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Abstract—The Consultative Committee for Space Data Systems
(CCSDS) link security depends on long-lived symmetric keys.
Although the Space Data Link Security Protocol (SDLS) does
support in-orbit rekeying, it does so only with symmetric tech-
niques, i.e., by encrypting new keys under a pre-shared master
key or by deriving keys from it, leaving missions exposed should
that master key be compromised. We adapt well-known Diffie-
Hellman handshakes to SDLS and propose two protocols called
Double and Triple Diffie–Hellman (2DH/3DH) to extend SDLS
with asymmetric rekeying without altering its frame format. In
2DH, the ground station sends a single ephemeral public key
and derives fresh symmetric keys with the satellite’s static key,
staying within minimal on-board resources. The 3DH variant lets
both ends contribute with ephemeral secrets, providing perfect
forward secrecy at the cost of one extra communication, an extra
scalar multiplication and the need for a good entropy source on
the spacecraft. Both protocols result in replay-safe, over-the-air
rekeying mechanisms that fit the bandwidth and storage limits
of small satellites, thereby eliminating dependence on any long-
term symmetric secret. We also analyzed the implications of
our protocols with respect to threats from potentially malicious
launch operators, referred to as evil launchers, who might gain
unauthorized access to spacecraft cryptographic key material
before deployment. We show how our protocols remain secure
against such threats. Moreover, given the future risks posed by
quantum computing, we conducted a preliminary state-of-the-
art review of post-quantum cryptographic (PQC) algorithms.
Our analysis identified suitable PQC algorithms in such a
use case. Future work will focus on integrating these PQC
algorithms within the proposed rekeying framework, preparing
space communication for long-term resilience.

Index Terms—Space security, CCSDS, SDLS, Key agreement,
Extended procedures, Over-the-air rekeying, Evil launchers, Post-
quantum cryptography

I. INTRODUCTION

Satellite links secured under the Consultative Committee
for Space Data Systems (CCSDS) standards rely exclusively
on pre-shared symmetric keys. In the Space Data Link Se-
curity Protocol (SDLS), as defined in [1], the built-in key-
update mechanism also uses only symmetric primitives, so a
single compromised master key endangers the entire mission:
once exposed, the key must be re-generated and laboriously
replaced, halting operations and consuming valuable time.
While SDLS provides frame-level confidentiality, integrity,
and an anti-replay counter, it remains agnostic about how
those symmetric keys are established, refreshed, or retired once
the spacecraft is on orbit. The Blue Book on cryptographic
primitives [2] does list some asymmetric algorithms but stops
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short of specifying when, how or in which message flows
they should be invoked. Mission operators therefore face two
unsatisfactory choices: preload a large bank of keys during
integration, or periodically uplink new keys in the clear—both
approaches expose the system to long-term key compromise,
initialization vector (IV) exhaustion after power resets, and
operational delays when key banks run out.

To close this gap, we investigate lightweight asymmetric
over-the-air rekeying (OTAR) mechanisms that fit within the
severe resource constraints of small satellites yet interoperate
seamlessly with existing SDLS tooling. Our design goal is to
let a spacecraft derive fresh symmetric keys on demand, using
only a few additional frames and cryptographic primitives that
add marginal code and memory overhead. In this paper, we
restrict our scope to the ground-to-satellite link—that is, a
single ground station communicating with a spacecraft over a
Telecommand (TC) uplink and a Telemetry (TM) downlink.
Inter-satellite links, multi-ground scenarios, and constellation-
wide group-key management are left for future work. In this
work, we specifically address asymmetric rekeying for the
single ground-to-satellite communication scenario, presenting
two lightweight Diffie–Hellman-based protocols. With a static
keypair pre-shared in both cases, the protocols go as follows:

• Double Diffie–Hellman (2DH). Derived from the Noise
Protocol [3], the 2DH protocol starts with the ground
station sending a single ephemeral public key to the
spacecraft; the resulting shared secret provides partial
forward secrecy, meaning that should the satellite’s long-
term secret become compromised, the security of past
communication sessions would be jeopardized as each
key derivation involves an ephemeral contribution only
from the ground. Although the forward secrecy definition
concerns past communications, in our protocol it would
also compromise future communications. This approach
imposes less computational burden on the satellite and
requires no satellite-side entropy.

