Crypto Agility Definitions for Space Systems

1% Jannik Méihn
Cryptographic Systems
OHB System AG
Bremen, Germany
jannik.maehn @ohb.de

Abstract—This paper explores the concept of crypto agility
with the aim to establish clear definitions and terminology
for future discussions and implementations. For that, relevant
threats are analyzed and existing literature is reviewed. The main
contribution of this work is a clear set of definitions of crypto
agility for the context of space systems using certifiable crypto
systems implementing opinionated cryptographic protocols. In
addition, a secure update initialization mechanism is introduced.

Index Terms—Crypto Agility, Post-Quantum Cryptography,
Reprogramming

I. INTRODUCTION

With the ever growing threat posed by quantum computers
to classical cryptographic systems, cryptography is undergo-
ing a transition towards Post-Quantum Cryptography (PQC)
schemes. However, as the security foundations of PQC are still
evolving, even protocols such as ML-KEM [1] and ML-DSA
[2], recently standardized by the National Institute of Stan-
dards and Technology (NIST), remain potentially vulnerable to
unforeseen attacks. As a response, security agencies including
the French National Cybersecurity Agency (ANSSI) [4], the
German Federal Office for Information Security (BSI) [6], [7],
and NIST [8] recommend the implementation of crypto agility
in IT-security systems. Thereby, crypto agility refers to the
ability of updating the security system in case that any novel
threat to the system is discovered.

Despite its growing importance, the term “crypto agility”
lacks a single, universally accepted definition in the literature.
Several interpretations and conceptual frameworks exist, such
as [9]-[11], [13], [16]. The objective of this work is to define
crypto agility and its relevant aspects in the context of space
systems. This involves three steps: identifying threats and risks
to crypto agility, conducting a detailed literature review of
existing definitions, and defining crypto agility wrt. to space
systems.

An initial and important distinction must be made between
opinionated and negotiation-based protocols. Negotiation pro-
tocols allow the selection of cryptographic primitives and algo-
rithms during runtime, offering flexibility in configuration. In
contrast, opinionated protocols enforce a fixed set of primitives
and algorithms that must be adhered to. Although negotiation-
based protocols offer more run-time flexibility, as soon as new
threats occur, they also need to be updated via crypto agility

274 Matthias Miiller
Cryptographic Systems
OHB System AG
Bremen, Germany
matthias.mueller @ohb.de

3" Karin Zielinski
Cryptographic Systems
OHB System AG
Bremen, Germany
karin.zielinski @ohb.de

measures. Thus, for simplicity, this work focuses its discussion
to the agility of opinionated protocols.

The paper is structured as follows: Section 2 outlines threats
to crypto agility, including active and passive attacks, as well
as system failures - such as those caused by environmental
conditions or update errors. The literature review, in Section
3, draws on the works of Ott and Peikert [9], Alnahawi
et al. [10], Nither et al. [11], and IETF RFC 7696 [12],
each offering distinct perspectives on crypto agility. Section
4 examines their relevance to space systems, where physical
access to cryptographic units in flight is not possible and up-
dates must be performed and validated remotely. This requires
authenticated, integrity-protected updates and mechanisms for
attack prevention and rollback, detailed in sections 5 and 6. A
minimal hardware architecture implementing crypto agility is
also introduced there. Section 7 concludes the work.

II. THREATS TO CRYPTO AGILITY

In this section, the threats to the crypto agility mechanism
are discussed. The main threats are active attacks, passive
attacks and update failures. Active adversaries try to interfere
with the security unit to create an advantage actively, for
instance through jamming or fake updates. Passive adversaries
on the other side operate as curious bystanders, that are trying
to gain information, but are not actively interacting with the
unit. Passive attacks also include misuse, such as the opera-
tion of the security unit by unauthorized and/or unqualified
personnel that unintentionally introduces security flaws. The
third class of threats are failures: failures that occur during the
update process, and failures that occur due to random events
of the environment, a general threat to space systems. Update
failures can cause unusability of hardware components, or the
incompatibility of the unit wrt. to its interfaces.

