLEs can be substituted in if needed.

Earth
Observation

Lunar
Communication

Mars
Communication

Reference Scenario

0

20

40

60

80

100

D
el

iv
er

y
 R

a
te

 (
%

)

Delivery Mode

Best Effort

Store and Forward

Licklider Transmission Protocol

(a) Message delivery rate under each of the three
message delivery systems.

0 5000 10000 15000 20000 25000 30000

Latency (s)

101

102

103

C
o
u
n
t

Delivery Mode

Best Effort

Store and Forward

Licklider Transmission Protocol

(b) Distribution of the latency of delivered mes-
sages, under the Earth Observation scenario, for
each message delivery system.

0 20000 40000 60000 80000 100000

Time (s)

L
in

k
 S

at
u
ra

ti
o
n
 (

%
)

0
20
40
60
80

100

High
Bandwidth
Downlink

0
20
40
60
80

100

Low
Bandwidth
Downlink

0
20
40
60
80

100

Low
Bandwidth
Uplink

(c) Saturation of the three ground-to-space links
over time, under the Earth Observation scenario
with store-and-forward delivery.

Fig. 4. A selection of results from the reference scenarios, demonstrating delivery rates, message latency, and link saturation over time.

can be configured on a global or per-link basis to match the
parameters of a particular mission.

To ensure the scenarios are as versatile as possible, the
traffic generation strategy can also be configured. We provide
the following options:

• Point-to-point Communication: Pairs of nodes send
data between each other at a constant rate for the full
duration of the simulation. The specific pairs of nodes,
rate of communication, and size of generated messages
are all configurable. By default, 10 pairs of nodes send a
1MB block of data every second.

• Random Communication: Nodes randomly generate
messages to send between each other. The message
rate, source, destination, and size are all drawn from
user-configurable distributions – by default, we support
constant, uniform, Gaussian, and Pareto distributions.

C. Message Delivery

When running any of the above reference scenarios, we
must also choose the message delivery system which the
simulation uses to route and deliver messages. We have
implemented three message delivery systems:

• Best-effort delivery: Following the IP paradigm, mes-
sages are routed according to instantaneous route avail-
ability, and are dropped if no route is available.

• Store-and-forward delivery: Using a BP-style strategy,
the routing system looks forward to the state of the
network in the future to ensure messages arrive at their
destination, storing messages if needed while waiting for
a link to become available.

• Store-and-forward with LTP: The same store-and-
forward strategy is used, but with Licklider Transmission
Protocol implemented at the data link layer to ensure
reliable data transport and realistic transmission queues.

Each of these can be swapped out with a single option. We
focus on demonstrating store-and-forward (with and without
LTP) in our results, as best-effort delivery is not well-suited
to networking in space, where links are often unavailable.

D. Error Model

Finally, we provide an error model with a configurable
message loss rate. By default, this is set to 5% across all links,
but this can be adjusted globally or on a per-link basis. These
message errors usually result in failed delivery, unless reliable
data transport is used – in our results, we demonstrate how
the introduction of LTP prevents message loss.

V. EVALUATION

In this section we run a number of reference scenarios
to demonstrate the capability of DSNS in a wide range of
contexts, and showcase its performance and scalability to
large-scale constellations.

A. Reference Scenarios

By running simulations using the reference scenarios out-
lined above, we can demonstrate the effectiveness of DSNS
in a wide range of contexts. For this section we focus on the
CCSDS reference scenarios; full results are in Appendix B.

1) Delivery Rate and Latency: We look first at the delivery
rate of messages under each message delivery system; these
results are summarized for each of the CCSDS scenarios in
Figure 4a. We can see that, as expected, delivery rate is
much lower under best-effort delivery, since any messages
that are generated when a link is not immediately available
are discarded. Delivery rates under store-and-forward delivery
are better, but messages are still lost due to the 5% error rate.
However, using LTP successfully reduces the number of failed
deliveries to 0%, since any lost data is retransmitted.

We gain further insights looking at the distribution of the
latency of delivered messages, shown in Figure 4b. Latency
under best-effort delivery is very low, since the only delivered
messages are those for which no buffering is required. LTP
results in higher latencies than store-and-forward, since more
messages are delivered instead of dropped, and additional
overhead is incurred by retransmissions and acknowledgments.

