
AegisSat:
Securing AI-Enabled SoC FPGA Satellite Platforms

Huimin Li†, Vusal Novruzov∗, Nikhilesh Singh†, Lichao Wu†, Mohamadreza Rostami†, Ahmad-Reza Sadeghi†
Technische Universität Darmstadt, Germany

Email: †{huimin.li, nikhilesh.singh, lichao.wu, mohamadreza.rostami, ahmad.sadeghi}@trust.tu-darmstadt.de
Email: ∗{vusal.novruzov}@stud.tu-darmstadt.de

Abstract—The increasing adoption of System-on-Chip Field-
Programmable Gate Arrays (SoC FPGAs) in AI-enabled satellite
systems, valued for their reconfigurability and in-orbit update
capabilities, introduces significant security challenges. Compro-
mised updates can lead to performance degradation, service
disruptions, or adversarial manipulation of mission outcomes. To
address these risks, this paper proposes a comprehensive security
framework, AegisSat. It ensures the integrity and resilience
of satellite platforms by (i) integrating cryptographically-based
secure boot mechanisms to establish a trusted computing base;
(ii) enforcing strict runtime resource isolation; (iii) employing
authenticated procedures for in-orbit reconfiguration and AI
model updates to prevent unauthorized modifications; and (iv)
providing robust rollback capabilities to recover from boot
and update failures and maintain system stability. To further
support our claims, we conducted experiments demonstrating the
integration of these mechanisms on contemporary SoC FPGA
devices. This defense-in-depth framework is crucial for space
applications, where physical access is impossible and systems
must operate reliably over extended periods, thereby enhancing
the trustworthiness of SoC FPGA-based satellite systems and
enabling secure and resilient AI operations in orbit.

Index Terms—Satellite Security, SoC FPGA, AI, Reconfigura-
tion, Multi-tenant.

I. INTRODUCTION

Satellites, which used to be static platforms with fixed
configurations and limited adaptability, are evolving into intel-
ligent, reconfigurable systems capable of performing sophisti-
cated data processing tasks in orbit [1]–[4]. This transforma-
tion is driven by the increasing demand for enhanced auton-
omy, reduced dependence on ground-based control, rapid self-
decision-making in mission-critical scenarios, and optimized
use of constrained communication bandwidth [1], [3], [5]. On
the other hand, the rapid advancement of Artificial Intelligence
(AI) and edge computing technologies is revolutionizing the
architecture and capabilities of modern space systems [1],
[3], [6], [7]. AI enables critical onboard functions, including
real-time data analytics, adaptive payload management, and
autonomous decision-making under conditions of limited or
delayed communication [6]. These capabilities enhance the re-
silience, efficiency, and operational independence of satellites
across diverse mission profiles [1], [8], [9].

FPGAs have emerged as a preferable platform to meet
the stringent performance requirements, adaptability, and en-
ergy efficiency in these missions [10]–[12]. Besides, their
reconfigurability, deterministic latency, and parallel processing

capabilities make them ideal for optimizing and accelerating
AI workloads, such as neural network inference and real-time
machine learning (ML) enhanced signal processing. Addition-
ally, Commercial Off-The-Shelf (COTS) FPGAs are increas-
ingly adopted in small satellites, thanks to their compact size,
rapid prototyping, in-orbit updates, and flexible functionality,
supporting various academic, military, and industrial appli-
cations [11], [13]–[16]. System-on-Chip (SoC) FPGAs fur-
ther enhance these advantages by integrating general-purpose
processors, referred to as the Processing System (PS), with
programmable logic, known as the Programmable Logic (PL),
fabricated together within a single silicon device [1], [17]. This
hybrid architecture enables tight coupling between software
control logic and hardware-accelerated AI engines, supporting
complete AI processing pipelines with minimal latency and
interconnect overhead.

Unfortunately, similar to other hardware devices, satellites
have been targeted by real-world cyberattacks on multiple
occasions. A prominent example is the ViaSat Cyberattack
during the Russo-Ukrainian War, where attackers exploited
a security vulnerability from the ground segment to achieve
privilege escalation [18], [19]. Indeed, the flexibility of SoC
FPGAs, while enabling powerful in-orbit reconfiguration and
AI acceleration, also introduces significant security challenges.
A compromised configuration change or an AI model update
could lead to performance degradation, service disruption, or
adversarial manipulation of mission objectives. The inability
to physically access satellites after launch further amplifies
these risks [19]. Despite these concerns, prior research has
addressed only fragments about the security of AI-enabled
SoC FPGA satellite platforms. For example, Li et al. proposed
a partial reconfiguration method for satellite cryptographic
devices [20]. Cotret et al. presented lightweight reconfiguration
security services for SoC FPGAs [21], and Vallez et al.
investigated onboard AI model updates while controlling their
size and integrity [22]. Yet, no prior work has systematically
integrated these aspects into a unified framework.

