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Abstract—As space missions increasingly rely on software-
defined payloads, the need for secure, reliable, and future-
proof communication becomes critical. This paper presents the
integration of formally verified, post-quantum cryptography
into SPACEOS, a unikernel-based operating system for satellite
platforms. We leverage LIBCRUX, a high-assurance cryptographic
library written in Rust, and BERTIE, a verified TLS 1.3 imple-
mentation, to enable memory-safe, side-channel resistant, and
quantum-secure communication and update mechanisms. This
proposed integration enables applications ranging from secure
software updates to authenticated channels for quantum key
distribution and key establishment for SDLS-based protocols. We
demonstrate the viability of this approach with a proof-of-concept
implementation for post-quantum signed software updates. This
work is a step toward providing robust security foundations for
next-generation space systems with minimal developer burden.

Index Terms—Formal Methods, Post-Quantum Cryptography,
Unikernels, Virtualization

I. INTRODUCTION

As small satellite missions grow in complexity, software
inefficiencies increasingly hinder performance, security, and
scalability. While industry attention focuses on launch systems
and mission applications, the middleware powering satellite
operations often remains neglected.

Legacy operating systems, designed for terrestrial envi-
ronments, introduce excessive overhead, cybersecurity risks,
and a lack of standardisation. Many satellite operators also
rewrite software stacks from scratch, leading to long delays
and reduced flexibility, as each mission must independently
solve the same foundational challenges.

This is also true of the communication stack and cryptog-
raphy in particular, which is paramount to mission security.
While the CCSDS specifies protocols such as the Space Data
Link Security Protocol (SDLS) [1] and its extended proce-
dures (SDLS-EP) [2], it does not specify protocols for key
establishment, or secure updates, or future-proof post-quantum
cryptography, forcing users to roll their own solutions.

Furthermore, implementations of these protocols and their
underlying cryptography are often kept private by their users.
For the few available implementations such as NASA’s
cryptolib, vulnerabilities have been regularly discovered '?
despite significant testing and compliance efforts.

Uhttps://securitybynature.fr/post/hacking-cryptolib/
Zhttps://github.com/nasa/CryptoLib/security
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Fig. 1. Simplified architecture of a deployed SPACEOS system

These issues have led to increased attack surfaces in
mission-critical components, forced satellite operators to al-
locate significant resources to patching vulnerabilities, and
constrained mission flexibility by relying on outdated software
stacks that are difficult to update once deployed.

At the same time, satellite operators are under increasing
pressure to fully leverage their capacities, particularly in the
areas of edge processing, but this is restricted by existing sys-
tems that lack the flexibility to integrate new technologies and
applications developed by third-parties. Satellite operators lack
the ability to dynamically install, update, and secure software
in orbit from multiple sources. Satellites are purpose-built, and
the mission is hardly adaptable to changing requirements. That
being said, the introduction of new shared-payload capabili-
ties introduces new cybersecurity risks (data leaks between
payloads, malicious payloads affecting the satellite, etc.). Any
solution addressing the market demand must carefully balance
features and risks.

This paper proposes that solutions to both of these problems
(reliable cryptography and robust operating systems) should
go hand in hand, as the former is a key building block of
the latter. Section II presents SPACEOS, a framework for
secure deployment and execution of virtualized payloads. Sec-



tion III presents LIBCRUX, an open-source, formally verified
implementation of a wide variety of cryptographic primitives
and algorithms. Then, Section IV discusses the potential
applications of a combination between the two, and focuses
on one of them for a case study. Finally, Section V describes
the next steps of this integration and concludes.

II. SECURE UNIKERNELS FOR SOFTWARE-DEFINED
PAYLOADS

Unikernels [3] are specialized, single-address-space ma-
chine images constructed by combining application code with
only the minimal set of operating system (OS) functionalities
required to run that specific application. Unlike traditional
operating systems that support a wide variety of applications
and users, unikernels are tailored for specific tasks.

The benefits of this approach have to do with how the built
unikernel is executed on actual hardware: either bare-metal
(in which case the footprint on system resources is strictly
minimal) or more commonly, virtualized by an hypervisor such
as KVM, Xen or others.