0 10000 20000 30000 40000 50000

Number of Nodes

0

2000

4000

6000

8000

R
ea

l
T

im
e

(s
)

Traffic

None

Small

Large

Fig. 5. Time taken to run the Walker constellation scenario in DSNS as the
number of nodes in the constellation increases.

2) Link Saturation: Next, we look at how the saturation
of links changes over time, shown in Figure 4c for the
Earth Observation scenario under store-and-forward delivery,
looking in particular at the ground-to-space links. As expected,
whenever a link comes online, we see a spike in saturation
as all the buffered messages are sent, followed by the newly
generated messages, resulting in a more consistent amount of
low saturation. In large-scale networks, this analysis is useful
for locating the most saturated links in a network and tracking
down its root cause.

B. Performance

Finally, we use these scenarios to demonstrate the perfor-
mance and scalability of DSNS (R6), and compare to other
network simulators. This analysis can be repeated for any
network topology and traffic configuration; for the sake of
simplicity we choose to focus on the Walker constellation
with point-to-point communication, running for 100 minutes
of simulation time. In order to get the best understanding
of the overhead imposed by DSNS itself, we configure the
simulator to use best-effort delivery with no lookahead in
routing – the topology of the Walker constellation does not
change significantly, so it is not necessary to use lookahead.

We start with a simulation of 66 nodes, gradually increasing
the number of nodes to 50 688. For each constellation, we
run simulations with three different traffic configurations: no
communication between nodes, low traffic communication
(10MB every 11.5 seconds, matching the EOS scenario), and
high traffic communication (100×10MB every 11.5 seconds).
All experiments were executed on a single CPU core, using
an Intel Xeon E5-2660 processor running at 3.3GHz. No
simulation used more than 2.1GB of RAM – further details
are in Appendix B.

The time taken to run each simulation is summarized in
Figure 5. We see that even on the larger traffic configuration,
on networks whose scale far exceeds any existing satellite net-
work, the simulation still runs faster than real time. On smaller
networks, or with smaller volumes of traffic, simulations are
even faster, with many running tens or hundreds of times faster
than real time. This exceeds the performance of even the
best-performing simulators in related work: “Stardust” takes

Constellation
ISLHelper ILLHelper

Fig. 6. DSNS can be extended to support new mobility and connectivity
models by building new instances of the Constellation, ISLHelper,
and ILLHelper classes.

just over 6000 seconds to simulate 20 600 satellites [16], and
does not perform full traffic simulation, and “StarryNet” takes
over 3000 seconds to simulate 1000 satellites under the same
conditions [16]. “Hypatia” has a slowdown rate of between
2 and 50 000 on a network of just over 1000 satellites [10]
depending on traffic volume, compared to DSNS’ slowdown
rate of less than 1 under all tested configurations.

Furthermore, since DSNS is single-threaded, many simu-
lations can be executed at once on a single machine with no
impact on performance for each simulation. This is highly
useful in practice, enabling multiple tests under different
network topologies or protocol configurations to be executed
at the same time and compared afterwards.

VI. EXTENSIBILITY OF DSNS

One major use case for DSNS lies in its extensibility (R5)
– each of the reference scenarios can be modified, extended,
or rewritten to support the needs of a particular experimental
goal. By using the same reference scenarios and metrics across
all experiments, we can be sure that new protocols or network
topologies provide concrete improvements, rather than merely
performing better as an artifact of the experimental setup.

Due to its modular design, adding new functionality to
DSNS is a highly straightforward process. We demonstrate
this by outlining how a user might add support for a new
network layer above or below those already simulated, a new
routing strategy, and new constellations within the mobility
and connectivity model.

Since the behavior of each component is defined by Python
functions, rather than a domain-specific language, customiza-
tion options are almost unlimited: as long as the desired
functionality can be expressed in code, it can be supported in
DSNS. This enables a choice of different levels of abstraction
based on need: for the majority of the examples expressed
in this paper we have focused on abstracted implementations
of protocols, allowing us to test functionality with minimal
computational impact. However, we have also seen through
our implementation of LTP that protocols can be implemented
with greater fidelity. If required, this can even be taken down
to the bit level for a given protocol – and importantly, this can

be done without requiring the rest of the stack to be simulated
with such high precision, unless specifically required.