Satellites of the multi-tenant model paradigm enable mul-
tiple stakeholders, from commercial entities to government
agencies, to share satellite resources such as payloads, sensors,
and communication channels. By supporting diverse work-
loads concurrently, multi-tenant satellites improve utilization,
reduce costs, and enable flexible Satellite-as-a-Service (SaaS)
deployments [23], [24]. However, while cloud-FPGA literature



has discussed partitioning programmable logic into virtual FP-
GAs (vFPGAs) for isolation, this concept has not been adapted
to multi-tenant satellite architectures, where preventing leak-
age or Trojan injection between tenants is critical. Recent
works, such as [19], [25], have highlighted the potential of
multi-tenant satellite platforms but stopped short of describing
concrete implementations or security strategies.

Finally, as satellite-to-satellite communication becomes
more prevalent, federated constellations will enable collabora-
tive machine learning workflows, such as distributed training
and in-orbit model sharing, as illustrated in Fig. 1. This
evolution significantly broadens the attack surface, introducing
threats that are unique to machine learning pipelines, in-
cluding model injection, adversarial perturbations, and model
exfiltration. These risks are further amplified when unverified
updates propagate across interconnected platforms, potentially
compromising the integrity and confidentiality of shared AI
models [26], [27].

To address these challenges, this paper proposes a com-
prehensive security framework, named AegisSat1 for AI-
enabled SoC FPGA satellite platforms. Our approach estab-
lishes defense-in-depth by combining (i) cryptographically
anchored secure boot, (ii) runtime isolation through TrustZone
and hardware firewalls, (iii) authenticated reconfiguration and
AI model updates, and (iv) robust rollback protection. Col-
lectively, these mechanisms safeguard reconfigurable satellite
platforms throughout their operational lifecycle in the inacces-
sible environment of space. Our contributions are as follows:

• We develop a systematic threat model that characterizes
the attack surfaces resulting from the convergence of
reconfigurable logic, AI acceleration pipelines, and multi-
tenant mission architectures.

• We propose a layered security framework, AegisSat that
unifies secure initialization, runtime protection, and life-
cycle update mechanisms into an end-to-end defense
architecture.

• We conduct experiments demonstrating the integration of
these mechanisms on contemporary SoC FPGA devices.

• We outline a forward-looking research agenda highlight-
ing critical open challenges to counter emerging threats.

II. BACKGROUND

A. AI Acceleration and Design Methodologies on SoC FPGAs

AI acceleration on SoC FPGAs leverages the inherent
parallelism of FPGA fabric to optimize the execution of
machine learning algorithms. Advanced design methodologies,
such as high-level synthesis (HLS) and hardware/software
(HW/SW) co-design, facilitate the efficient implementation
of AI workloads on these reconfigurable platforms. Neural
network inference, particularly with quantized models, can
be effectively mapped onto FPGA logic using HLS tools and
dedicated AI model compilers [7], [11].

1Aegis was the shield of Zeus, meaning protection. Sat is the abbreviation
for Satellite.

Fig. 1. Overview of Satellite System and Attack Vectors. The satellite
system consists of space segment, the ground segment, and the user segment.
Adversaries can target the ground infrastructure or attack satellites directly.
Moreover, if a single satellite is compromised, the threat can propagate to
other satellites through inter-satellite communication links, highlighting the
systemic risks of federated constellations.

A range of toolchains supports this development process, in-
cluding Xilinx Vitis AI2, Intel’s OpenVINO3, hls4ml4, FINN5,
and MATLAB’s HDL Coder6. These tools enable systematic
model partitioning, quantization, and deployment tailored to
the underlying FPGA architecture. Moreover, partial recon-
figuration (PR) facilitates dynamic updates to AI accelera-
tors at runtime, ensuring uninterrupted system functionality.
Using Isolation Design Flow (IDF), designers can maintain
functional and security isolation between static and dynamic
regions of the hardware, supporting safe and adaptive mission
reconfiguration [39]. Collectively, these approaches reduce
development cycles, enhance design flexibility, and improve
the power efficiency of AI-enabled satellite systems.