• Triple Diffie–Hellman (3DH). In this variant, described
by Kudla and Paterson [4], both parties contribute with
fresh ephemeral keys, yielding perfect forward secrecy
at the cost of one extra communication, a third scalar
multiplication on the spacecraft and a good entropy
source on the satellite. The 3DH protocol also allows to
come back to a safe state in case of the compromise of
a private key.



A. Contributions

1) We specify 2DH and 3DH protocols built on Diffie-
Hellman and a Key derivation function, and analyze their
security properties under the satellite threat model.

2) We formalize a static bootstrap that authenticates the
parties once and seeds an SDLS Secure Association, so
that subsequent frames inherit built-in replay protection.
This static bootstrap is only used in our 2DH handshake.

3) We define two new Extended Procedures (EPs), compli-
ant with the guidelines of [5], that integrate our rekeying
protocols seamlessly into the SDLS framework.

4) We analyze the post-quantum cryptography state of the
art and we discuss the adaptations of our protocols.

5) In the context of satellite launches, we define an evil
launcher as a third-party launch provider who may be
honest-but-curious, meaning they perform all expected
launch procedures correctly but may attempt to gain
unauthorized access to cryptographic materials loaded
onto the spacecraft prior to deployment. We show that
our solution addresses this issue.

B. Related work

In her PhD thesis, Fiona Weber addresses SDLS limita-
tions with symmetric cryptography [6]. As her main topic
is post-quantum cryptography, she proposes two hybrid Key
Encapsulation Mechanisms (KEM), called Double-KEM and
Triple-KEM. Relying on hybrid cryptography, she shows how
to build a post-quantum resistant way to exchange keys. In a
similar fashion to our protocols, it uses a static keypair for
authenticity and an ephemeral keypair for forward secrecy.

Smailes et al. [7] introduce KEYSPACE, a framework for
evaluating Public Key Infrastructure (PKI) mechanisms in
interplanetary and satellite networks. They identify the core
goals and requirements for secure key management in high-
latency, intermittently connected environments and provide
standardized experiments to compare PKI systems. Using
KEYSPACE, they show that existing terrestrial PKI protocols
such as CRLs and OCSP can be adapted to satellite settings
when certificate authorities are properly distributed, and they
propose novel extensions to improve performance and revoca-
tion coverage in deep-space networks.

C. Paper organization

Section II reviews SDLS link security and outlines the
technical constraints that shape our design. Section III justifies
the choice of primitives. Section IV details the 2DH and
3DH protocols, respectively. Section V discusses a concrete
implementation of the protocols. Section VI discusses key-
distribution and proposes an evaluation of risks posed by evil
launchers and shows how our protocols mitigate the threat.
Section VII discusses the quantum threats and the state of the
art to mitigate it. Section VIII summarizes our contributions
and identifies directions for future research.

II. CONTEXT AND PRELIMINARIES

In SDLS, the concept of a Secure Association (SA) is
introduced as such: a unidirectional logical channel identified
by an SA number, an anti-replay counter, and a long-term
symmetric key. Sequence counters prevent duplicate frames,
but the standard is silent on how this key is generated or
refreshed. In practice, keys are preloaded before launch or
uploaded through existing links.

We define technical constraints as the practical lim-
its—imposed by hardware, bandwidth, and operating con-
ditions—that any cryptographic design must respect before
security objectives can even be considered.

Storage and secure storage are limited on constrained de-
vices used in space. We must ensure our protocol does not
require too much space and that storage usage grows linearly
with the number of parties. We must also consider the code
size and complexity of the primitives and implementation we
choose.