A. Mobility and Connectivity

Firstly, we consider extensions to the mobility and connec-
tivity model used by DSNS, illustrated in Figure 6. These are
the easiest parts of the simulator to modify, as they are unaf-
fected by the rest of the simulation. To add a new type of orbit,
a user simply extends the Constellation class to provide
the desired functionality, defining update_positions to
correctly set their positions at each timestep. These can be
fixed, follow a given curve or orbital propagation model,
move randomly, or follow any other pattern that can be
expressed in code. Similarly, ISLHelper can be extended to
provide new connectivity models, with get_isls defining
how satellites in a constellation are connected at any given
point in time – by modifying this function, any configuration
of links can be supported, from fixed topologies to more
esoteric options. Finally, ILLHelper (and corresponding
function get_ills) defines the connections between layers
and planetary segments, and can be modified in the same way
to enable arbitrary inter-layer and inter-segment connectivity.

Once these have been defined, the simulator handles all
low-level functionality, solving for routes and generating link
up/down events as links become available and unavailable.

B. Routing Strategies

Implementing a new routing strategy in DSNS is
straightforward at its core, requiring an extension to the
RoutingDataProvider class with the new strategy. How-
ever, this obscures some underlying complexity – the existing
routing strategies rely upon global knowledge of the network
state, and do not require message passing between nodes.

To implement a routing protocol that involves an exchange
of information between nodes, additional functionality must
be integrated into the data provider. This could be build on
top of the existing message delivery system, using manually
routed messages to pass information between adjacent nodes.

The message delivery system can also be extended to
support new functionality; for instance, if the data provider
returns more than one next hop, it could be configured to
deliver messages along multiple paths to increase the chance of
successful delivery. This flexibility enables the implementation
of a wide range of routing protocols and strategies.

C. Higher Layer Protocols

It is easy to add new protocols at higher levels by extending
the BaseMessage to add additional fields, encapsulating
the original message as a field within the new message.
However, developers need to take care that layers are ap-
propriately ordered by ensuring each layer correctly pattern
matches on messages from the layer above it, and that a
MessageCreatedEvent is only generated for the lowest
layer event. For more complex simulations with multiple
layers, a layer management actor might be used to make sure
layers are correctly ordered and handle events between them.

D. Physical Layer

Alongside higher layer functionality, DSNS also supports
implementing additional features at lower layers. This might
involve adding additional parameters such as message size,
priority, or physical layer modeling for more realistic message
loss. To modify the message structure, BaseMessage can
be extended once again to add the new fields. Following
this, the MessageRoutingActor can be extended to mod-
ify physical layer delivery mechanisms – for example, the
handle_message_sent_event function can be modified
to support bandwidth limiting or message loss modeling.

E. Security

Finally, we discuss the ways in which DSNS can be used
to enable security research in this area. In the source code
for the simulator we provide mechanisms for simulating the
following attacks:

• Global message loss: We provide configurable random-
ized message loss across the whole network through
the LossConfig class, enabling the testing of reliable
delivery and rerouting mechanisms under realistic loss
conditions.

• Targeted message loss: The LossConfig also supports
per-link loss rates, enabling simulation of more targeted
attacks and ensuring redelivery and rerouting still works
under direct attack.

• Link flooding attacks: Finally, we provide tools to
simulate targeted flooding attacks, denying service by
exhausting the available bandwidth on a link. This can
be accessed via the TrafficFloodActor, and can be
configured to start and end at a specific time, target a
single link or a group of links, and use different amounts
of bandwidth.

Furthermore, the simplicity and extensibility of DSNS
makes it easy to build further attack mechanisms, making it
particularly useful to assess the behavior of different protocols
and strategies under a wide range of attacks.

