
A Satellite Constellation Simulator for Space
Systems Cybersecurity Research and Development

Simone Urbano
Starion Group France

Nice, France
s.urbano@stariongroup.eu

Jacques Girard
Thales Alenia Space

Toulouse, France
jacques.girard@thalesaleniaspace.com

Louis Lolive
IRT Saint-Exupéry
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Abstract—Space systems have become critical infrastructures
for modern society. Thus, cybersecurity and resilience of space
systems has become a hot topic of research. In this study a
technological component is presented that is designed to guide
and to enhance cybersecurity investigations for space systems.
In particular, we introduce a new simulation platform that has
been developed in the framework of CSS (“Cybersecurity for
Space Systems”) project led by IRT Saint-Exupéry in Toulouse.
This platform is introduced as a benchmark for cybersecurity
research and development on space systems. The platform, based
on NASA NOS3 simulator [28], can represent a single spacecraft
or a constellation of spacecraft, including flight software, Mission
Control System (MCS) and CCSDS stack (up to transfer frame
layer) for space link communications [10] [11] [12]. A few
selected cyber attacks and an Intrusion Detection System (IDS)
component under development are introduced to showcase the
potential of the chosen simulation platform in terms of attacks
and defense development and evaluation.

Index Terms—Space Systems, Cybersecurity, IDS, Cyber
Range, Simulation Platform.

I. INTRODUCTION

The new space ecosystem agility is defining a new route to
follow for the space industry. Furthermore, our society is more
and more dependent on space systems infrastructures, leading
to new concerns about the cybersecurity of such systems [26].
In recent years, some attacks as ViaSat [5] in the context of
Ukrainian war, have enlightened the need for more attention
across all the lifecycle of such systems with respect to cyber
threats. Indeed, the risk management practices and standards
of modern space system need to evolve in order to keep
pace with the evolution of the cyber threat landscape and the
increase of the attack surface. The LEO SatCom systems are
a clear example of such a situation as recently emphasized by
a comprehensive report by ENISA [19]. The need to balance

security with cost-effectiveness is also a top priority of new
space and several studies have been conducted recently on
this topic [36]. Finally, the rapid evolution of the frameworks
used to describe the cybersecurity posture of space systems as
SPARTA [42] and SPACE-SHIELD [14] proves that the need
to share information and lesson learned, but also the possibility
to improve the training of operators is becoming a priority
for the space sector. In this context, it is clear the urgent
need for a realistic but cost-effective simulator/benchmark of
a space system that can be used to research and develop
attacks and detection strategy, to train on practical scenarios
and to evaluate risks and mitigations. The contribution of this
study lies in the new components, attacks and countermeasures
developed for this purpose. The development of the platform
is still in progress, thus in this paper we will focus more on
methods instead of performance and validation. In Section II
a short review of existing simulation solutions is introduced.
In Section III the simulation platform introduced by CSS
project is presented and the main contributions of this study are
detailed. In Section IV the focus is on security development
and testing with regard to attack and defense capabilities.
In particular, in Section IV-B some relevant attack scenarios
are presented, while in Section IV-C, some specific intrusion
detection and prevention strategies are introduced. Finally, in
Section V the conclusions and perspectives of this study are
proposed.

II. RELATED WORK

There exists multiple proprietary and open source solutions
for the simulation of a space system (and the associated
flight/ground software). One can mention some well known
frameworks as ESA GSTVi [22], ESA SIMULUS [16], ESA