These threats lead to two important aspects of the crypto
agility mechanism: a secure update initialization process on
one side, and an authenticated, integrity protecting fallback
mechanism on the other side. These two aspects are discussed
in detail in sections 5 and 6.

III. LITERATURE REVIEW

In this section, the results of the literature review are dis-
cussed. However, only the most relevant aspects are covered,
since there are several, very different references of crypto
agility in the literature. For instance, the Transport Layer

Protocol (TLS) [13], the Secure Shell Connection Protocol
(SSH) [14] and the Internet Key Exchange Protocol Version 2
(IKEv2) [15] are implemented with ’crypto agility’ in mind.
However, the meaning of ’crypto agility’ in these works is
limited to cipher negotiation protocols, as defined above. As
discussed, when the security agencies demand crypto agility
in critical systems, such as space systems, their intention is
the possibility to make changes to the security unit through
reprogramming of soft- and/ or hardware: Hence, in this work,
we focus on the reprogramming aspect of crypto agility.

Nither et. al. [11], give a canonical definition of crypto
agility: Cryptographic Agility "is a theoretical or practical
approach, objective, or property which provides capabilities
for setting up, identifying, and modifying encryption methods
and keying material in a flexible and efficient way while
preserving business continuity.”

The definition of “Cryptographic Agility” will be used
as the baseline in this paper. However, in the following,
several refinements of this definition will be made. In all these
refinements, we refer to the definition of crypto agility from
above, i.e., the term hardware agility reduces the term agility
to hardware components, but in all facets described in the
definition.

The above definition grasps several crucial ideas. Firstly,
agility may be a fixed mechanism, but it is also a more
general approach to the design of the crypto unit. Secondly,
crypto agility includes the identification of novel threats,
such as attacks to a specific implementation, or that entire
mathematical foundations of schemes are broken. Then, based
on the specific threat, crypto agility is flexible enough to
adapt to these individual threats according, e.g., through repro-
gramming of hardware, or by upgrading the software. Lastly,
without business continuation, the notion of crypto agility is
pointless.

Historically, crypto agility meant the ability to replace
certain components of algorithms within an implementation.
Ott et al. [RD09] ask this “minor implementation challenge to
be recast as a major design challenge” to better comprehend
the larger picture of agility challenges. In their work, the
authors define among others the following modalities of crypto
agility:

1) Implementation Agility: “Application interfaces and pol-
icy configuration frameworks facilitate migration across
implementations.”

2) Compliance Agility: “Cryptographic infrastructure can
be reconfigured to address compliance requirements for
varying international regulations and frameworks, or to
minimize a trusted computing base.”

3) Security Strength Agility: “Many PQC algorithms re-
quire different implementations for different security
strengths. Algorithms that dynamically scale security
strength based on configuration provide better agility.”

4) Migration Agility: “The ability to move automatically
from one scheme to another - including conversion.
Requires better use of cryptographic metadata at the
level of application data.”

5) Platform Agility: “The ability to use assured crypto-

graphic algorithms across different platform types.”

Here, several novel points are made. Firstly, the terms
implementation, compliance, security strength and migration
agility can all be achieved by reprogramming of soft- and/
or hardware. However, it is important to distinguish the
purpose of the reprogramming. In particular, the complexity
of the update can be very different, depending on if only the
parameters are changed to achieve a higher level of security.
Or, if an entire protocol, including hardware design, needs to
be exchanged.

Furthermore, the need for modularity in cryptography is
stressed through the definition of Platform Agility. So far, the
point of view has been the threat of novel attacks breaking
or reducing the security of cryptographic algorithms. How-
ever, not the entire crypto unit must be affected. Instead,
fixing the threat can, in many cases, be fixed by exchanging/
updating single components such as the key derivation, the
hash-function, or by updating the specific implementation, or
by changing the parameter set of the protocols in use. In
particular, this modularity of cryptographic system supports
the reuse of components across different platforms.