VII. DISCUSSION

In previous sections we have demonstrated that DSNS is
efficient, scalable, supports any required network topology, and
can be easily extended to support new protocols. The combi-
nation of these features makes it immensely useful for future
research, development, and testing. Standards bodies like the
CCSDS can use the simulator to run their DTN communication
reference scenarios, with fast iteration on parameters for
upcoming protocols and recommended standards. They will
also be able to run simulations at a much larger scale than these
small examples, using configurations built upon the custom
scenarios explored in this paper to test those same protocols on
significantly larger networks without sacrificing performance.
In doing so, we can ensure standards are well-informed by
simulations which match real-world configurations.

Alongside these standards bodies, satellite developers and
operators will also benefit through making data-driven deci-
sions prior to deployment. Alongside optimizing their planned

network topology, they will also be able to test protocols to
ensure their configuration provides optimal performance.

Although the performance of DSNS is already sufficient for
the vast majority of cases, there is always scope for further
improvements in this area. For example, the impact of message
routing could be reduced by precomputing routes on paths
that are known to be fixed, and components of the mobility
and connectivity model could be written in a more performant
language such as Rust or C++. Thanks to the modularity
of DSNS combined with its thorough documentation, it will
be possible to replace components with higher-performance
variants without impacting usage or results.

Future work might also consider implementing the
JSON/CSV specifications used by the CCSDS reference sce-
narios, enabling them to be implemented and tweaked directly
using the same format as the ESA simulation platform. By
running the same simulations on multiple different platforms,
we can gain the best of both worlds – the SpaceSecLab
platform provides better support for full-stack network simula-
tion, whereas DSNS supports larger constellations and faster
iteration on protocol design, so both can be used together
for effective testing across the board. However, implementing
this specification is not trivial, as DSNS makes use of full
orbital simulation to calculate rendezvous times, whereas the
CCSDS specification uses a list of fixed connection times.
Parity between the two can be ensured by either using DSNS
to generate the rendezvous times for the CCSDS scenarios, or
by modifying the simulation configuration for the reference
scenarios to instead take a fixed list of connection times.

VIII. CONCLUSION

In this paper we have presented the Deep Space Network
Simulator (DSNS), and demonstrated how it can be used to
enhance the research and development necessary for upcoming
LEO megaconstellations and interplanetary networks. Through
its modular architecture, event-based simulation, and a simple
and flexible interface, DSNS offers improved scalability, con-
figurability, and extensibility compared to existing tools. We
have demonstrated its capabilities through the implementation
of existing protocols and reference scenarios, and shown that
its performance exceeds existing state-of-the-art tools.

As satellite networks continue to expand in scale and capa-
bility, DSNS is well-positioned to enable future innovation in
this critical area, bringing us closer to the ultimate goal of a
unified interplanetary internet.

ACKNOWLEDGMENTS

We would like to thank armasuisse Science + Technology
for their support during this work. Joshua was supported
by the Engineering and Physical Sciences Research Council
(EPSRC). Sebastian and Simon were supported by the Royal
Academy of Engineering and the Office of the Chief Science
Adviser for National Security under the UK Intelligence
Community Postdoctoral Research Fellowships programme.

REFERENCES

[1] David J Israel, Kendall D Mauldin, Christopher J
Roberts, Jason W Mitchell, Antti A Pulkkinen, D
Cooper La Vida, Michael A Johnson, Steven D Christe,
and Cheryl J Gramling. “LunaNet: A Flexible and Ex-
tensible Lunar Exploration Communications and Navi-
gation Infrastructure”. In: 2020 IEEE Aerospace Con-
ference. IEEE, 2020, pp. 1–14. ISBN: 1-72812-734-3.

[2] NASA. LunaNet Interoperability Specification Docu-
ment. 2022. URL: https://www3.nasa.gov/sites/default/
files/atoms/files/lunanet interoperability specification
version 4.pdf (visited on 06/11/2025).

[3] European Space Agency. Moonlight. 2024. URL: https:
//www.esa.int/Applications/Connectivity and Secure
Communications/Moonlight (visited on 06/11/2025).

[4] NASA Science. The Mars Relay Network Connects Us
to NASA’s Martian Explorers. 2021. URL: https://mars.
nasa.gov/news/8861/the-mars-relay-network-connects-
us-to-nasas-martian-explorers (visited on 06/11/2025).