MO Nanosat Framework [15], OS3 [25], Ansys STK [3],
NASA NOS3 [28] and CNES Basiles [9] that can be adapted
for the scope of Cybersecurity testing. For example, in [46]
STK is associated to other tools to evaluate the security of
a LEO Constellation. In [44] the GSTVi simulator is used to
test a secure communications environment for space missions.
In [35] NASA NOS3 [28] is chosen to generate representative
threat data. It goes without saying that limited information are
available on the simulation platform used by big companies
of the space and defence sector worldwide. In the academic
sector, custom or ad-hoc simulators are often preferred (for
example in [47]). Among all the aforementioned platform,
NASA NOS3 [28] is probably the most famous open source
simulator that comes in a single easy to deploy virtual machine
including Flight Software (FSW), Ground Software (GSW)
and visualization. Moreover, NASA NOS3 components (in
particular the OpenSatKit simulator [33] [27], that is very
similar to NOS3) have already been used for cybersecurity
testing in well known competitions as HackASat [23] due to
its modularity, relative simplicity and code accessibility. On
the other hand, a satellite constellation simulator for space
systems cybersecurity research and development is a rare set of
software and it is generally limited to big players of space and
defence sector or institutions like NASA [4]. The framework
that is being developed for CSS project, is even more rare as it
will be composed by multiple complex software components:
1) A realistic space system simulator (including FSW, GSW
and Visualization). This component is based on NASA NOS3.
2) A Cyber range platform (to manage high risks scenarios
including dangerous software as malwares). This component
is based on CITEF(Cyber Integration, Test and Evaluation
Framework) platform by Nexova [32].
3) Penetration testing software (for example Kali Linux OS)
equipped with customized exploits.
4) Detection and defence software as ground probes. This
is based on Gatewatcher probes [20] and custom algorithms
that are developed for CSS project by LAAS-CNRS as ded-
icated on-board Intrusion Detection and Prevention System
(IDS/IPS).
The main idea is to be able to simulate a realistic attack
scenario and the different step of the kill chain up to the final
exploitation, leading to more robust defence strategies that can
be tested and adapted to face specific threats. Finally, the goal
is to increase the resilience of the considered simulated space
system architecture.

III. SPACE SYSTEM SIMULATION FOR CSS PROJECT

CSS project is led by the French Institute for Technological
Research (IRT) Saint Exupéry in Toulouse. CSS will include
contributions from leading institutional, academic and com-
mercial partners in the space, cybersecurity and technology
sectors: Starion Group, Thales Alenia Space, CNES, LAAS-
CNRS, Gatewatcher, French Air Force Academy and Nexova
Group. The objective is to mature the technological blocks
necessary to improve the state-of-the-art in cybersecurity for
space systems. One of the goals is to build a state-of-the-art

space system simulation platform for cybersecurty research
and development, where advanced AI techniques for attack
and defense can be developed and evaluated. In order to
improve the resilience of space systems, multiple technological
modules are investigated: space system simulation, CTI for
space, automatic attack generation, onboard agents for threat
detection, on ground probes for automatic threat detection, on
ground AI agents for automatic threat detection and isolation.
This article describes the space system simulation module,
that is currently based on NASA NOS3 simulator. The choice
of NOS3 as baseline for the development of a space system
simulator representing a constellation of satellites (and in
particular CubeSats) is mainly related to the following factors:
the platform is based on open source software; the full CCSDS
stack implementation is available (only physical RF layer is
missing); the platform has already proven its relevance for
cybersecurity research and development [4] [23].

A. NASA NOS3

NASA NOS3 simulator (v1.6.2) is mainly based on 4 open-
source components: NASA cFS [29], NASA CryptoLib [30],
NASA 42 [41] and OpenC3 COSMOS [13]. The NASA cFS
is an established FSW by NASA that has already flown on
multiple NASA missions [31]. The cFS architecture is very
generic and modular enabling reusability between missions
and reducing the development costs. CryptoLib is a software-
only solution implementing the Space Data Link Security
protocol or SDLS [18]. NASA 42 is a well established NASA
flight dynamics and visualization tool by Eric Stoneking [40].
COSMOS is a suite of application that can be used to control
a set of embedded systems, for NOS3 it is used to represent
the Mission Control System (MCS).

B. Contributions

The main contributions of this study with regard to NASA
NOS3 (v1.6.2) are: (i) the introduction of new components
enabling the deployment of satellite constellations such as
ISL/RM (Inter Satellite Link / Routing Machine) component
on board and Front End component on ground; (ii) NOS3 code
adaptations for multi spacecraft configuration and reintegration
of the TC/TM transfer frame layer of the CCSDS stack (NOS3
v1.6.2 is based on SPP layer); (iii) the introduction of a mul-
tipurpose Input generator and a predefined library of exploits
(the user can send nominal and malicious TCs, craft a specific
mission, perform fuzzing or simply select attacks for known
vulnerabilities); (iv) the integration in the FSW of an IDS
component for the development of threats detection algorithms
on-board; (v) Hardware-in-the-loop (HIL) simulation of on-
ground probes (proprietary probes provided by Gatewatcher
[20]); (vi) the introduction of additional features for increased
realism such as additional ADCS modes and realistic payload
data (camera) from a 3D environment simulation (“Imager”
component). The result of these contributions is that the user
can simulate a realistic mission with realistic CCSDS traffic



for a satellite/constellation with optical payload1. The user
can also prototype/test attacks and countermeasures and in the
CITEF environment one can also defines trainings and red/blue
team activities.