Most facets of crypto agility will be achieved either through
hardware reprogramming, or the upgrade of software compo-
nents. Hardware agility is defined in [10], as “The ability of
the hardware to support design agility through general design-
agility, redesign/ repurposing of hardware and accelerator
agility in mind.” To add on this, we define software agility
as the ability to update software components of the security
unit, such as the object code.

Furthermore, the authors emphasize the importance of a
fallback mechanism in case of any malfunctioning. A mal-
functioning is detected by a collection of (online) tests with
the purpose of validating the functioning of the security unit
during operation and the correctness of hard- and software
reprogramming. This includes the process of testing and vali-
dating the functionality of updated cryptographic mechanisms.
This testing and validation of the updated implementation
of protocols and algorithms is highly important to prevent
misbehavior, or even failure, of the unit. These tests could
for instance be combined with autonomous self-tests. Those
are necessary for testing functionality after reboots.

Additionally, redundancy concepts that contain the nec-
essary hardware for crypto agility, must be tailored to the
specific mission, taking into account both reliability and cost.
Furthermore, in certified or regulated projects, any update may
require re-certification and official approval.

Lastly, we refer to the RFC 7696 [12] Best Current Practice-
document “Guidelines for Cryptographic Algorithm Agility”.
Here, one aspect of crypto agility is of particular interest:
Opportunistic Security, which describes a mechanism that
allows the communication link to use algorithms that are
considered weak in case the communicating parties do not
have strong algorithms in common. Using out-of-date schemes
or implementations is considered more secure than using no
cryptographic algorithms at all. However, for each application,

Crypto Agility — Fundamental Definitions

Crypto agility is a theoretical or practical approach, objective, or property which provides capabilities for setting up, identifying,
and modifying encryption methods and keying material in a flexible and efficient way while preserving business continuity.

This is the general definition used throughout this document. Where applicable, the notion can be specified as follows:

Adaption Agility Migration Agility

Hardware Agility

. Software Agility Design Agility

i The ability to exchange

! entire cryptographic
implementations, or the
selection between
different algorithms.

The ability to change
small parts of the
crypto unit, e.g., the
parameter set of a
certain algorithm to
change their security
level.

The ability to
reprogram the
hardware of the
security module.

. The ability to

! update software
components of
the security unit.

The ability to exchange single
components of the security unit
without changing the internal
interface, as well as the ability
to be algorithm independent.
Also, general design rules that
allow for platform agility.

Fig. 1. Crypto Agility Definitions Overview for Space Systems

a careful analysis if opportunistic security is applicable must
be carried out. In particular, it must be decided if the disabling
of the service is preferred over the use of weak cryptography.

IV. CRYPTO AGILITY DEFINITION FOR SPACE SYSTEMS

The literature review shows that there are many definitions
of, and aspects to crypto agility. However, some of them
are too general in the space context. Therefore, this section
condenses the above notions to the needs for space systems.

Find an overview of the crypto agility definitions for space
systems in Fig. 1. Those include the general crypto agility
definition from [11], which combines all relevant aspects of
crypto agility in one definition, also in the space context.
However, as in the general case, refinements of this general
definition must be made. The aim of that refinement is to
provide notions for different special cases of crypto agility.
This allows both researchers and developers to communicate
more precisely.

There are three categories of refinements: one is concerned
with the choice of algorithms, another deals with different
forms of reprogramming, and lastly the design agility. The
first category includes adaption agility (for instance, parameter
strength agility, and updating key material or certificates)
and migration agility (migrating from one algorithm to an
entirely different one). This differentiation is very important,
since adaption agility does not require the reprogramming of
the entire algorithms. In particular, adaption agility can be
achieved, depending on the design, simply by exchanging a
configuration section in a non-volatile memory. This makes
a great difference in the update: no software or hardware
reprogramming is required, which minimizes risk, testing
effort and time where the crypto unit is out of operation. Thus,
even though both adaption and migration agility have the same
aim - exchanging a possibly insecure algorithm by one that is
considered secure - the implications are very different.