[5] Scott Burleigh, Kevin Fall, and Edward J. Birrane.
Bundle Protocol Version 7. Request for Comments
RFC 9171. Internet Engineering Task Force, Jan.
2022. 53 pp. DOI: 10 . 17487 / RFC9171. URL: https :
/ / datatracker . ietf . org / doc / rfc9171 (visited on
06/11/2025).

[6] Scott Burleigh, Stephen Farrell, and Manikantan Ra-
madas. Licklider Transmission Protocol – Specification.
Request for Comments RFC 5326. Internet Engineering
Task Force, 2008. 54 pp. DOI: 10 . 17487 / RFC5326.
URL: https://datatracker.ietf.org/doc/rfc5326 (visited on
06/30/2025).

[7] Ari Keränen, Jörg Ott, and Teemu Kärkkäinen. “The
ONE Simulator for DTN Protocol Evaluation”. In:
Proceedings of the 2nd International Conference on
Simulation Tools and Techniques. 2009, pp. 1–10.

[8] NASA Technology Transfer Platform. NASA Opera-
tional Simulator for Small Satellites (NOSˆ3). 2025.
URL: https://software.nasa.gov/software/GSC-17737-1
(visited on 06/11/2025).

[9] Daniel Fischer, Mariella Spada, and David Koisser.
“SpaceSecLab: A Modular Environment for Prototyping
Space-Link Security Protocols”. In: 14th International
Conference on Space Operations. 2016, p. 2391.

[10] Simon Kassing, Debopam Bhattacherjee, André Bap-
tista Águas, Jens Eirik Saethre, and Ankit Singla.
“Exploring the ”Internet from Space” with Hypatia”.
In: Proceedings of the ACM Internet Measurement
Conference. 2020, pp. 214–229.

[11] Jani Puttonen, Budiarto Herman, Sami Rantanen, Frans
Laakso, and Janne Kurjenniemi. “Satellite Network
Simulator 3”. In: Workshop on Simulation for European
Space Programmes (SESP). Vol. 24. 2015, p. 26.

[12] Tobias Pfandzelter and David Bermbach. “Celestial:
Virtual Software System Testbeds for the LEO Edge”.

In: Proceedings of the 23rd ACM/IFIP International
Middleware Conference. 2022, pp. 69–81.

[13] Zeqi Lai, Hewu Li, Yangtao Deng, Qian Wu, Jun
Liu, Yuanjie Li, Jihao Li, Lixin Liu, Weisen Liu,
and Jianping Wu. “StarryNet: Empowering Researchers
to Evaluate Futuristic Integrated Space and Terrestrial
Networks”. In: 20th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 23). 2023,
pp. 1309–1324. ISBN: 1-939133-33-5.

[14] Mohamed M. Kassem and Nishanth Sastry. “xeo-
verse: A Real-time Simulation Platform for Large
LEO Satellite Mega-Constellations”. In: arXiv preprint
arXiv:2406.11366 (2024). arXiv: 2406.11366.

[15] Nikhil Handigol, Brandon Heller, Vimalkumar Jeyaku-
mar, Bob Lantz, and Nick McKeown. “Reproducible
Network Experiments Using Container-Based Emula-
tion”. In: Proceedings of the 8th International Confer-
ence on Emerging Networking Experiments and Tech-
nologies. 2012, pp. 253–264.

[16] Thomas Pusztai, Jan Hisberger, Cynthia Marcelino, and
Stefan Nastic. “Stardust: A Scalable and Extensible
Simulator for the 3D Continuum”. In: arXiv preprint
arXiv:2506.01513 (2025). arXiv: 2506.01513.

[17] Qichen Wang, Guozheng Yang, Yongyu Liang, Chiyu
Chen, Qingsong Zhao, and Sugai Chen. “SatScope:
A Data-Driven Simulator for Low-Earth-Orbit Satellite
Internet”. In: Future Internet 17.7 (2025), p. 278. ISSN:
1999-5903.

[18] George F Riley and Thomas R Henderson. “The Ns-
3 Network Simulator”. In: Modeling and Tools for
Network Simulation. Springer, 2010, pp. 15–34.

