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Abstract—Recent advancements in satellite communication
technology have significantly expanded the scope and complexity
of space-based applications, from Earth observation to inter-
planetary missions. As satellites increasingly handle sensitive
data and critical infrastructure, ensuring the confidentiality,
integrity, and authenticity of transmitted information has be-
come a paramount concern. However, the space environment
poses unique security challenges, including high latency, limited
computational resources, and vulnerability to cyber threats. To
address these challenges, the Space Data Link Security (SDLS)
protocol has emerged as a promising standard, offering link
security tailored to the constraints of space systems. In response
to the growing need for robust security measures in satellite
communications, this paper presents a mixed software-hardware
modular implementation of the SDLS protocol proposed as
a viable solution to improve the performance, resilience and
reliability of future space missions.

Index Terms—SDLS, FPGA, Modularity, ASCON, AES-GCM.

I. INTRODUCTION

Secure communication is a critical requirement for mod-
ern embedded and aerospace systems, where reliability, per-
formance, integrity, confidentiality and authenticity must be
maintained under stringent constraints [1] [2]. The Space Data
Link Security (SDLS) protocol, developed by the Consulta-
tive Committee for Space Data Systems (CCSDS), addresses
these concerns by providing a standardized framework for
securing space communication links [3]. While traditionally
implemented in software, the increasing complexity and com-
putational demands of secure communication call for more
efficient and robust solutions.

In this context, the project described in this paper explores a
mixed hardware-software implementation of the SDLS proto-
col on Field Programmable Gate Arrays (FPGAs), highlighting
the key advantages of such an approach. By leveraging the
programmable logic (PL) of FPGAs, several critical ben-
efits can be realized. Firstly, FPGA-based implementations
allow for parallel processing and pipeline optimization, lead-
ing to substantial improvements in cryptographic throughput.
These hardware accelerations are particularly advantageous for
high data-rate applications, where software-based cryptogra-
phy might become a performance bottleneck. Secondly, the
intrinsic architecture of FPGAs enables secure isolation of
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cryptographic keys and sensitive data within the programmable
logic. This separation from general-purpose processing units
adds an extra layer of physical security, making it more
difficult for attackers to access or manipulate the cryptographic
material [4]. Finally, offloading cryptographic operations from
the CPU to dedicated hardware significantly reduces the load
on the main processor, allowing it to focus on mission-critical
tasks. This not only improves the overall system performance
but also enhances real-time responsiveness—an essential at-
tribute in space applications.

This paper presents a highly modular FPGA-based im-
plementation of the SDLS protocol, with a design tailored
for flexibility and adaptability across diverse mission require-
ments. The proposed architecture emphasizes modularity at
its core, enabling seamless customization and integration. In
addition to its structural versatility, the design demonstrates
significant advantages in performance and security through
comprehensive implementation and evaluation.

One of the primary features of the design presented in
this paper is modularity. For this reason, its architecture
was designed to be able to accommodate a wide choice of
cryptographic algorithms. This configurability allows system
designers to select the most appropriate Authenticated Encryp-
tion with Associated Data (AEAD) implementation depending
on mission-specific requirements such as power consumption,
data throughput, security level, or resilience to implementation
attacks. For a first implementation, two of the most relevant
ones were chosen and implemented : AES-GCM and ASCON
algorithms.

II. CRYPTOGRAPHIC SUPPORT: AES-GCM AND ASCON

AES-GCM is the de facto cryptographic AEAD algorithm
used in the vast majority of space application, including the
SDLS standard. Due to its strong security guarantees, high
efficiency, and widespread standardization, AES-GCM has
been extensively adopted in both terrestrial and space systems
for protecting the confidentiality, integrity and authenticity
of mission-critical data. However, emerging constraints in
modern space missions—including lower-power platforms,
increased demand for lightweight cryptographic solutions, and
the need for resistance against side-channel attacks—have
sparked interest in alternative algorithms. One such algorithm
is ASCON, a family of lightweight authenticated encryption
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Fig. 1. Internal architecture of ASCON AEAD function [6].

algorithms that won the NIST Lightweight Cryptography
competition in 2023 [5]. While AES-GCM is a de facto
standard for the SDLS protocol and thus remains essential
for compatibility with it, the inclusion of ASCON support
introduces an additional layer of adaptability to the platform.
The key advantages and characteristics of ASCON, which
make it particularly attractive for certain satellite applications
are its performance and its small footprint in an FPGA. The
NIST competition Lightweight Cryptography had the main
goal of designing an AEAD algorithm targeted for embedded
devices with constrained resources. The central function of
ASCON is its permutation function that works on a 320b state.
This permutation was designed to be efficient and to hold in a
minimum area of an FPGA. The rest of ASCON is similar to
a sponge construction [8], which is a small part compared to
the permutation function. The ASCON internal architecture is
depicted in Figure 1.