However, not all changes can be achieved through parameter
change alone. Thus, this second category of notions also

contains software and hardware agility. Software updates are
already established in space systems to cope with necessary
modifications or enhancements after launch. However, depend-
ing on the location of the crypto system in the communication
chain and the certification/ approval level of the crypto system,
software agility is only implemented if necessary. Many cryp-
tographic systems are not implemented completely in software.
The implementation of some parts in hardware allows to
improve the performance of the cryptographic computations
or are required for certification and approval of the crypto
system. Depending on the FPGA technology different aspects
need to be considered as outlined in Section 6.

The main motive of the third category, the notion design
agility, is modularity. Designing the security system in a modu-
lar way is beneficial to agility in different ways. The above ex-
ample, which can be achieved through a well-chosen hardware/
software co-design, can allow the developer to make smaller
changes to the algorithm by updating the software, without
changing the hardware implementation. Furthermore, making
the modular components algorithm independent (by operating
through fixed, implementation independent interfaces) should
be considered for space systems. Hence, if the interfaces are
preserved, the algorithm can easily be exchanged. Note that
design agility does not describe a specific aspect of agility, it is
more a general design rule that supports agility. Furthermore,
design agility aims at designing components of the crypto unit
in a possibly platform independent way, such that they can be
reused/ connected across platforms.

V. UPDATE INITIALIZATION PROCESS

The above discussion shows that in the space system con-
text, crypto agility in most cases refers to soft- and/or hardware
reprogramming. However, fake-updates pose a severe threat to
the security of the system. Thus, the update file received by
the satellite must be authentic and its integrity must be intact.
This demands a specific update initialization process, which
is discussed in this section.

Satellite

Trust Anchor verifies
the signature of the
update with the Public
Root Key

Trust Anchor

Communication
Channel

Ground Segment

Root of Trust signs the
update using the
Private Root Key

Fig. 2. Authentication Procedure for the Update Initialization

Before the process itself is defined, some general terms need
to be defined.

1) Certification Authority: In this context, the Certification
Authority (CA) is the ground unit that is communicating
with other units, in particular with the satellite, and that
is authorized to initiate all kinds of updates and upgrades
of the on-board security unit.

2) Root Key: The Root Key (RK) is the public-private key
pair of the signature scheme that is used to authenticate
the CA. The private-part of the RK is stored in the RoT
(see below) of the CA, whereas the public-part of the
RK pair is stored in the Trust Anchor (see below) in
the satellite. Note that the public part of a RK may be
stored in different units.

3) Root of Trust: A Root of Trust (RoT) is a security
module in the ground unit that comes with at least three
functionalities: storing the private part of the root key
such that it is protected from reading and manipulation,
the ability to sign messages with that private Root Key,
and to provide a anti-replay protection.

4) Trust Anchor: The Trust Anchor (TA) is a security
module in the satellite that comes with at least the
following three functionalities: storing the public part
of the Root Key in an authenticity-protected manner, the
ability to verify signatures using the public Root Key,
and the ability to verify the anti-replay protection. The
first functionality includes integrity and that the public
key cannot be replaced by any other key.

Please note that the term Certification Authority combines
entities that must usually be considered separately. On one
side, it functions as the Ground Segment, and at the same
time it holds the authenticity to initiate the update process.
This is a simplification of the real-world setup, but suffices to
illustrate the ideas.

Find an overview of the update initialization process in
Fig. 2. In case of a partly successful attack, the satellite’s Trust

I
Authenticated Reprogramming | |

|

1

'

1

1

1

1

e |

Update Bitfile 1 ! Crypto Agility ® Device @ !
— @

—'_; > Controller — —/:—’ Target of :

—_— I > ! Reprogramming :

@) _ : !

1 1

- ' '

Trust Anchor H :

H |

: 1

1 1

1

Secondary
Configuration | Configuration

Memory

Memory

Fig. 3. Minimal Hardware Configuration for Crypto Agility

Anchor shall protect the recovery process. As a main point,
the Trust Anchor ensures that only a legitimate originator
can command recovery steps. Thus, the combination of a
Trust Anchor and a Root-of-Trust protects the update process
against misuse. This is one crucial step in securing the crypto
agility mechanism, but it should further be supported by an
appropriate security design. Since the goal of RoT and Trust
Anchor is to authenticate the update code, the Root Key is an
asymmetric signature key. In particular, the security agencies
such as ANSSI [4] and the BSI [5], [7] recommend stateful
hash-based signatures for this update authentication.