That latter case makes unikernel well-suited for running po-
tentially untrusted software payloads within a high-assurance
context such as a cloud provider’s datacenter (running their
customer’s software) or a satellite’s on-board computer (OBC).
Indeed, unikernels provide the benefits of both virtualization
(strong memory and/or time partitioning) and containers (self-
contained, lightweight and easily distributable).

In the context of earth observation, this enables payload
developers to quickly iterate on software without the need
for highly specialized tooling nor the need to rely on the
satellite’s operator to provide dependencies (libraries, runtime
tools) required by the software. In turn, this ensures satellite
operators that they can run third-party software without the
risk of interference to other payloads or the mission itself.

There are multiple unikernel implementations available to-
day. SPACEOS is a work-in-progress product that leverages
MirageOS and Unikraft to run end-user applications:

MirageOS [3] is written in OCaml (a memory-safe pro-
gramming language) and one of the first unikernel implemen-
tations. By design, it does not implement POSIX support in
any way, instead relying on a set of its own Mirage interfaces
and abstractions for communication between applications and
host. On the other hand, platform and hardware support is
extensive: KVM (solo5), Xen, Bhyve, muen, selL4 hypervi-
sors, on various CPU architectures. Furthermore, the bytecode
support for the OCaml compiler means an application written
for unikernels may be executed on extremely limited targets
such as MCUs or RTOS, as long as a C compiler is available.

Unikraft [4] is written in C and targeted towards cloud
environments. It is based around the concept of small, modular
libraries, each providing a part of the functionality com-
monly found in an operating system (e.g., memory allocation,
scheduling, filesystem support, network stack, etc.). There is
an important focus on POSIX compatibility, whereas a large
subset of system calls is implemented, and an experimental
ABI compatibility layer is provided.

Unikraft is harder to port to new platforms and architec-
tures, and as such, the project mainly focuses on the KVM
hypervisor (through gemu or firecracker), with Xen available
as well. On the other hand Unikraft is known to be performant,
through its efficient use of the hardware combined with the
minimalism of its modular components’ implementations.

Building on these two projects, SPACEOS is a work-in-
progress toolchain to build a full operating system installable
bare-metal on an OBC that bundles:

o a hypervisor (KVM, Xen, muen or selL4);

o the runtime necessary to execute unikernels (built with

MirageOS or Unikraft);

« an implementation of core capabilities (networking stack,
CCSDS implementations, on-board device access) ex-
posed to the end applications, themselves implemented as
unikernels (in a microkernel-inspired architecture, where
the only trusted base is the hypervisor);

 a privileged “control plane” allowing dynamic addition,
removal or updates of unikernels from the ground, as well
as monitoring existing ones.

This architecture is depicted in a simplified manner in
Figure 1, where multiple unikernels are deployed and ac-
cessing common resources. Core capabilities like networking
and cryptography are exposed as readily available user-space
modules calling the para-virtualization interface. Both for the
core features exposed to the running applications (such as an
SDLS implementation) and the control plane (in particular for
secure application deployment), it is critical that SPACEOS
embeds a reliable cryptography stack that has little risk of
needing a replacement while in flight.

ITI. HIGH-ASSURANCE POST-QUANTUM CRYPTOGRAPHY

LIBCRUX [5] is a formally verified cryptography library that
provides a comprehensive set of algorithms, including those
required by CCSDS [6] and needed by protocols like TLS [7].
The code for each algorithm is written in Rust and includes
both portable implementations and those optimized for dif-
ferent platforms such as Intel AVX2, ARM Neon, and Arm
Cortex-M4. LIBCRUX also contains Rust code generated [8]
from the formally verified HACLx project [9]. Importantly,
LIBCRUX does not sacrifice performance: its code is as fast as,
and sometimes faster than, other unverified implementations.

The Rust code in LIBCRUX can be used as-is, but can also
be compiled to C for ease of integration into other software
projects. As of writing, Rust code from LIBCRUX is used in
Signal, and the compiled C code from LIBCRUX and HACLx
is used in multiple mainstream projects like Mozilla Firefox,
OpenSSH, Linux, WireGuard, ARM mbed, Python, etc.