C. Implementation Hypotheses

NASA NOS3 v1.6.2 is provided to be deployed on a single
Virtual Machine (VM) using Vagrant (the VM is based on
Ubuntu 20.04.6 LTS). In the context of CSS project, it has
been decided to split the simulator on multiple VM, in order
to increase the modularity and to have the possibility to have
different operators/users on different VMs (this configuration
is preferred for red/blue team activities). In particular, it has
been chosen to use 1 VM for each satellite (based on NASA
cFS), 1 VM for each Mission Control System (MCS, ground
segment based on COSMOS), 1 VM for the flight dynamics
and visualization part (NASA 42). The physical layer (RF
link) is not simulated in NOS3. CCSDS TF are passed over
UDP to represent the RF link. For this reason, one can use a
standard “tcpdump” command to get a capture (.pcap) of the
simulator traffic. NOS3 v1.6.2 implements the CCSDS stack
up to SPP layer. The Transfer Frame layer (TC/TM TF) is not
fully available by default and several adaptations of NOS3
code are required to activate the TF layer. The TC/TM TF
layer delivers the spacecraft ID information2. It is important
to note that several software modules are added (or adapted)
in NOS3 in order to handle a multi spacecraft configuration.
In particular, the ISL/RM component is added in the satellite
flight software (NASA cFS). ISL/RM provides a simple and
effective routing machine for the constellation. The Front End
(FE) component is added in the MCS VM. FE is the entry
point of the MCS, handling the routing with Cosmos and the
Standalone3 CryptoLib [30].

D. General Architecture

The chosen architecture for the communications in CCSDS
(over UDP) between one satellite VM and the MCS VM can
be summarized by the diagram in Figure 1. It is important
to observe that COSMOS and the satellite software bus keep
working with SPP, while we can easily capture the traffic
at transfer frame level between the Front End component
and the ISL/RM component. A more general picture of the
simulator architecture is provided in Figure 2, where a multi
spacecraft configuration is presented, including an example of
addresses and ports for each new component. One can see that
ISL/RM is the new entry point of the satellites VMs (the CI
application is the entry point for NOS3), while Front End is the
new entry point of the MCS VM. The Standalone CryptoLib
and COSMOS are also duplicated for each new satellite to
be handled into the constellation. NASA 42 is connected to

1Pointing the satellite to a specific location, TC routing to request a picture,
picture acquisition on-board, telemetry routing with realistic photo, photo
decoding and visualization.

2This is essential to define a routing strategy for a constellation.
3The Standalone CryptoLib process is in charge of encryption for TC/TM

messages, but it is also responsible for adding the TC/TM transfer frame layer
on top of the SPP layer.

all the spacecraft to provide a unique space environment to
the constellation. In the next subsections, we discuss more
in details the proposed contributions of this study to NOS3
and we explain more in detail the space system benchmark
introduced in CSS project.

E. ISL/RM

ISL/RM is a new component in NOS3 architecture. It
implements a routing machine and visibility feature. It also
simulates simplified radio connections under UDP for ISL
and feeder links. Communication protocol is SPPs in transfer
frames over UDP. Routing and network configurations are
static by default. ISL/RM architecture is shown in Figure 3.

F. Front End

Front End (FE) is a new ground actor in charge of routing
both TM and TC. In addition to ISL/RM component, it
implements constellation features: visibility and routing. At
any moment it connects all “CosmosTF”4 and the spacecraft
in visibility as shown in Figure 2. Front End is based on
transfer frames in both TC and TM. As per configuration (see
Figure 4): FE receives TC on one port from all CosmosTF;
any CosmosTF may manage one or more (prospective version)
satellites; FE receives TM on one port from satellites. Only
satellites currently in visibility may send TM to FE. In a
future implementation, dynamic routing could be handled. The
visibility would evolve along time, linked to the satellites
movements around their orbit.