VI. EXEMPLARY HARDWARE CONFIGURATION FOR
CRYPTO AGILITY

In this section, we introduce an exemplary hardware config-
uration that is able to execute the update process in a failure-
resistant way. Hence, a rollback mechanism is essential, to
ensure secure and reliable on-the-fly updates of the security
unit. In case of errors during reprogramming, the system must
revert to the previously validated configuration. This mecha-
nism is closely tied to the minimal hardware requirements for
reprogramming.

A possible example is a dual-FPGA architecture, as depicted
in Figure 3, consisting of:

o Target of Reprogramming (ToR):
The application to be updated, such as an FPGA, micro-
controller, firmware, or software.

e Reprogramming Device:
A dedicated hardware unit (e.g., FPGA or microproces-
sor) that performs the update.

o Primary Non-Volatile Memory:
Stores the currently running and validated bitstream.

e Secondary Non-Volatile Memory:
Stores the newly uploaded update. After successful re-
programming, the roles of the memories may switch.

o Crypto Agility Controller
A hardware unit (e.g., FPGA) that manages update com-
mands and error handling via a finite state machine.

This hardware configuration executes the reprogramming by
performing the following reconfiguration sequence: First, the
update is loaded into the secondary memory upon command
from mission control. Then, the update is verified using a Trust

Anchor to ensure authenticity and integrity. The reprogram-
ming device installs the new bitstream or object code onto
the ToR, and initial tests are executed by the reprogramming
device. Finally, validation is confirmed via handshake between
the ToR and mission control. This validation creates two
possible cases:

 Validation Successful:

The update is finalized and persisted. The memory roles
are switched. Mission control must explicitly command
this step.

o Incomplete Validation:

If tests fail or the handshake is not completed within
a predefined time, the rollback mechanism is triggered
automatically by the reprogramming device.

This entire sequence is managed and monitored by the
crypto agility controller. It includes a finite state machine,
which autonomously operates the rollback mechanism, espe-
cially when the ToR is disconnected from mission control.
Adjacent systems must be notified after both successful up-
dates and rollbacks. This crypto agility mechanism ensures
secure, reliable, and flexible reprogramming, with authentica-
tion handled by the Root-of-Trust and Trust Anchor.

This previously defined reprogramming architecture can, for
instance, be realized using both SRAM-based and Flash-based
FPGAs. When considering reprogramming of these FPGAs, it
is important to distinguish between them, as each requires a
different approach to updating and reliability. The realization
differs due to the configuration memory characteristics of each
FPGA type:

SRAM-Based FPGA Realization:

The reprogramming device loads the bitstream from either the
primary or secondary non-volatile memory into the volatile
configuration memory of the ToR. Rollback is performed by
reloading the previous bitstream from the primary memory.
Bitstream switching is fast and supports dynamic reconfigura-
tion. Authenticity and integrity checks are performed before
loading. Here, external memory access and secure boot logic
are required. It is to some extend comparable to a software
update due to the configuration from the non-volatile memory
into the volatile FPGA configuration RAM after each power
cycle.

Flash-Based FPGA Realization:

The reprogramming device writes the new bitstream to the sec-
ondary non-volatile memory, whereas the primary non-volatile
memory is loaded into the FPGA. Rollback is realized by
reverting to the previous flash image. Integrity and authenticity
are verified before reprogramming. Reconfiguration is slower
and less flexible but benefits from built-in secure boot and
instant-on capability.