B. AI in Space Applications on SoC FPGA

Table I presents a comprehensive list of recent studies
in satellite missions. Interestingly, these studies indicate a
growing adoption of SoC FPGA platforms in space missions.
Convolutional neural networks (CNN) are the most commonly
deployed models, primarily due to their effectiveness in vision-
based classification tasks. These are followed by autoencoders,
spiking neural networks (SNNs), reinforcement learning algo-
rithms, and graph neural networks (GNNs). Among the avail-
able platforms, AMD Xilinx solutions, particularly the Zynq
UltraScale+ MPSoC, are the most prevalent, owing to their
high reconfigurability, mature development ecosystem, and
demonstrated reliability in space applications [44]. However,
the combination of reconfigurable fabrics and their supporting
software stacks, including FPGA bitstream managers, partial
reconfiguration workflows, and AI runtime environments, in-
troduces complex dependencies and attack surfaces that con-
ventional software-only security measures are not ready to de-

2https://github.com/Xilinx/Vitis-AI
3https://github.com/openvinotoolkit/openvino
4https://github.com/fastmachinelearning/hls4ml
5https://finn.readthedocs.io/en/latest/
6https://www.mathworks.com/products/hdl-coder.html



TABLE I
SURVEY OF SOC FPGA-BASED AI IMPLEMENTATIONS FOR AEROSPACE APPLICATIONS.

Authors Year AI Algorithms SoC FPGA Vendor Applications
Pitsis et al. [28] 2019 CNN Zynq UltraScale+ MPSoC AMD Xilinx Space data classification
Ma et al. [29], [30] 2019 Autoencoder NN Zynq UltraScale+ MPSoC AMD Xilinx Feature extraction and anomaly detection
Sabogal et al. [31] 2019 CNN Zynq UltraScale+ MPSoC AMD Xilinx Semantic segmentation of space imagery
Liu et al. [32] 2019 CNN Arria 10 SX SoC Intel Altera Remote sensing image segmentation
Li et al. [33] 2019 SSD NN Zynq 7000 AMD Xilinx Remote sensing imagery analysis
Reiter et al. [34] 2020 BNN Zynq 7000 AMD Xilinx Real-time cloud detection
Lemaire et al. [35] 2020 BNN + CNN Cyclone V Intel Altera Cloud classification and detection
Lent et al. [36] 2020 SNN Zynq 7020 AMD Xilinx Routing in space networks
Cosmas et al. [37] 2020 CNN Zynq UltraScale+ MPSoC AMD Xilinx Visual landmark recognition for navigation
Zhang et al. [38] 2021 YOLOv2 (CNN) Zynq 7000 AMD Xilinx Optical object detection
Rapuano et al. [1] 2021 CNN Zynq UltraScale+ MPSoC AMD Xilinx Cloud detection
Sabogal et al. [39] 2021 CNN Zynq 7020, Zynq UltraScale+ MPSoC AMD Xilinx Semantic segmentation
Pacini et al. [40] 2021 CNN Zynq UltraScale+ MPSoC AMD Xilinx Real-time image classification
Pitonak et al. [41] 2022 CNN Zynq 7020 AMD Xilinx Cloud detection
Zhang et al. [42] 2022 GNN Zynq UltraScale+ MPSoC AMD Xilinx SAR image classification
Abderrahmane et al. [43] 2022 SNN Cyclone V Intel Altera Cloud detection
Papatheofanous et al. [44] 2022 CNN Zynq UltraScale+ MPSoC AMD Xilinx Satellite image segmentation
Perryman et al. [45] 2023 MobileNetV1, ResNet-50, GoogLeNet XCVC1902 (VCK190) AMD Xilinx Edge computing in space
Ekblad et al. [46] 2023 YOLOv4-based NN Zynq UltraScale+ MPSoC AMD Xilinx Autonomous navigation
Gao et al. [47] 2023 CNN Zynq 7000 AMD Xilinx CNN reliability evaluation
Carmeli et al. [48] 2023 SOM NN Cyclone V Intel Altera Star pattern recognition
Coca et al. [49] 2023 ResNet Zynq UltraScale+ MPSoC AMD Xilinx Burned area anomaly detection
Zhao et al. [50] 2023 YOLOv4-MobileNetv3 Zynq UltraScale+ MPSoC AMD Xilinx Object detection in satellite images
Mazouz et al. [51] 2024 YOLOv3 Zynq 7100 AMD Xilinx Streaming object detection
Kim et al. [52] 2024 Reinforcement Learning Zynq 7000 AMD Xilinx Routing in LEO networks
Castelino et al. [53] 2024 Conv. Autoencoder Zynq UltraScale+ MPSoC AMD Xilinx HSI artifact detection
Zhang et al. [54] 2024 Dehazing NN Zynq 7000 AMD Xilinx Image dehazing
Cratere et al. [55] 2024 CNN Zynq UltraScale+ MPSoC AMD Xilinx Cloud detection
Kim et al. [56] 2024 SqueezeNet Zynq 7000 AMD Xilinx Cloud detection
Li et al. [57] 2024 CNN Zynq UltraScale+ MPSoC AMD Xilinx Depth estimation in spacecraft
Upadhyay et al. [58] 2024 ResNetc Zynq UltraScale+ MPSoC AMD Xilinx Cloud detection
Posso et al. [59] 2024 Mobile-URSONet Zynq UltraScale+ MPSoC AMD Xilinx Pose estimation
Ciancarelli et al. [60] 2024 Autoencoders, CNNs Xilinx ACAP AMD Xilinx Anomaly detection, SAR, RF
Leon et al. [61] 2024 UrsoNet, MobileNetV2, ResNet-50 Zynq UltraScale+ MPSoC AMD Xilinx Pose estimation and benchmarking
Barnwal et al. [62] 2024 CNN Zynq UltraScale+ MPSoC AMD Xilinx Galaxy classification
Bai et al. [63] 2024 CNN Zynq 7020 AMD Xilinx Particle identification
Jiang et al. [64] 2024 DNN Zynq UltraScale+ MPSoC AMD Xilinx Hyperspectral anomaly detection
Shi et al. [65] 2024 CNN Zynq-7000, UltraScale+ MPSoC AMD Xilinx Image classification
Justo et al. [66] 2024 CNN Zynq 7030 AMD Xilinx Hyperspectral segmentation
Renaut et al. [67] 2025 DNN Zynq 7000 AMD Xilinx Satellite pose estimation
Garcés-Socarrás et al. [68] 2025 CNN VC190, Zynq UltraScale+ MPSoC AMD Xilinx Payload config and beamforming
Perryman et al. [69] 2025 CNN XCVC1902 (VCK190), XCVE2802 (VEK280) AMD Xilinx Fault-tolerant AI acceleration