NOTE: The current version of the simulator considers static
routing of the constellation messages. This is fully represen-
tative of a real constellation network for a limited amount of
time. The routing configuration is defined in simple text files
(known by ISL and Front End) and it can be easily modified
by the user. ISL routing can also be modified by TC. Dynamic
routing and thus variable network configuration depending on
the satellite positions and visibility with respect to specific
ground stations will be considered in further releases of the
simulator.

G. Imager

The imager is an external simulation tool with two main
functions: to visualize in near-real time what the camera “sees”
based on the satellite’s attitude; to obtain realistic photos when
a photo capture command is sent to the Arducam (NOS3
optical payload). As input, it receives information about the
satellite’s position and attitude in ECEF frame, the coordinates
of a target on Earth to display it in continuous visualization,
and the position of the Sun. As output, it produces an image
showing the 3D scene as viewed from the onboard camera. The
imager is based on GPU technology, which allows modeling
the Earth as a sphere with a texture applied to it, and the 1,000
brightest stars and their respective magnitudes. In Figure 5 an
example of the imager output is presented in comparison to
NASA 42 output.

4CosmosTF is a couple composed of Cosmos (which handles SPP) and
Standalone CryptoLib (which makes the bridge between SPP and transfer
frames).



Fig. 1. SAT-MCS end to end communications architecture.

Fig. 2. Overall Architecture of the Simulator.

H. Input generator

The user can also design scenarios sending multiple com-
mands, or perform fuzzing on TC by using a dedicated tool. A
pre-filled JSON file is created with the chosen commands, and
the values of the different fields can be customized, allowing
for both normal and malicious scenarios to be designed.
Different fields of the chosen command can be selected for
fuzzing, and the number and frequency of packets sent will
be user-adjustable.

I. Intrusion Detection Systems

The current version of the simulator includes several intru-
sion detection and prevention systems, still under development,
located on the ground segment and embedded in the satellite
itself.

1) The intrusion detection system on the ground segment is
performed by means of some specific probes (from Gate-
watcher) that have access to the CCSDS traffic on the space
link and that are able to detect some anomalies based on
statistical and machine learning techniques5 [21].
2) The intrusion detection and prevention strategies on board
are currently investigated though the design of probes embed-
ded in the satellite itself. These strategies are described in
details in the next Section IV-C.

IV. SECURITY DEVELOPMENT AND TESTING

As stated in the introduction, the platform described in this
paper is intended to be used as a benchmark for cybersecurity

5Gatewatcher probes are out of the scope of this paper and will be presented
in further studies.



Fig. 3. ISL/RM component functional diagram.

Fig. 4. Front End TM/TC threads and listening ports.

research and development on space systems. For this purpose,
the platform includes both offensive and defensive modules.
The defensive modules consist in intrusion detection and
attack prevention mechanisms, both in the ground segment
and embedded in the satellite itself. This paper only focuses
on defense mechanisms embedded in the satellite itself and are
detailed in Subsection IV-C. The offensive module is aimed
at assessing the relevance of the defense mechanisms and im-
plements various attack samples described in Subsection IV-B
according to the threat model and a risk analysis presented in
Subsection IV-A.

Fig. 5. Example of FSW and Imager process for the Satellite 1 (up), wrt
NASA 42 Camera and map (down).

A. Risk analysis and threat model

The exploit definition is based on EBIOS-RM [2] risk
assessment for a generic LEO constellation, plus a preliminary
analysis of NOS3 space system architecture and the associated
known vulnerabilities [37] [38] [6] [7] [8] [39]. The NASA
cFS architecture is designed to be generic and flexible but it
has not been designed to be secure. The considered architec-
ture is nevertheless very common in the space sector and thus
it is very relevant for research and development of attacks and
mitigation means. Moreover, it is important to note that for



space system with flight software architecture similar to cFS
(software bus with applications), the platform can be adapted
to specific mission and components, enabling reusability. It is
important to observe that new components introduce also new
vulnerabilities. For example, Front End application is a single
point of failure for the ground segment.