As communication with satellites is noisy and lossy, we
need to minimize communications and especially interactive
computations that depend on round-trip communication.

Embedded devices often lack good random sources, but
some protocols need random ephemeral values. We have to
consider the sensitivity to randomness quality of the primitives
we choose.

III. DESIGN RATIONALE

This section explains how security objectives and spacecraft
constraints drive our choice of cryptographic primitives and
protocol structure. It is important to note that the protocols
proposed are not quantum-safe, i.e., not resistant against quan-
tum computers. This issue is further discussed in Section VII.

A. Cryptographic Requirements

We consider the following cryptographic properties for the
design of our protocol. Confidentiality ensures no external
party can gain unauthorized access to data. Integrity verifies
that the exchanges were not modified by an active attacker.
Authenticity allows to verify the identity of the parties involved
in the exchange. Forward secrecy ensures that if a long-term
secret is compromised, previous sessions stay secure.

B. Protocol Survey

Table I summarizes the asymmetric key-agreement proto-
cols we evaluated against these goals. RSA-based protocols,
such as RSA-KEM [8] and RSA-OAEP [9] mainly suffer
from significant computational overhead due to their large
keys sizes and slow performance. ECIES [10], despite its
efficiency in terms of computation and smaller key sizes,
inherently lacks forward secrecy. Moreover, ECIES does not
implicitly authenticate the sender, necessitating additional sig-
natures and resulting in further overhead. Ephemeral Diffie-
Hellman ensures forward secrecy and can provide implicit
authenticity through long-term keys. However, its requirement
for bidirectional communication and randomness on both sides



TABLE I
CANDIDATE PROTOCOLS FOR OTAR. 1 STATIC-EPHEMERAL. 2SATELLITE NEEDS TO SIGN.

Algorithm RSA-KEM RSA-OAEP ECIES DH S-E1 DH 2DH 3DH
Authenticity Signature Signature Signature Signature Implicit2 Implicit Implicit
Forward secrecy No No No Yes Ground only Ground only Yes
Performance Slow Slow Fast Fast Fast Fast Fast
Key size 3072 bit 3072 bit 256 bit 256 bit 256 bit 256 bit 256 bit
Communication size 6144 bit 6144 bit 768 bit 768 bit 768 bit 256 bit 256 bit
Randomness Ground only Ground only Ground only Both sides Ground only Ground only Both sides
Communications G → S G → S G → S G → S → G G → S G → S G → S → G

makes it challenging to implement efficiently within resource-
constrained environments. Static-ephemeral DH addresses the
issue of randomness by requiring it only on the sender
side. Nevertheless, this comes at the cost of reduced forward
secrecy, as the satellite’s static key remains unchanged. Ad-
ditionally, authenticity mechanisms must be explicitly added,
increasing complexity. Ultimately, we selected 2DH and 3DH
protocols due to their favorable balance. The 2DH protocol
minimizes satellite-side computation and randomness require-
ments, delivering partial forward secrecy, while 3DH provides
perfect forward secrecy at the expense of slightly increased
computational overhead and the necessity for a reliable entropy
source onboard. Both approaches offer implicit authentication
without requiring separate signatures, thus making them opti-
mal for secure and efficient OTAR in satellite communication.

IV. DESIGN PROPOSAL

In this section, we show how two DH-based key exchange
protocols can be integrated into SDLS. We define a Double
Diffie-Hellman and a Triple Diffie-Hellman protocol. We
describe how both can be integrated into the overall protocol,
discussing the advantages and drawbacks of each design. We
also introduce two extended procedures necessary to generate
new keys under these protocols.