[19] Andras Varga. “OMNeT++”. In: Modeling and Tools
for Network Simulation. Springer, 2010, pp. 35–59.

[20] David Vallado and Paul Crawford. “SGP4 Orbit De-
termination”. In: AIAA/AAS Astrodynamics Specialist
Conference and Exhibit. 2008, p. 6770.

[21] Scott Burleigh, Stephen Farrell, and Manikantan Ra-
madas. Licklider Transmission Protocol – Security Ex-
tensions. Request for Comments RFC 5327. Internet
Engineering Task Force, Sept. 2008. 11 pp. DOI: 10.
17487/RFC5327. URL: https://datatracker.ietf.org/doc/
rfc5327 (visited on 06/30/2025).

[22] CCSDS. Reference Scenarios. 2023. 29 pp.
[23] T.S. Kelso. CelesTrak. 1985. URL: https://celestrak.org/

(visited on 06/27/2025).
[24] Jun Yang. The Inter-Satellite Link: Theory and Technol-

ogy. Springer Nature, 2025.

APPENDIX A
EXAMPLE CODE

In this appendix, we provide code snippets illustrating the
ease with which scenarios can be constructed using DSNS,
the reference scenarios described in Section IV as a base.

The following builds and runs the Earth Observation sce-
nario:

1 constellation = EarthObservationMultiConstellation()
2

3 transmission_actor = \

4 EarthObservationTransmissionActor(

5 constellation=constellation

6)

7

8 traffic_actor = EarthObservationTrafficActor(

9 constellation=constellation,

10 update_interval=300,

11)

12

13 routing_data_provider = LookaheadRoutingDataProvider(

14 resolution=60,

15 num_steps=600,

16)

17 routing_actor = MessageRoutingActor(

18 routing_data_provider,

19 store_and_forward=True,
20 model_bandwidth=True,
21 #loss_config=LossConfig(

22 # seed=0,

23 # default_loss_probability=0.05

24 #),

25 #reliable_transfer_config=LTPConfig(),

26)

27

28 simulation = Simulation(

29 constellation,

30 actors=[

31 transmission_actor,

32 traffic_actor,

33 routing_actor,

34],

35 data_providers=[routing_data_provider],

36 timestep=0.01,

37)

38

39 simulation.initialize(time=0)

40 simulation.run(3600*24, progress=False)

To modify this scenario to use LTP, we simply uncomment
the LTPConfig(), alongside the following LTP actor:

1 retransmission_config = RetransmissionConfig()
2 ltp_actor = LTPActor(

3 config=retransmission_config,

4 model_bandwidth=True,
5)

Similarly, message loss can be added by uncommenting the
LossConfig().

We provide the helper scripts ccsds_reference.py
and custom_reference.py to build and run all of the

scenarios described in this paper and collect logs, with a range
of options to customize the simulation. These can be used as
they are, or as a starting point for modification.

APPENDIX B
EXTENDED RESULTS

In this appendix we expand upon the simulation results in
Section V, providing additional statistics and insights.

A. Reference Scenarios

In addition to the CCSDS reference scenarios, we also ran
simulations under the custom reference scenarios provided in
this paper.5 Results for all the scenarios are summarized in
Table III,6 and a selection of the results are given in Figure 7.
We can see that when LTP is not used, the delivery rates are
lower, even with the lowered error rate – this is due to the
fact that messages must traverse many more links to reach
their destination, causing the error rate to compound over each
consecutive link. However, the inclusion of LTP counteracts
this and ensures almost all messages are delivered successfully.
We also see that delivery rates for best-effort and store-and-
forward delivery are closer to one another, particularly in the
Walker constellation scenario, since connectivity is largely
fixed except for ground-to-space links, so the majority of
losses are due to the error model.

B. Performance

Figure 8 shows the memory used by DSNS for each of the
Walker simulations. We can see that it increases linearly with
the number of nodes in the simulation, due to the additional
data associated with each node (position, routing tables, etc.)
and increases slightly with the volume of traffic in the sim-
ulation. It is possible that memory usage could be reduced
through the use of profilers and efficiency improvements, but
it is already low enough for the vast majority of use cases –
even on the largest simulations, usage did not exceed 2.1GB.