LIBCRUX supports both classic and post-quantum cryptog-
raphy. It includes, in particular, Rust implementations of ML-
KEM [10] and ML-DSA [11] that are easy to integrate into
any post-quantum cryptographic protocol. For example, ML-
KEM can be used to provide support for hybrid post-quantum
ciphersuites of TLS, while ML-DSA can be used to sign
secure software updates. Indeed, LIBCRUX is used as the main
cryptographic provider for BERTIE [12], a formally verified



post-quantum TLS 1.3 implementation that is interoperable
with Chrome, Firefox, and Cloudflare.

Developing High-assurance Cryptography in Rust. The root
cause for many security and availability issues in legacy com-
munication stacks can be traced to two inherent shortcomings.
First, their implementations, like NASA’s cryptolib, are
written in unsafe languages such as C, making them vulnerable
to a wide range of memory safety bugs that are easy to exploit.
And secondly, they are not formally verified for correctness or
side-channel protection, and hence provided limited guarantees
against security bugs that are hard to find just with testing.

To address the first issue, the library authors use Rust to im-
plement all of its cryptographic algorithms and protocols. Rust
allows writing high-performance code without compromising
memory safety, even in settings where a garbage collector is
not feasible, and is heavily promoted as a replacement to C
by governmental organizations [13], research institutions®, and
industry bodies*.

To then increase assurance of cryptographic software to the
level necessary for space applications, LIBCRUX’s developers
advocate the use of formal verification to ensure statically at
compile time that the application can not crash, is functionally
correct and is secure against side-channel attacks.

Verifying Cryptographic Software with HAX. The Rust
code in LIBCRUX and BERTIE is formally verified using the
HAX [14] toolchain and the Fx [15] proof assistant.

Figure 2 depicts the high-level workflow. The Rust devel-
oper can use the HAX toolchain to translate their source code
to a formal model in the Fx language. The source code can
be annotated with specifications in the form of pre- and post-
conditions, loop invariants, etc. and these will get translated
to assumptions and verification conditions in the Fx model.

The first property we can prove for the generated Fx model
is runtime safety. Even though Rust is memory-safe, Rust code
may still panic at runtime, or return an incorrect result, if
(say) an array is indexed out of bounds or if an arithmetic
operation over- or underflows. Both of these outcomes are
dangerous for communication protcols and can lead to system
malfunction. Using the F* typechecker, we can formally prove
the absence of panics in Rust, and more generally, that the
source code meets all the pre-conditions of the (system and
external) libraries it relies upon.

Once runtime safety has been shown, we can go a step fur-
ther to show functional correctness of the implementation. In
the LIBCRUX crypto library, the authors prove the correctness
of the highly optimized implementations for various platforms
by showing their functional equivalence to a high-level mathe-
matical specification. In the BERTIE protocol implementation,
they show the correctness of the message serialization and
parsing code, to ensure that no network attacker may inject a
message that may lead BERTIE to malfunction.

Finally, we can prove the relevant security properties for the
cryptographic code. For LIBCRUX, we can prove that the code

3https://www.darpa.mil/program/translating-all-c-to-rust
“https://www.memorysafety.org/
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Fig. 2. Formal Verification with HAX

is secret independent, that is, its control flow does not depend
on secret values, preventing a large class of side-channel
attacks. Secret independence enforces a coding discipline
(sometimes called “constant-time programming”) that forbids
operations like branching on secrets or using secrets as indexes
to arrays which are known to result in exploitable side-channel
vulnerabilities. Note that this doesn’t remove the need to
consider the low-level hardware and firmware behaviour when
assessing the security of a real deployment environment.

For BERTIE, we can verify the security of the core TLS
protocol code by using HAX to translating this code into an
input for the ProVerif tool [16], which is then able to analyze
the prove the implementation is not vulnerable to various
classes of symbolic protocol attacks [12].