fend. While prior research has focused primarily on improving
inference throughput and energy efficiency, none of the works
listed in Table I systematically address implementation-level
platform security. This gap underscores the urgent need for
cohesive, hardware-assisted security measures to ensure long-
term system integrity and resilience in the unique operational
context of space.

C. Multi-Tenancy on SoC FPGA

In the context of SoC FPGAs, multi-tenancy refers to
the partitioning of FPGA fabric into isolated regions, each
dedicated to a different tenant [70]. As illustrated in Figure 2,
the PL part is partitioned into multiple reconfigurable regions
(e.g., vFPGA1 and vFPGA2), each capable of hosting isolated
workloads from different tenants. These regions are managed
and interfaced through a common FPGA Shell, which provides
shared infrastructure and supports secure communication with
PS. This architecture enables spatial isolation and dynamic
partial reconfiguration of the programmable logic, allowing
independent deployment and runtime updates of distinct AI or
mission workloads within a single FPGA device, an essential
capability for multi-payload and adaptive satellite missions.
Leveraging PR, different applications can dynamically share
FPGA resources without interference [71], [72]. This flex-
ibility is essential for long-duration missions, enabling the

hardware to adapt to evolving requirements such as new AI
models, new instruments, or protocols over time [73].

Multi-tenancy enhances resource efficiency, which is espe-
cially critical for constrained platforms like CubeSats. How-
ever, it also introduces significant security challenges due
to the shared nature of the hardware [74]. Potential risks
include unauthorized access to a tenant’s data or configuration,
data leakage between tenants, and interference through side-
channel attacks, such as those exploiting timing or power
consumption [70]. These vulnerabilities are particularly critical
in space-based systems, where adversarial environments and
remote reconfiguration capabilities heighten the risk of attacks
like bitstream tampering or hardware trojans [75].

D. Security Challenges in Space-Based Systems

Space-based platforms, particularly those leveraging re-
configurable computing architectures such as SoC FPGAs,
face complex and mission-critical security challenges. The
distinctive constraints of the space environment, including
radiation exposure, limited physical access, and intermittent
communication with ground stations, exacerbate risks from
both conventional and domain-specific cyber threats. The
integration of AI accelerators, support for dynamic reconfigu-
ration, and adoption of multi-tenant processing models further



Fig. 2. Multi-Tenancy on SoC FPGA. CLB: Configurable Logic Block; R:
Configurable Routing Block; BRAM: Block Random Access Memory; DSP:
Digital Signal Processing; I/O: Input/Output Interface.

broaden the attack surface, demanding comprehensive end-to-
end protection mechanisms.