VII. CONCLUSION

This paper provides a structured overview of crypto agility,
beginning with a threat analysis, including active and pas-
sive attacks as well as system failures. A comprehensive
literature review is conducted, discussing different definitions
and conceptual frameworks. These are then condensed in the

specific context of space systems, with its unique prerequisites
and requirements. The space-system specific definitions are,
however, purposefully left general, such that they can be
adapted to the many different possible requirements of dif-
ferent space missions. Furthermore, the mechanism for secure
update initialization is defined to ensure integrity and authen-
ticity in cryptographic updates. Lastly, a minimal hardware
configuration that allows for failure-resistant updates is intro-
duced. The overall objective of this work is to establish clear
and consistent definitions and terminology for crypto agility
and for future discussion, evaluation, and implementation for
space systems in the context of post-quantum cryptography
migration.

ACKNOWLEDGMENT

This research was carried out in the context of the ESA
project “Agile Post-Quantum Space Data Link Security Pro-
tocol Hardware Module” (Activity No. 1000038710), whose
support is gratefully acknowledged.

REFERENCES

[1] National Institute of Standards and Technology (NIST), FIPS 203:
ML-KEM — Module-Lattice-Based Key Encapsulation Mechanism, Final
Publication, 2024.

[2] National Institute of Standards and Technology (NIST), FIPS 204:
ML-DSA — Module-Lattice-Based Digital Signature Algorithm, Final
Publication, 2024.

[3] National Institute of Standards and Technology (NIST), FIPS 205:
SLH-DSA — Stateless Hash-Based Digital Signature Algorithm, Final
Publication, 2024.

[4] ANSSI (French National Cybersecurity Agency), “ANSSI Views on
the Post-Quantum Cryptography Transition (2023 Follow-Up),” Position
Paper, Dec. 21, 2023.

[5] Federal Office for Information Security (BSI), “Cryptographic Mecha-
nisms: Recommendations and Key Lengths (BSI-TR-02102-1),” Tech-
nical Guideline, Version 2025-01, Mar. 4, 2025.

[6] Federal Office for Information Security (BSI), “Quantum-safe cryp-
tography — fundamentals, current developments and recommendations”
Guideline, May 18, 2022.

[7] Federal Office for Information Security (BSI), “Migration to
Post-Quantum Cryptography,” Technical Guideline/position paper, Au-
gust, 2020.

[8] National Institute of Standards and Technology (NIST), “Status Report
on the Fourth Round of the NIST Post-Quantum Cryptography Stan-
dardization Process,” NIST Interagency/Internal Report 8545, Mar. 11,
2025.

[9] David Ott, Christopher Peikert, et al., “Identifying Research Challenges
in Post Quantum Cryptography Migration and Cryptographic Agility,”
CoRR, vol. abs/1909.07353, 2019.

[10] Alnahawi, N., Schmitt, N., Wiesmaier, A., Heinemann, A., & Grasmeyer,
T. (2023). On the state of crypto-agility. Cryptology ePrint Archive.

[11] Christian Nither, Daniel Herzinger, Jan-Philipp Steghofer, Stefan-Lukas
Gazdag, Eduard Hirsch, and Daniel Loebenberger, “Toward a Common
Understanding of Cryptographic Agility — A Systematic Review,” arXiv
preprint, arXiv:2411.08781, 2025.

[12] Russ Housley, “Guidelines for Cryptographic Algorithm Agility and Se-
lecting Mandatory-to-Implement Algorithms,” RFC: 7696, RFC Editor,
Nov. 2015.

[13] Eric Rescorla and Tim Dierks, “The Transport Layer Security (TLS)
Protocol Version 1.2,” RFC: 5246, RFC Editor, Aug. 2008.

[14] Tatu Ylonen and Tim Wright, “The Secure Shell (SSH) Protocol
Architecture,” RFC: 4251, RFC Editor, Jan. 2006.

[15] Pasi Eronen, Yoav Nir, Paul E. Hoffman, and Charlie Kaufman, “Internet
Key Exchange Protocol Version 2 (IKEv2),” RFC: 5996, RFC Editor,
Sep. 2010.

[16] Jason A. Donenfeld, “WireGuard: Next Generation Kernel Network
Tunnel,” RFC: 8998, RFC Editor, Mar. 2021.