A. Notation

To describe the two protocols we designed, we will use
the following cryptographic primitives, without considering an
exact underlying algorithm to implement it. The primitives are
the following:
DH(y, X) — Diffie–Hellman Key Exchange that combines a
private key with a peer’s public key to yield a shared secret.
KDF(seed, ctx, ℓ) — Key derivation function that expands
a seed that contains good entropy but is not uniformly
distributed into ℓ-bit key material, domain-separated by the
context string ctx.
Gen() = (x, X) — Generates a key pair: a private key and its
associated public key (not the KeyGen extended procedure
defined later in IV-D).

B. Setup

Each party must establish a long-term identity key pair
before any rekeying can take place. The procedure comprises
two steps:

1) Key-pair generation. Each party invokes the key gener-
ation algorithm Gen() to obtain its own keypair. This
long-term keypair is the identity of each party.

2) Secure public-key distribution. Each public key must be
conveyed to every other party over a channel that is
at least as trustworthy as the identity we wish to bind.
This provisioning step is outside the scope of the present
work; in practice it is performed during manufacturing,
launch-site integration, or via a dedicated secure uplink
distinct from the operational TM/TC link.

After provisioning, the spacecraft stores its own private key
and the ground station’s public key, while the ground station
stores its private key and the public key of each spacecraft it
controls. All subsequent key-agreement messages rely on this
authenticated identity layer.

C. Double Diffie-Hellman protocol

Figure 1 illustrates the message flow. After the static
bootstrap (Section IV-E), the ground station generates an
ephemeral key pair and invokes the KeyGen EP, embedding
the ephemeral public key and a list of IDs that will be the sym-
metric keys to derive (key ids). The spacecraft acknowledges
and each party locally computes two DH exchanges before
using the KDF function to compute a shared secret.

1) Security Analysis: The protocol achieves implicit au-
thentication because the long-term key of each party is
involved in the key derivation. As the satellite does not
participate in the exchange with an ephemeral value, forward
secrecy is only partial. Replay attacks are defeated by the
SDLS sequence counter established in the static bootstrap; an
adversary re-emitting an old KeyGen frame presents an out-
of-window counter and is discarded.

2) Performance and Footprint: The spacecraft performs
two DH exchanges and one KDF call. Communication over-
head is a single frame carrying the ground’s ephemeral public
key (32B) plus key identifiers. Hence 2DH is well suited for
small satellites with limited entropy, at the cost of reduced
forward secrecy.

D. Triple Diffie-Hellman protocol

The Triple Diffie–Hellman (3DH) scheme extends 2DH by
adding a spacecraft-generated ephemeral key. In our design,
the ground station first emits a KeyGen EP embedding its
public ephemeral key together with the list of key ids to
generate. It then sends a separate lightweight Get EP, to which
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Fig. 1. Sequence diagram of the EPs exchanged for 2DH
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Fig. 2. Sequence diagram of the EPs exchanged for 3DH

the spacecraft replies with its own ephemeral public key (Fig-
ure 2). This separation is intentional: the Get message does
not carry new key material but acts as a poll/confirmation step,
allowing the ground station to verify that the spacecraft has
received the key-generation request and is ready to respond.
Keeping it distinct from KeyGen improves reliability over
lossy or high-latency links, since the ground can retransmit
or re-poll without regenerating keys, and the spacecraft only
starts a 3DH exchange once it knows the ground is listening.
After exchanging these messages, both sides compute the three
Diffie–Hellman values and feed them to the KDF to derive the
shared secret.

1) Security Analysis: This protocol provides full forward
secrecy as both parties participate in the exchange with an
ephemeral value. This also mitigates replay attacks. As for
2DH, authentication is implicit, as both parties’ long-term
identity key is involved in the key derivation.

2) Performance and Footprint: The spacecraft now per-
forms three DH exchanges and one KDF call. The extra Get
frame adds 32B of link traffic. These costs are modest for
platforms with sufficient entropy, while offering significantly
stronger secrecy guarantees than 2DH.