III. DESIGN MODULARITY AND IMPLEMENTATION
VARIANTS

One of the core strengths of the proposed hardware design
lies in its modular architecture, which allows it to be adapted
to a wide range of system requirements and mission scenarios.
This flexibility makes the design suitable for various levels of
integration within FPGA-based platforms, offering scalability
in both functionality and resource usage.

The modularity of the system enables the implementation of
three primary variants, each tailored to different performance,
security, and complexity trade-offs:

Minimal Variant — Cryptographic Coprocessor Only In
its most compact form, the design acts as a cryptographic
coprocessor, offloading computationally intensive encryption
and decryption tasks from the main processing unit. This
lightweight variant is particularly well-suited for systems with
stringent resource constraints or those that require crypto-
graphic acceleration without full protocol stack implemen-
tation in hardware. To enhance flexibility and applicability
across a range of use cases, the current coprocessor supports
two integrated cryptographic algorithms: AES-GCM ! and
ASCON 2. They can be selected independently based on the
specific security and performance requirements of the target
application. Both algorithms were implemented using publicly
available reference code and integrated into the hardware
design presented and evaluated in this work. It should be

Uhttps://github.com/BLu85/AES-GCM-128-192-256-bits
Zhttps://github.com/ascon/ascon-hardware

noted that both algorithms were chosen from well-documented
public repositories. For this work, the effectiveness of the
implementation in terms of throughput or resource utilization
was not taken into consideration. For this reason, the results
reported in this document do not claim to compete with the
best implementations on the market. The data obtained during
testing serves as a starting point to demonstrate the feasibility
of the work presented in this paper.

Intermediate Variant — Cryptography with Key Man-
agement A more advanced configuration adds key manage-
ment capabilities, which handle secure storage, retrieval (only
available to the cryptographic coprocessor), and protection of
encryption keys. This module not only enhances data integrity
but also mitigates threats against unauthorized key access and
corruption, improving the system’s overall security posture.
The keymanager module added in this design variant stores
encryption keys either in BRAMS (weaker solution) or for
better security into an external non-volatile memory that is
exclusively accessible by the FPGA, thereby ensuring strong
hardware-level isolation. The processor, which executes the
SDLS protocol stack, interacts with these keys solely through
an identifier (ID) assigned to each one. Upon receiving an
ID, the keymanager locates the corresponding key and verifies
its integrity using error correction mechanisms implemented
directly within the FPGA design. This architecture guarantees
both the isolation of cryptographic keys from the processor and
the continuous validation of their integrity, thereby reinforcing
the overall security of the system.

Full SDLS Hardware Implementation The most com-
prehensive implementation embeds the entire SDLS protocol
handling within the programmable logic of the FPGA. In
this configuration, the hardware autonomously manages SDLS
packets formatting, cryptographic operations, and security
policy enforcement, while the CPU is reserved for high-level
application logic. This variant offers maximum performance
and provides the same security isolation as the one presented in
the intermediate variant. This full solution is especially suited
for systems with stringent real-time or reliability requirements.
This implementation option is especially useful if the data to
be transmitted is accessible directly from within the FPGA.
By eliminating the bottleneck of data transfer from an exter-
nal memory to the FPGA crypto-core, extremely interesting
throughput rates can be achieved.

An overview of the complete hardware implementation,
including functional blocks are depicted in Figure 2.

To ease the integration into an existing design, the archi-
tecture presented in Figure 2 largely relies on AXI interfaces.
All control and configuration operations of the SDLS block are
performed via an easy-to-use 32-bit AXI-Lite bus. For optimal
performance the data transfer parts, to and from the FPGA,
rely on an AXI-Stream bus also of a 32-bit width. The latter
allows data bursts of significant size and adds only very little
overhead.

To enhance the robustness of the proposed design and
ensure its suitability for a broad range of applications in the
NewSpace sector, a comprehensive analysis of the architecture
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Fig. 2. Full SDLS Hardware Implementation architecture.

functionalities and potential failure points is currently under-
way. This investigation aims at identifying the most critical
and vulnerability-prone components within the system. Based
on the findings, targeted fault-tolerance strategies, such as
triple modular redundancy (TMR) and the implementation of
error correction codes (ECC) [11], will be applied to mitigate
risks associated with radiation effects and other environmental
hazards typical of space applications. Furthermore, these fault-
mitigation techniques will be integrated in a modular fashion,
providing end-users with the flexibility to tailor the level of
protection in the FPGA implementation according to their
specific reliability and resource constraints.