1) EBIOS risk analysis: EBIOS-RM is a risk assessment
method which is fully compatible with ISO/IEC 27005 stan-
dard [1]. EBIOS-RM method has been used to identify the
threats to a generic LEO constellation and the associated
attack scenarios. The method allows to quickly identify the
most critical scenarios, i.e. those with a maximum “impact
X likelihood” product. This selection allowed us to draw a
digital threat map for such a generic constellation and to select
the most relevant scenarios to be simulated and tested. In
particular, about 40 detailed risk scenarios have been identified
for our target system, starting from high level risk scenarios
as intelligence on the system performance; destruction, life
reduction or takeover of the space segment; degradation of
the mission; theft of mission data; sabotage of the system
in operation. In the next subsections we present a few of
the most relevant scenarios that have been tested using the
CSS platform. The objective here is to showcase the platform
potential for R&D of attacks and mitigation means.

2) Threat model: A large number of research papers focus
on ground segment as an attack vector. For example in [43] the
vector is a compromised ground station sending illegitimate
commands to the satellite. Another strategy for attackers would
be using a “rogue” antenna to send commands to the satellite,
but accurate tracking of the satellite trajectory would be
needed, with a low visibility time frame. In addition, if the
satellite and the ground segment use cryptography, sending
commands pretending to be the ground station becomes a
hard task. Therefore, using the legitimate ground station to
access the satellite system seems the best option for an
attacker. Another interesting threat consists in compromising
the software before being embedded in the satellite (especially
the client payload), through some vulnerabilities in the supply
chain. This is a common vector in IT security, and as many
suppliers are needed to engineer a satellite, the risk increases.
Furthermore, as updates for satellite software are performed
during operation (especially for the payload), software could
be compromised during operation. Under this threat model, the
compromised software is running inside the satellite itself and
cannot necessarily be detected by means of an IDS analyzing
the communications between the satellite and the ground.
As such, this leads to the design of an IDS embedded in
the satellite itself. We assume that the whole flight system
software is trusted, because we want to be able to trust state
variables about the satellite provided by the flight software.
However, the payload software embedded in the satellite may
be malicious and trigger malicious actions at any moment
during the lifetime of the satellite. Overall, in our research
work, these two threats (compromission of the ground segment
and compromission of the payload) are considered.

3) Sandbox Scenario: In Figure 6 an example of CITEF
scenario is presented where a swarm with 7 satellites (NASA
cFS) is simulated (see Figure 7), including a mission control
system (MCS) and a VM for the space environment. A first
line of defense is introduced on ground, and it is represented
by Gatewatcher Probes5. On board the spacecraft, a prototype
of an intrusion and prevention system component is installed
as part of the FSW. Based on this simple sandbox scenario,
several attacks can be tested, a few examples will be provided
in the next subsections. It is important to mention here that
the simulator can be easily scaled to bigger constellations.
Moreover, CITEF offers the possibility to integrate simulated
assets with physical assets6. One can also consider more
complex sandbox scenarios, including multiple steps of the
kill chain [24], the main limit of the considered platform is
related to the available hardware to host the cyber range.

Fig. 6. CITEF Sandbox Scenario.

B. Attack Samples

In this section we describe some of the attacks currently
available for testing in CSS platform.

1) FSW flooding: In this scenario, the Attacker in Figure 6
is able to replay continuously a TC to one of the Satellites, the
goal being to flood the software bus (SB) and to compromize
the SB availability. A simple way to implement this attack
is for the attacker to send a space packet continuously to
the input UDP port of the Standalone CryptoLib (see Figure
2). This will result in a rapid saturation of the SB; the ISL
app will be squelched by the FSW and the satellite will be
unable to process any new command. It is important to note
that the attack can work also with encryption because the
attacker can play the role of a Cosmos instance in the ground
segment architecture. In general, a replay attack injected after
the cryptolib will be refused if encryption is activated. It is
interesting to observe here that another way to implement
the FSW flooding is via a compromised application on the

6for example the Gatewatcher probes in the sandbox scenario are physical
appliance that can get the simulator CCSDS traffic via specific interfaces
called “Hybrid”.



Fig. 7. Swarm of CubeSats seen from NASA 42 Camera.

software bus. Indeed, there is no layered permission on the
SB and a malicious application can perform several types of
attacks. The threat model would be slightly more complex
in this case. First, an attacker is able to compile a malicious
payload (CAM Application) in .so format that floods the SB
with a telemetry packet when the operator asks for a picture
via TC. Second, the .so file should be loaded into the satellite
(this can be performed before the spacecraft launch or directly
via TC using the CFDP protocol [17]). Third, the attacker can
replace via TC the normal payload with the malicious payload
using cFS commands. The spacecraft will operate normally
until the flooding is triggered by the attacker or by the operator
requesting a picture. The SB jamming attack can be detected
or mitigated by defense mechanisms using simple monitoring
of the traffic on the bus (as explained in the subsection IV-C).