5We adjust the loss rate for these scenarios to 0.5%.
6Any messages that are not delivered and not dropped (e.g., due to not

being able to find a route for the message) are lost due to the scenario’s error
model.

TABLE III
AGGREGATED RESULTS FOR EACH OF THE TESTED REFERENCE SCENARIOS.

Configuration

Scenario Delivery Mode Loss (%) Delivered (%) Dropped (%) Mean Latency (s) Mean Hops
Mean Link

Utilization (%)
Max Link

Utilization (%)

Earth Observation Best Effort 5.0 2.93 83.35 0.10 2.00 1.48 6.40
Earth Observation Store and Forward 5.0 16.76 0.00 8986.45 2.00 7.79 100.00
Earth Observation Licklider Transmission Protocol 5.0 100.00 0.00 9704.86 2.00 9.29 100.00
Lunar Communication Best Effort 5.0 28.51 60.03 1.31 3.35 0.99 17.07
Lunar Communication Store and Forward 5.0 82.62 0.00 4707.89 3.70 3.22 100.00
Lunar Communication Licklider Transmission Protocol 5.0 100.00 0.00 4733.25 3.71 1.83 100.00
Mars Communication Best Effort 5.0 10.34 86.89 1259.66 4.65 1.42 51.20
Mars Communication Store and Forward 5.0 77.16 0.00 14 732.93 5.05 13.06 100.00
Mars Communication Licklider Transmission Protocol 5.0 100.00 0.20 14 517.87 4.97 9.65 100.00

Walker Constellation Best Effort 0.5 67.58 0.35 2.01 4.73 28.47 67.59
Walker Constellation Store and Forward 0.5 68.52 0.00 4.67 4.73 29.20 100.00
Walker Constellation Licklider Transmission Protocol 0.5 100.00 0.00 3.42 4.96 15.25 100.00
CubeSat Constellation Best Effort 0.5 32.63 42.13 2.64 5.70 28.23 100.00
CubeSat Constellation Store and Forward 0.5 49.43 1.20 53.38 7.36 35.04 100.00
CubeSat Constellation Licklider Transmission Protocol 0.5 98.80 1.20 78.25 10.02 21.03 100.00
Lunar-Mars Communication Best Effort 0.5 59.72 8.65 102.52 5.12 27.64 67.59
Lunar-Mars Communication Store and Forward 0.5 64.40 0.00 239.36 5.44 29.14 100.00
Lunar-Mars Communication Licklider Transmission Protocol 0.5 100.00 0.00 421.20 6.04 16.17 100.00

CubeSat
Constellation

Lunar-Mars
Communication

Walker
Constellation

Reference Scenario

0

20

40

60

80

100

D
el

iv
er

y
 R

at
e

(%
)

Delivery Mode

Best Effort

Store and Forward

Licklider Transmission Protocol

(a) Message delivery rate under each of the three
“custom” message delivery systems.

0 20 40 60 80

Latency (s)

100

101

102

103

C
ou

n
t

Delivery Mode

Best Effort

Store and Forward

Licklider Transmission Protocol

(b) Distribution of the latency of delivered mes-
sages, under the Walker Constellation scenario, for
each message delivery system.

0 5000 10000 15000

Time (s)

L
in

k
 S

at
u
ra

ti
on

 (
%

)

0

20

40

60

80

100

Earth-Mars
Relay Downlink 2

0

20

40

60

80

100

Earth-Mars
Relay Uplink 2

(c) Saturation of the Earth-Mars links over time,
under the Lunar-Mars Communication scenario with
LTP delivery.

Fig. 7. A selection of results from the reference scenarios, demonstrating delivery rates, message latency, and link saturation over time.

0 10000 20000 30000 40000 50000

Number of Nodes

500

1000

1500

2000

M
ax

 M
em

o
ry

 (
M

B
)

Traffic

None

Small

Large

Fig. 8. Maximum memory used by DSNS while running the Walker
constellation scenario as the number of nodes in the constellation increases.