IV. TEST FRAMEWORK

To validate the proposed hardware design, a custom test
framework as depicted in Figure 3 was developed, enabling
seamless integration between software-based components and
hardware-level simulation. The test system leverages existing
ground and space components, originally developed for pro-
tocol validation and mission planning, and interfaces it with
the HDL design under test using the cocotb framework [7].
This hybrid approach allows high-level protocol behavior to
be tested directly against the low-level hardware implementa-
tion, ensuring functional correctness and system compatibility
across abstraction layers.

The initial purely software test framework (blue parts)
is composed of: (1) a ground software that is part of the

ground infrastructure and implements the SDLS protocol; (2)
a space software that is part of the satellite infrastructure
and implements the flight control, SDLS protocol, and AES-
GCM software crypto backend; (3) an end-to-end test manager
that drives the ground software to execute tests. The test
framework has been enhanced with green parts: (1) the hard-
ware design implementing AES-GCM and ASCON within the
FPGA fabric; (2) the ASCON software crypto backend; (3) the
hardware crypto backend that leverages the crypto capabilities
of the HDL design; (4) the interface between the hardware
crypto backend together with the HDL design under test using
the cocotb framework. A mutually exclusive compilation flag
instructs the hardware crypto backend which hardware target
to address: either the FPGA or the HDL simulation. The test
framework runs either fully on a regular computer or with
the satellite infrastructure components programmed in a board
providing a Processing System (PS) and a PL.

The communication between the hardware backend of the
space software and the HDL simulation on cocotb framework
leverages eRPC (Embedded RPC) [9], ”an open source Re-
mote Procedure Call (RPC) system for multichip embedded
systems and heterogeneous multicore SoCs” as described on
its website. The definitions of data types and remote interfaces
are written in a generic way following a similar approach as
the Protocol Buffers [10]. These definitions are generated in C
for the space software and in Python for the test framework,



allowing both worlds to exchange data that normally flows
through the AXI network or IRQ for tasks synchronization.

The eRPC server functionality is started as a coroutine in
cocotb, which runs the generated eRPC server and its locally
defined handler. The latter implements remote calls such as
register read, register write, fifo read, and fifo write. The
management of IRQs is being implemented and will run in the
reverse direction, the server being implemented on the space
side.

The development of the test framework will follow additions
to the HDL design, so that new functionalities can be tested
right away.
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Fig. 3. Test framework (blue: purely software parts, green: hardware-software
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V. RESULTS

An initial FPGA-based implementation of the proposed
system, incorporating both AES-GCM and ASCON encryption
algorithms, was developed and evaluated on the Xilinx ZC706
development board. This implementation represents the mini-
mal configuration of the architecture described in section III
and enables the FPGA to act as a cryptographic coprocessor.

To conduct the evaluation, two separate hardware designs
were developed: one implementing ASCON and the other
implementing the AES-GCM protocol. The resource utiliza-
tion corresponding to each bitstream is depicted in Table I.
The implementation of ASCON demonstrates a substantial
reduction in FPGA resource usage compared to the AES-
GCM one, with savings ranging from approximately 85% to
93% depending on the resource type. This includes an 84.7%
reduction in slice LUTs and logic and 93.4% in slice registers.
Such a reduction highlights the significantly lighter footprint
of ASCON.

Performance benchmarking was conducted to evaluate the
throughput of each architecture. The test involved encrypting
and decrypting a message composed of a fixed 128-bit associ-
ated data (AD) segment and a variable payload, ranging from
16 to 32,768 bytes. Four implementation variants were tested:

o AES_soft and ASCON_soft: encryption and decryption

are performed entirely in the Processing System (PS) of
the FPGA.

o AES_hard and ASCON_hard: encryption and decryp-
tion are offloaded to the Programmable Logic (PL), uti-
lizing the FPGA as a hardware cryptographic coprocessor.

The data rates achieved by all four configurations across
varying payload sizes are summarized in Table II, with graph-
ical representations of encryption and decryption performance
shown in Figures 4 and 5, respectively. The AES-GCM imple-
mentation selected for these tests achieves a peak throughput
of approximately 140 MB/s, whereas the ASCON implementa-
tion reaches up to 110 MB/s. These performances are strongly
influenced by the underlying VHDL design of each algorithm
and may be further improved through targeted optimizations
and architectural refinements. It is also important to note that
the results reported for AES_hard and ASCON_hard account
not only for the execution time required to perform encryption
and decryption operations, but also include the time needed to
transfer data to the FPGA and retrieve the processed output.
This approach aims at providing performance measurements
that more accurately reflect real-world usage scenarios.

The data transfer operations are implemented using a 32-
bit AXI-Stream interface operating at 100 MHz, which yields
a theoretical maximum data transfer bandwidth of 400 MB/s.
Although the work presented in this paper is still ongoing and
further improvements can be made—particularly with regard
to the cryptographic implementation, the preliminary results
already demonstrate the potential benefits of using an FPGA
as a cryptographic coprocessor. Notably, performance gains
are observable even for relatively small packet sizes.