2) SDLS Vulnerability Exploitation: In [6] and [7] some
vulnerabilities of the CryptoLib are exposed. In CSS platform
it is easy to verify the impact of CVE-2024-44911 (Segmen-
tation fault on TC frames). For example, if the attacker crafts
a TC transfer frame where the SPI (Security Parameter Index)
that corresponds to the 7th and 8th bytes of the TC frame has
been set to 0xFF 0xFF (instead of 0x00 0x04 for an ecrypted
frame [30]). In NASA CryptoLib v1.3.0 (and previous ver-
sions) this will trigger an out-of-bounds vulnerability leading
to a segmentation fault and this will induce a crash of the
on-board FSW that depends on the CryptoLib. The FSW will
restart automatically, but an attacker can send the same TC
continuously to put the satellite out of service.

3) App Kill: In [38] a Cyber-ASAT and App Kill attacks
are presented. In particular, these attacks consist in deleting
the on-board applications (one or multiple app) by leveraging
the existing cFS commands.

4) App Delete: In this scenario TCs are sent to erase a
library (.so file) and to stop the app using this library. This
attack can be implemented via the MCS or via a malicious
payload on board the satellite as for IV-B1. The goal of this
attack is to put a specific application out of service without
the possibility to restart.

5) Spacecraft ID Sabotage: The possibility to test and
develop attacks on a constellation is one of the main goals of
CSS project. If the attacker has access to the mission control
system, he can easily replace the Front End process with a
malicious version that can perform several types of attacks on
a specific spacecraft and on the constellation. For example,
by simply switching the spacecraft ID between 2 satellites in
the Transfer Frame packets, the attacker can cause a lot of
damage on the constellation. The operator that is controlling
one satellite will send commands to the other and vice versa.
In case of attitude and orbital maneuvers this can represent
a serious concern. Moreover, a malicious version of Front
End could switch the SCID coherently between TC and TM,
reducing the possibilities for the ground agents to detect the at-
tack. Exploiting a malicious Front End the attacker could also
create loops in the constellation communications as in [45],
inducing severe network service disruption. The final result of
the attack will inevitably depend on the commands selected by
the operator, however, the mission is generally compromized.
Concerning the mitigations, the detection can be very difficult,
thus dedicated detection and defence strategies shall be put in
place combining space and ground information. The detection
or prevention of this attack is not implemented as for now, but
it will be considered in a near future.

C. Intrusion detection and prevention system

1) Probes: The IDS module embedded in the satellite uses
a multi-layer approach with a set of probes (in different
locations of the architecture), and a set of detection modules
working either independently or together. We investigate the
design of three specific probes. The first, located at the arrival
of each TC in the satellite (i.e. in the ISL/RM component),
is aimed at capturing some features of the network traffic
exchanged between the satellite and the ground segment:
bandwidth, packet inter-arrival time, size of packets, etc. As
we assume that cryptography is enabled, this probe is not
able to get the content of the packet and thus can only get
some characteristics at the network flow level. The second
probe is aimed at reporting information on deciphered TCs
coming from the ground, and not sent yet on the Software Bus,
to distinguish from internal messages. This probe is located
into the CI component on the NOS3 platform. This probe
captures both the command type and command parameters
and can provide them to an intrusion detection and prevention
system dedicated to detect or drop any malicious TC, as
described above in the threat model. The third probe is aimed
at capturing information in the same way as the second one,
but is located on the Software Bus. This positioning allows
to gather information related to the internal exchanges of the
satellite. The aim is to collect activity coming from all com-



ponents of the satellite. This probe is currently implemented
by modifying the software bus itself in order to capture all
messages exchanged on the bus along with the source of the
message. Information gathered by these probes are used as an
input to the intrusion detection and prevention algorithms. A
representation of the architecture of NOS3 and the location of
the probes is given in Fig.8.