This paper focuses on threats to platform integrity, espe-
cially those targeting the hardware reconfiguration pipeline,
AI co-processing engines, and the overall system lifecycle.
Key categories of threats include:

• Fault-Induced Attacks: Space radiation can cause
Single-Event Upsets (SEUs) that alter configuration
memory or computation logic. Deliberate fault injection
(e.g., laser, EM pulses) can exploit similar vulnerabilities
for code corruption or security bypass [76], [77].

• Supply Chain Attacks: Adversaries may insert mali-
cious modifications during Integrated Circuit (IC) fab-
rication, IP core integration, or third-party toolchain use.
Hardware Trojans, designed to remain dormant during
functional verification, may activate under specific trig-
gers to exfiltrate data or disrupt operations [75], [78].

• Software Exploits: Embedded Linux and Real-Time Op-
erating System (RTOS) platforms on SoC FPGAs often
include complex drivers, middleware, and AI toolchains.
Vulnerabilities in these layers may enable unauthorized
access to the programmable logic or privileged control
interfaces [79], [80].

• Reverse Engineering: Through remote side channels, ad-
versaries can extract proprietary bitstreams or reconstruct
deployed AI model parameters, jeopardizing intellectual
property and model confidentiality [81], [82].

Beyond general threat vectors, the secure operation of SoC
FPGA-based satellites critically depends on defending against
low-level, architecture-specific attacks. These vulnerabilities
often arise at the intersection of software, firmware, and re-

configurable hardware, providing opportunities to compromise
execution integrity, circumvent isolation mechanisms, or sub-
vert critical AI functionalities. Addressing these foundational
weaknesses is essential to maintain long-term trustworthiness
in autonomous and remote satellite deployments.

• Bitstream and AI Model Integrity: Inadequate au-
thentication of partial reconfiguration (PR) modules or
AI model updates can allow injection of unauthorized
logic. Adversaries may exploit this to embed covert
computation units or poison AI inference results [83].

• Hardware Trojanized Logic: Third-party IP cores, if
unchecked, may introduce hardware Trojans that evade
static analysis and activate under rare conditions. These
can undermine the system’s trust boundary and persist
undetected in deployed platforms [84]–[86].

• Software Stack Exploits: Improper memory protection
or weak isolation between software layers may lead
to privilege escalation, control flow hijacking, or logic
reprogramming. This is particularly severe in embedded
SoCs where software-hardware coupling is tight [87].

This work comprehensively examines all the above threat
landscapes, with an emphasis on the interdependencies be-
tween reconfigurable hardware, embedded software, and AI
workloads in space-based systems.

E. Cross-Layer and Lifecycle Security Requirements

Ensuring the secure operation of AI-enabled SoC FPGA-
based satellites requires a cross-layer security architecture
covering the entire system lifecycle, from fabrication and pro-
visioning to in-orbit updates and decommissioning. These sys-
tems face adversarial and resource-constrained environments,
demanding tightly integrated hardware-software protections
beyond standard embedded security.

A foundational element is the secure boot process, which
uses cryptographic signatures to ensure firmware authentic-
ity and integrity at startup, establishing a hardware-rooted
chain of trust [88]. Runtime protections depend on isolation
technologies such as ARM TrustZone, AXI firewalls, and
Memory Protection Units (MPUs), which segment system
components and restrict privilege escalation [88]. To support
long-term missions, in-orbit platforms require secure firmware
and AI model updates with cryptographic signing and roll-
back prevention, especially under connectivity delays [89],
[90]. Meanwhile, physical-layer threats like radiation-induced
Single Event Upsets (SEUs) necessitate resilience mechanisms
such as Error-Correcting Codes (ECC), Triple Modular Redun-
dancy (TMR), or dynamic reconfiguration to preserve system
reliability [91]–[93].

III. THREAT MODEL

This paper adopts a comprehensive threat model reflecting
the risks faced by AI-enabled SoC FPGA-based satellites in
shared and adversarial environments. We assume the attacker
has full knowledge of the satellite’s hardware architecture,
software stack, and operational workflows. Furthermore, the
attacker is granted legitimate access via satellite-as-a-service



(SaaS) interfaces, allowing them to upload custom FPGA
bitstreams or AI models onto shared computational payloads.
Although other satellite applications are assumed benign,
they are not trusted by default. Exploitation may arise from
software bugs, weak isolation between the PS and PL, or
insufficient runtime authentication. The attacker’s objective
may include unauthorized data access, disruption of mission-
critical operations, or manipulation of AI inference outcomes.