E. Static Bootstrap and Replay Protection

A naive use of 2DH is vulnerable to replay attacks: an adver-
sary can record the entire sequence—key exchange followed
by an operational command—and later re-inject it to trigger
the same action again. In 3DH, this risk is avoided because the
satellite contributes an ephemeral secret, so a replayed trace
produces a different shared secret. With 2DH, however, an
explicit countermeasure is required.

We therefore precede every 2DH key exchange with a static
bootstrap that installs a Security Association (SA) authenti-
cated by a long-term key:

1) Both parties use their long-term static public keys to
derive a shared secret.

2) This bootstrap secret is fed into a KDF to derive the key
material used by a unidirectional SA.

3) The SA maintains a monotonically increasing sequence
counter, appended to every protected frame.

Subsequent frames—such as an EP KeyGen—are sent
under this SA. The receiver checks both the integrity tag and
the counter: messages with a stale value are silently discarded,
and any bit-level modification is detected by the integrity
check.

F. KDF context

To ensure domain separation when deriving keys, we use
the ”context” field of the KDF and feed it with the public
keys involved in the derivation and the key IDs to generate.
This way, we ensure we do not generate the same key for two
different IDs, which could lead to serious threats like IV reuse.
This context has to be strictly identical on both parties. We
defined exactly the format of this context for 2DH and 3DH,
as poorly designed context could be used to perform attacks.

G. Entropy

As stated, a good entropy source is required on the satellite
for 3DH. Such a source of randomness has always been a
challenge to obtain in constrained embedded devices. NIST
provides recommendations in [11].

Should entropy available in the system be so low that the
satellite’s ephemeral key becomes predictable, using 3DH in
this state would reduce to the security of 2DH, where only the
ground station adds entropy to the key exchange.

H. Summary

The protocol 3DH is strictly more secure than 2DH. By
adding a spacecraft-generated ephemeral key, 3DH introduces
a third DH term that does not depend on any long-term
secret; consequently, compromise of either party’s identity
key in the future does not reveal past session keys, achieving
perfect forward secrecy. It also ensures protection against
replay attacks.

This security gain, however, comes at the cost of additional
resources: (i) the spacecraft must draw fresh randomness for



its own ephemeral scalar, a non-trivial requirement when on-
board TRNG quality is limited, (ii) an additional DH computa-
tion slightly raises execution time and (iii) an additional round-
trip communication is required to deliver the spacecraft’s
ephemeral public key, adding 32B plus SDLS frame headers.

If reliable randomness is available on the space-side, 3DH is
the recommended option. Otherwise, 2DH provides a security
level that can be sufficient for some missions.

V. CONCRETE IMPLEMENTATION

The exact implementation of the cryptographic primitives
has an important impact on performance and communication
sizes.

As performance is an important factor for resource-
constrained satellites, X25519 [12] is a straightforward choice
for the DH exchange, as it is designed with performance in
mind. In case we need a FIPS-compliant algorithm, P-256 [13]
is a good alternative, but is slightly slower and more code
heavy. As a key derivation function, HKDF [14] is a FIPS-
compliant standard. Coupled with SHA256, it is lightweight
and efficient.

We implemented a proof of concept of the two protocols
using the programming language Rust to demonstrate its
simplicity and efficiency.

VI. KEY DISTRIBUTION AND EVIL LAUNCHERS

In practice, static keys are often generated outside the
satellite and preloaded before launch, and it is not uncommon
to use third-party launchers to place a satellite into orbit. With
a secret key preloaded in the satellite, an honest-but-curious
launcher could read and exploit this private key.

Using 2DH, if the attacker captures a handshake between
the ground station and the satellite, the attacker would be able
to derive the shared secret, allowing to read all the commu-
nications but also communicate with the satellite through the
secure channels without being detected. The attacker has to
capture the message emitted by the ground to the satellite and
cannot initiate a communication with the satellite.

In the 3DH protocol, as both parties participate with an
ephemeral value, the attacker does not gain any advantage by
having the satellite’s private key. The communications with
3DH are safe as the 3DH protocol allows to come back
to a secure state, even if an evil launcher compromises the
satellite’s private key.