When comparing the performance of ASCON and AES-
GCM, it is essential to consider not only throughput but also
the resource utilization on the FPGA. Although the AES-GCM
implementation developed in this work achieves approximately
25% higher throughput compared to ASCON, it does so at
the cost of significantly higher FPGA resource utilization.
In contrast, ASCON demonstrates a markedly more efficient
hardware footprint, making it particularly advantageous in
resource-constrained environments where spatial efficiency is
critical. To enable accurate benchmarking and ensure sufficient
headroom, the designs were initially implemented on the
ZC706 development platform, which features a high-capacity
FPGA. However, when porting the same designs to a more
constrained and widely-used platform—such as the Zyng-7000
(Z-7010) FPGA found on the Zybo development board— the
difference becomes stark:

e The AES-GCM core alone consumes over 80% of the
total available FPGA resources, exceeding the slice avail-
ability and making it impractical without significant per-
formances downgrade.

« In contrast, the ASCON core requires only around 15%
of the available resources, offering a lightweight and
deployable solution for low-end or embedded platforms.

These results underscore the importance of considering not
only throughput but also area efficiency when selecting cryp-
tographic primitives for FPGA-based systems, particularly in
applications targeting low-cost or size-constrained hardware.



TABLE I
RESOURCE UTILIZATION COMPARISON BETWEEN AES-GCM AND ASCON CRYPTOGRAPHIC CORES

Name Slice LUTs | Slice Registers | Slice | LUT as Logic | LUT as Memory | Block RAM Tile

AES-GCM 24553 8331 7093 24553 0 0

ASCON 3723 584 1054 3723 0 0
TABLE II

MEASURED THROUGHPUT FOR THE FOUR EXECUTION VARIANTS IMPLEMENTED ON A XILINX ZC706 WITH A SYSTEM CLOCK @ 100MHZz

Throughput in [MB/s]

Data payload size [B]

Algo Operation | Soft/hard 16 32 64 128 256 512 1024 2048 4096 8192 16384 32768
encryption | hard 346 514 855 15119 2566 4419 68.73 96.68 11552 126.84 13240 136.27

AES-GCM soft 202 243 292 3.38 3.71 3.92 4.04 4.11 4.14 4.16 4.16 4.16
decryption | hard 324 482 798 1417 2401 41.65 6579 94.00 11334 12542 131.48 135.85

soft 1.97 239 287 333 3.66 3.87 4.00 4.06 4.09 4.11 4.11 4.11

encryption | hard 370 553  9.17 1479 2538 4235 63.53 8274 96.08 103.18 106.40 108.76

ASCON soft 628 773 951 11.21 1252 1338 13.88 14.15 14.29 14.36 14.39 14.18
decryption | hard 323 484 804 1331 2389 38.69 59.19 80.29 9342 10L.75 105.72  108.36

soft 626 7.71 951 11.24 1258 1347 1398 14.26 14.40 14.48 14.51 14.32
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VI. CONCLUSIONS

This paper presented a fully hardware-based implementation
of the Space Data Link Security (SDLS) protocol. Owing to its
configurability, the proposed architecture can be tailored to the
specific requirements of a wide range of mission scenarios. As
a first step toward demonstrating the potential of this design,
we evaluated the performance of the FPGA as a cryptographic
coprocessor for both the AES-GCM and ASCON algorithms.
The results highlight significant improvements, with an ob-
served speed-up of approximately x8 for ASCON and up to
x 34 for AES-GCM, compared to software execution on an
ARM Cortex-A9 processor.

The complete system architecture, encompassing all in-
tended functionalities, is currently undergoing simulation and
has not yet been synthesized or deployed on an FPGA using
the framework described in this paper. Nonetheless, the prelim-
inary results obtained from the cryptographic coprocessor and
the key isolation mechanisms that will be provided by the key
manager indicate clear advantages, particularly for space-grade
applications that possess the necessary hardware resources to
support these architectural enhancements.

Furthermore, the full integration of the SDLS protocol, cur-
rently under verification and validation, is expected to signifi-
cantly improve the efficiency of data handling within the hard-
ware architecture. This will enable the FPGA to autonomously
manage secure data transfers, thereby substantially increasing
the overall system throughput without compromising either
security or reliability. Finally, a comprehensive analysis of the
design and its critical components is currently in progress. This
step will enable the implementation of fault-tolerant protection
mechanisms, such as Error Correction Codes (ECC) and Triple
Modular Redundancy (TMR), which are essential to further
enhance the system robustness and reliability for space mission
applications.
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