IV. SECURITY FRAMEWORK

Our security framework, AegisSat, adopts a layered archi-
tecture that integrates secure initialization, continuous runtime
protection, and authenticated lifecycle management into a
cohesive system. Rather than treating these components as
isolated point solutions, our approach explicitly connects each
stage of the platform’s operation: secure boot establishes a
hardware-rooted chain of trust that provisions cryptographic
keys and baseline integrity measurements (IV-A); trusted ex-
ecution environments maintain this trust throughout runtime
by isolating sensitive assets and enforcing least-privilege exe-
cution (IV-B); and secure update workflows extend trust into
the system’s evolution by validating new configurations and AI
models before activation (IV-C). During failed boot or updates,
AegisSat provides robust fallback mechanisms that restore a
known-good state from a golden image, ensuring service con-
tinuity and preventing persistent compromise. Together, these
pillars form a defense-in-depth strategy, in which each layer
reinforces and complements the others to ensure resilience
against compromise, even in the absence of physical access
or timely intervention.

A. Secure Boot and Root of Trust for SoC FPGA Satellites

In space applications, where systems must operate reliably
for extended periods without physical intervention, a robust,
secure boot is essential to ensure that only authenticated
and integrity-verified firmware, bitstreams, and AI models are
executed onboard. This safeguards mission-critical operations
against unauthorized modifications and cyber threats [94].

1) Boot Sequence and Chain of Trust: Secure boot in
SoC FPGAs follows a hierarchical chain-of-trust model. The
process begins with an immutable Boot ROM embedded in the
silicon, which authenticates the first-stage bootloader (FSBL)
using cryptographic algorithms such as RSA-4096 and SHA-
3/384 [95], [96]. The FSBL initializes system components and
verifies each subsequent stage, including loading the operating
system and configuring the programmable logic fabric [97].
Cryptographic signatures and optional encryption are applied
to software and bitstreams to ensure integrity and prevent
tampering.

2) Cryptographic Key Management: Robust key manage-
ment is essential for maintaining the integrity of the secure
boot process. SoC FPGAs like the Zynq UltraScale+ MP-
SoC integrate mechanisms such as eFUSE arrays for storing
public key hashes [98], [99]. eFUSE arrays are one-time
programmable memory for permanent storage of sensitive
data. Battery-backed RAM (BBRAM) is used for volatile key

storage, which can be cleared in response to tampering. Physi-
cal Unclonable Functions (PUFs) enhance security by deriving
keys from intrinsic hardware properties, eliminating the need
for persistent storage [100]. Tamper detection circuits erase
sensitive keys if anomalies in environmental parameters are
detected, ensuring security throughout the satellite’s lifecycle.

3) Bitstream Authentication and Encryption: To pro-
tect FPGA configurations, bitstreams are encrypted with
AES-256 and authenticated using RSA or ECDSA signa-
tures [101], [102]. AES-256 ensures strong symmetric en-
cryption, while RSA and ECDSA verify digital signatures. In
Xilinx Zynq UltraScale+ MPSoCs, the Configuration Security
Unit (CSU) manages decryption and authentication during se-
cure boot [103]. Intel’s Stratix 10 and Agilex devices use a Se-
cure Device Manager (SDM) with dedicated hardware engines
for similar protections [104], [105]. To prevent replay attacks
and unauthorized downgrades, modern FPGAs implement
version control and anti-rollback mechanisms that compare
stored version numbers against incoming bitstreams [106].

4) Failure Handling and Recovery: In case of boot failure,
SoC FPGAs employ fallback mechanisms such as a non-
overwritable golden image, retry logic for alternate configura-
tions or safe mode, and watchdog timers for system recovery.
A golden image is a pre-validated, secure configuration stored
in protected memory. These methods are essential for space
applications, where real-time intervention is constrained and
environmental variability is high [107]–[109].

B. Trusted Execution and Hardware Isolation

While secure boot establishes trust at system startup, the
dynamic nature of AI-enabled satellite platforms requires con-
tinuous runtime protection [93], [110]. This section examines
the runtime threat landscape in SoC FPGA-based satellites
and presents key isolation mechanisms for least-privilege
execution.

1) Runtime Threat Landscape: During in-orbit operation,
vulnerabilities may arise beyond secure boot protections.
Attackers could exploit flaws in AI inference engines [93],
[111]–[113], OS services [114], or communication protocols
[115] to execute arbitrary code or escalate privileges. Mali-
cious bitstreams loaded during runtime reconfiguration might
include unauthorized logic capable of memory access or bus
manipulation [116]. The tight coupling between PS and PL
could allow adversaries to traverse domains, causing data
leakage, denial-of-service (DOS), or logic corruption [117]–
[120].