VII. TOWARD QUANTUM RESISTANCE

Our current 2DH and 3DH protocols, as evaluated in this
paper, are not post-quantum secure: any scheme based on
Diffie–Hellman over classical groups will be broken by a
large-scale quantum adversary. We therefore consider how
our constructions could evolve toward post-quantum or hybrid
variants, even though such an implementation and assessment
fall outside the scope of this work.

NIST announced the deprecation of classical asymmet-
ric algorithms by 2030 and entire prohibition of their use
by 2035 [15]. Extending our protocols to post-quantum

cryptography—or to hybrid schemes that combine a classical
algorithm (e.g., X25519) with a post-quantum algorithm (e.g.,
ML-KEM) so that the construction remains secure even if one
of the two is broken—is therefore a clear priority to ensure
long-term cryptographic resilience.

To date, NIST has selected five post-quantum algorithms
for standardization. Three of them are already standard-
ized: the signature schemes ML-DSA (formerly CRYSTALS-
Dilithium) [16] and SLH-DSA (formerly SPHINCS+) [17],
and KEM ML-KEM (formerly CRYSTALS-Kyber) [18]. The
standards for the remaining two candidates, the signature
scheme Falcon [19] and the KEM HQC [20], are still in
preparation. Since Diffie–Hellman key exchange has no direct
post-quantum counterpart, our 2DH and 3DH protocols must
be adapted by replacing the DH operations with KEM-based
constructions.

A prominent approach is the work proposed by Fujioka
et al. [21], which shows how to build an Authenticated Key
Exchange (AKE) from IND-CCA-secure KEMs. Additionally,
Del Pino, Lyubashevsky, and Pointcheval [22] presented an-
other method to construct an AKE by combining a KEM
algorithm with a signature scheme. This line of work was
further explored by [6], where multiple constructions are
proposed, mainly dual-KEM exchanges and triple-KEM ex-
changes, which achieve roughly the same security properties
as our 2DH and 3DH protocols, respectively.

Our choice of candidate algorithms is not ad hoc but
guided by space-specific constraints. Among the standardized
options, we identified ML-KEM as the most suitable KEM
for replacing Diffie-Hellman in this context. Should explicit
signatures be required, ML-DSA stands out as the preferred
choice, providing lattice-based post-quantum signatures that
align well with the security level of ML-KEM. We also con-
sidered Falcon, but its reliance on floating-point computations
is a significant implementation challenge on many embedded
systems, especially on space-grade processors.

VIII. CONCLUSION AND FURTHER WORK

This paper has adapted and specified the integration of two
DH-based rekeying protocols for SDLS: 2DH and 3DH. In
2DH, only the ground station contributes an ephemeral key,
keeping onboard computation and randomness requirements
to a minimum but providing partial forward secrecy. The
3DH scheme lets both parties generate fresh ephemeral keys,
thereby achieving perfect forward secrecy at the expense of
an additional round-trip and an extra computation on the
spacecraft. It also ensures anti-replay protection.

The 2DH scheme variant begins with a static–static
Diffie–Hellman bootstrap that installs a SDLS Secure Asso-
ciation, so replay protection is inherited from the existing SA
counter mechanism without altering the frame format.

In summary, 2DH and 3DH demonstrate that replay-safe,
forward-secret key refresh can be achieved within the tight
bandwidth, storage, and power budgets typical of modern
small satellites, while preserving full compatibility with ex-
isting SDLS link-layer standards. As shown in our discussion



on post-quantum cryptography, it is also possible to adapt
these constructions to use post-quantum KEMs or hybrid
schemes, thereby future-proofing satellite OTAR mechanisms
against upcoming cryptanalytic threats. This opens the door for
secure, efficient, and long-lived missions even in a post-2035
cryptographic landscape.
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