IV. INTEGRATING LIBCRUX IN SPACEOS

The main contribution of this paper is the integration of
LIBCRUX as a cryptographic provider for SPACEOS, which
enables the use of high-assurance post-quantum cryptography
in satellite applications. We make both LIBCRUX and BERTIE
available both to the communication stack within SPACEOS
and to applications running within the unikernels. We iden-
tify several potential use cases, and have implemented some
applications as proof-of-concept demonstrations:

o Secure Software Updates: We show how to implement
secure updates for Satellite software using post-quantum
secure signatures (detailed in the section below.)

e Secure Channels: By making BERTIE available to
unikernels, we provide secure channels for ground-space
and space-space communications. For example, a ground
operator can use a standard Chrome or Firefox browser to
connect to a satellite application via post-quantum TLS
1.3, something that is only made possible by our inte-
gration. Similarly, two satellites running SPACEOS can
confidently communicate with each other using formally
verified implementation of TLS 1.3.



o Key Establishment for SDLS-EP: While the SDLS
protocol [1] specifies symmetric-key based encryption
and authentication constructions, neither SDLS nor its
extensions [2] specify how these symmetric keys may be
established or distributed. This is in contrast to terrestrial
protocols that commonly use public-key protocols based
on elliptic curves or (more recently) post-quantum cryp-
tography to establish symmetric keys. Using LIBCRUX,
users can build and deploy any standard or customized
key exchange protocol. In particular, they can even use
BERTIE as a key establishment component to set up
symmetric keys to bootstrap subsequent SDLS commu-
nications.

o Authenticated Channels for Quantum Key Distribu-
tion: A number of projects are experimenting with the use
of satellites for Quantum Key Distribution (QKD), includ-
ing the QKDSat project of the European Space Agency .
The security of QKD protocols relies on an underlying
post-quantum secure authenticated channel, and no such
protocol has been deployed to date. However, using ML-
DSA and ML-KEM, a user can design, build, and deploy
quantum-resistant secure channels from ground to space.
In particular, a fully post-quantum extension of BERTIE
could also be used as an authenticated channel for a QKD
application running on SPACEOS.

Proof of Concept: Secure software updates using signed
unikernels. As a first proof of concept for integration between
unikernels and reliable cryptography, we ported a part of
LIBCRUX to add quantum-proof secure updates to SPACEOS.
More concretely, the SPACEOS unikernel management com-
ponent (which handles deployment, monitoring and update of
the on-board unikernels) was extended so the operator could
specify a public key to signify the expectation that every
new unikernel deployed on-board should be signed with its
corresponding private key.

While the notion of secure updates is not novel, the inter-
esting part was using the ML-DSA [11] implementation of
LIBCRUX to that end. This implementation being written in
Rust, we exported direct bindings to OCaml (used to write
SPACEOS) © , without the need for a C transpiling unneces-
sary and therefore reducing the amount of intermediate steps
between the formally verified code and the actual runtime. In
this mode, every unikernel was expected to be prefixed with
a signature of its actual body, and this signature was verified
at the time of deployment.

The bindings to OCaml were written to mimic the sig-
nature/verification interface of mirage—-crypto’, to enable
any OCaml application already using this interface to simply
swap the implementation to LIBCRUX’s ML-DSA implemen-
tation in the future.

Shttps://www.esa.int/Applications/Connectivity_and_Secure_
Communications/Secure_communication_via_quantum_cryptography

6While SPACEOS remains closed-source, the bindings were made public:
https://github.com/parsimoni-labs/ocaml-libcrux

7https://github.com/mirage/mirage-crypto

V. ONGOING AND FUTURE WORK

The proof of concept described in the section above is
minimal, but the smoothness of its execution has encouraged
the authors to explore deeper integrations. In particular, we
are working on making LIBCRUX’S ML-DSA implementation
available to the (MirageOS) unikernel themselves.

Indeed, MirageOS unikernels are just specific OCaml appli-
cations that are tightly coupled with both the low-level Mira-
geOS interfaces (to access block devices, network interfaces,
etc.) and the high-level ones (e.g. networking stack, cryptog-
raphy) which build on them. As a result of this, the way
all MirageOS unikernels perform even high-level operations
(such as cryptographic operations) is mostly standardized. This
enables us to seamlessly swap mirage-crypto provided
implementations by LIBCRUX ones without changes to the
user code. While a signature implementation is interesting,
expanding the subset of LIBCRUX features exposed to Mira-
geOS applications would be ideal: its TLS implementation in
particular would be of value.

Beyond that, the authors are exploring applications listed
in Section IV and in particular integration with a built-in
SPACEOS SDLS-EP implementation, as a step towards all
space software payloads benefiting from built-in, formally
verified, quantum-proof communication protocols with little
friction for the developers.
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