2) Execution Isolation in the Processing System: The ARM
TrustZone architecture partitions execution into Secure and
Normal Worlds [121]. TrustZone is a security extension that
enables secure execution of critical tasks (e.g., key manage-
ment, firmware validation) in the Secure World, while general-
purpose processes (e.g., AI inference, data handling) run in
the Normal World [122]. TrustZone ensures memory and
peripheral isolation and supports context switching via Secure
Monitor Calls (SMCs) [123], [124]. Memory Protection Units
(MPUs) and Memory Management Units (MMUs) provide



process-level access control, protecting AI models, telemetry
data, and kernel-space buffers [125].

3) Isolation of Programmable Logic: The PL fabric inter-
faces with the PS often through Advanced eXtensible Interface
(AXI) buses, playing a critical role in system-level commu-
nication. However, if compromised, the PL can become a
conduit for unauthorized access to protected memory regions
or peripheral devices. To mitigate such risks, platforms such
as Xilinx offer hardware enforcements like the AXI Firewall
IP [126] and the System Memory Management Unit (SMMU)
[127], [128]. Other vendors, such as Intel, integrate similar
security primitives in their FPGA SoCs, including config-
urable memory protection controllers and isolation-enabled
bus interconnects, to ensure secure communication boundaries
between hardware and software domains [102], [105], [129].
A robust security design also necessitates validating interrupt
lines originating from the PL to the PS, especially when
interfacing with high-risk modules like non-volatile storage
or command subsystems [130], [131].

4) Secure AI Co-Processing: AI workloads deployed on
SoC FPGAs often span both the PS and PL domains, requiring
secure data exchange. Secure co-processing frameworks adopt
cryptographic techniques such as Secure Hash Algorithms
(e.g., SHA-256) to validate the integrity of AI computations.
These hashes help ensure that data or intermediate results have
not been tampered with during execution [113], [132]. Further-
more, runtime security monitors and HW/SW co-designed at-
testation schemes are employed to detect anomalous behaviors
such as timing violations, unexpected control flow changes, or
unauthorized access attempts [133]. These mechanisms form
the backbone of a zero-trust execution environment, wherein
no component, whether in the PS or PL, is inherently trusted
without continuous verification.

5) Privilege Separation and Containment: Privilege sep-
aration limits the impact of compromises. In SoC FPGAs,
the bootloader validates the launch chain, TrustZone manages
cryptographic assets, and AI processes run in sandboxed
environments. PL modules are restricted by memory and
interrupt controls [128]. Localized resets or reconfigurations
can preserve mission continuity if a subsystem (e.g., AI
accelerator) fails, aided by watchdog timers and fault monitors
[134].

C. Secure Update, Partial Reconfiguration, and AI Model
Updates

While runtime isolation ensures that malicious code cannot
compromise critical functions, secure and resilient in-orbit
updates are essential for the adaptability and longevity of AI-
driven satellite platforms. While enabling on-the-fly improve-
ments to mission logic and AI models [22], these capabilities
also expose critical attack surfaces [135], [136]. The following
section describes how authenticated update workflows extend
and preserve trust throughout the system’s lifecycle.

1) Secure Update Workflow and Threat Mitigation: Update
commands, including logic bitstreams and AI model parame-
ters, are transmitted via mutually authenticated and encrypted

Telemetry, Tracking, and Command (TT&C) links [137].
TT&C links are the communication channels between ground
stations and satellites. Commands include cryptographic sig-
natures, sequence numbers, and timestamps and etc. to ensure
integrity, prevent replay, and validate freshness [9], [138].
Upon receipt, updates are stored in protected memory and
cryptographically validated before deployment [139]. Vali-
dation failures trigger automatic discards and logged alerts.
Acknowledgment protocols and retry mechanisms address
transient transmission failures [140]. This workflow mitigates
threats such as bitstream injection, rollback attacks, and logic
hijacking by enforcing staged validation and strict access
control.

2) Redundancy and Recovery Mechanisms: To prevent mis-
sion degradation from failed updates, satellites retain a golden
image, an immutable configuration stored in secure non-
volatile memory [141], [142]. Watchdog timers monitor update
behavior, reverting to the golden image upon detecting insta-
bility [143], [144]. Some architectures use dual-image buffers
or redundant logic blocks for test deployments. Post-update,
built-in self-tests (BIST) and output verification against golden
baselines confirm operational correctness [145].

3) Runtime Detection of Malicious Logic: Runtime detec-
tion of malicious logic is critical for maintaining satellite
security. Techniques include monitoring system behavior for
anomalies, using intrusion detection systems, and leverag-
ing hardware-based security features [146], [147]. Anomaly
detection algorithms identify deviations from normal opera-
tion [148], [149], while hardware security modules (HSMs)
protect sensitive operations. These measures ensure timely
detection and mitigation of unauthorized logic or tamper-
ing [150].