Fig. 8. Embedded probes in NOS3 architecture

It is important to note that, to have defense mechanisms as
accurate as possible, a standard model of commands sent from
the ground which would represent real mission operation is
needed. This is the main goal of a prototype mission defined in
the MCS VM included in the CITEF scenario. It is important
to mention here that in the current version of the simulator
there is no Fault detection, isolation, and recovery (FDIR)
system on-board and there are no complex state machine
reconfiguration associated to FDIR. This type of enhancements
can be considered in further studies.

2) Intrusion detection and prevention strategies: The
IDS/IPS has a distributed architecture tailored to NASA cFS
software (in the form of C language files) in order to provide
a realistic implementation of an onboard component with
limited ressources. Using the first probe’s information, an
anomaly detection strategy based on the analysis of the packets
characteristics (typically, inter-packet time, size of packets)
is considered. The aim is to detect deviations from standard
operations behavior, which could indicate an attack. A classic
example is a Denial of Service (DoS) attack targeting the
satellite, which consists in flooding the satellite with packets
coming from the ground. As such, this detection mechanism
allows to detect the attack described in IV-B1 by comparing
the packet inter-arrival time to a threshold, representative of
the legitimate communications. We also currently implement
a intrusion prevention strategy by means of an anti-flooding
approach in which we drop packets that do not respect
the legitimate packet inter-arrival time threshold. An other
intrusion prevention strategy is currently implemented using
the information extracted from this first probe. Even if the
content of the packets gathered by the first probe are encrypted,
the header is not. Some attacks, such as the attack described
in IV-B2 can be prevented by monitoring header fields, and in
this case dropping packets that include incorrect SPI values.
An intrusion prevention strategy using the second and third

probe is currently implemented and consists in a “TC firewall”.
This component is in charge of checking the validity of the TC
identifier, and deploying a black list of dangerous TC. The aim
is to address elementary attacks that use a single malicious TC,
both sent from the ground (information gathered by the second
probe) or sent on the bus if the payload was compromised
(information gathered by the third probe). Typically, this TC
firewall is able to block the attack described in IV-B3 by means
of a filtering rule that forbids the use of the command that
deletes all the configuration file (i.e., FM_Delete_All TC
with the /cf parameter). The TC firewall is also able to drop
dangerous combinations of TC. Typically, the attack described
in IV-B4 can be dropped by stateful filtering rules that are able
to identify the combination of two TC that, taken together,
perform a DOS attack towards a specific component of the
flight software. These stateful rules are currently being imple-
mented. Finally, we currently implement an anomaly detection
strategy using the information gathered by the third probe.
Our detection strategy consists in establishing a model of the
legitimate communications on the software bus and identifying
anomalies that could reveal malicious actions. These actions
could either be performed by a legitimate software component,
on receipt of a malicious TC, or by a malicious payload.
The challenge here is to have a model of legitimate messages
exchanged on the bus, so that we can detect deviations in
these communications. We are currently investigating different
AI models, taking into account that our detection algorithms
must be embedded in a platform that has limited resources in
memory and computation.

V. CONCLUSIONS AND PERSPECTIVES

Several long-term and short-term mitigations can be pro-
posed to increase the resilience of the simulated space system
to cyber attacks [38] [34] [7]. These mitigations will be dis-
cussed in further studies. The main objective of this study is to
introduce a benchmark for space systems cybersecurity R&D.
The CSS simulator is based on NASA NOS3 and it has been
adapted to represent a single spacecraft or a constellation. The
characteristics, contributions and the potential of the proposed
platform for cybersecurity have been described. In particular,
the introduction of new components and features that enable
the user to develop and to test several attack/defence scenarios
on a representative constellation of spacecraft with optical
payloads. CSS platform is a starting point for a wide range
of research paths in space system cybersecurity. In particular,
it is possible to work on topic such as automatic attack
generation and automatic threat detection/mitigation based on
realistic CCSDS traffic. New cybersecurity components, as the
intrusion detection and prevention system proposed in Section
IV-C, can be developed and validated to increase the system
resilience. Existing and new algorithms for threat detection
can be compared on selected benchmark scenarios. Realistic
data sets for surrogate models or for direct training of artificial
intelligence algorithms can be generated. A flexible, realistic
and open-source simulation platform is essential to work on
the cyber resilience of today and tomorrow space systems.
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