4) Partial Reconfiguration of FPGA Logic: Partial Re-
configuration (PR) allows selective updates to FPGA logic
without interrupting the rest of the system [151], [152]. For AI
workloads, PR enables modular accelerator upgrades without
full reboots [153]. Static and dynamic regions are defined
using tools like Xilinx’s Isolation Design Flow, enforcing strict
boundaries. PR bitstreams are authenticated and decrypted
using AES-256 and RSA/ECDSA before activation [154]. PR
modules are sandboxed upon load, with behavior constrained
by memory access restrictions and interface isolation. Valida-
tion with test vectors and integrity checks precede operational
use [155]. A trusted controller in the static region orchestrates
PR operations, ensuring traceability and mitigating logic-level
attacks.

5) AI Model Lifecycle and Security: AI models must adapt
to evolving tasks and environments. Software-based models
are stored in encrypted memory and verified during runtime
load [22]. Hardware-accelerated models (e.g., quantized neural
networks) receive updates via PR or secure memory transac-
tions. To prevent model poisoning [156], [157], updates are
cryptographically signed and checked against expected behav-
ior. Secure loading is complemented by functional testing, and
in federated constellations, model propagation is governed by
consensus or multi-signature authorization [26], [27].



Fig. 3. Secure Reconfiguration Workflow.

6) Operational and Scheduling Considerations: In-orbit
updates must align with operational safety and mission con-
straints. Updates are scheduled during idle periods with sta-
ble thermal and power profiles [158]. Configuration clocks
must remain within tolerance, and critical maneuvers are
paused during reconfiguration [159]. Failure handling includes
retry logic, Cyclic Redundancy Check (CRC) validation, and
rollback triggers [160]. A hardened PR controller ensures
deterministic sequencing [161], while event logs support di-
agnostics and forensics [162].

V. IMPLEMENTATION

To demonstrate the feasibility of the proposed security
mechanisms, we implemented a proof-of-concept on the Xilinx
ZCU102 development board. This platform integrates the
Xilinx Zynq UltraScale+ MPSoC, which combines a quad-core
ARM Cortex-A53 (with TrustZone), dual Cortex-R5 real-time
cores, and FPGA programmable logic within a single chip. The
hardware setup was configured and managed using Xilinx Vitis
2023.1. The device features dedicated secure boot capabilities
via the Configuration Security Unit (CSU), hardware support
for AES-256 encrypted bitstreams and RSA authentication,
and TrustZone-based isolation for secure processing. During
system provisioning, the eFUSE arrays were programmed with
an RSA public key hash to enable cryptographic verification of
all boot components. Secure boot was activated to ensure only
authenticated firmware and FPGA bitstreams can be loaded.

The PL part was partitioned into three fixed regions: one
static region hosting the FPGA shell and two dynamically
reconfigurable virtual FPGA (vFPGA) partitions allocated to
user applications. Each vFPGA was assigned dedicated I/O
interfaces and unique memory address ranges. This setup
allows independent management, configuration, and isolation
of workloads. A trusted application on the PS part, referred
to as the FPGA Trust Anchor (TAFPGA), was implemented to
control bitstream decryption, validation, and reconfiguration.
The TAFPGA application executes within the secure world of

TrustZone, while user applications (AppX) operate in the non-
secure world. Inter-core communication was achieved using
Xilinx Inter-Processor Interrupts (IPI) and shared memory.
The secure reconfiguration workflow proceeds through the
following coordinated steps among the system components:

1) Request Initiation: The AppX application issues a re-
quest for FPGA acceleration to TAFPGA.

2) Resource Allocation: TAFPGA checks the availability of
reconfigurable regions and confirms that the required
vFPGA is available for allocation.

3) Session Key Exchange: To establish a secure communi-
cation channel, TAFPGA and AppX exchange a session
key. This key is used to protect the confidentiality
and integrity of the partial bitstream. Here, AES is
exchanged, and RSA is used for encapsulating the AES
session keys.

4) Bitstream Preparation: AppX encrypts the partial bit-
stream through AES.

5) Bitstream Transfer: AppX sends the encrypted par-
tial bitstream and notifies TAFPGA of the bitstream’s
metadata, such as the intended location (vFPGA1 or
vFPGA2) and its size over the secure channel.

6) Decryption and Verification: TAFPGA retrieves the en-
crypted partial bitstream from shared memory, decrypts,
and verifies it.

7) Configuration Instruction: Once verified, TAFPGA pro-
vides the FPGA Shell with the decrypted partial bit-
stream, together with its intended location and size.

8) Partial Reconfiguration: The FPGA Shell configures
the designated vFPGA region by streaming the partial
bitstream through the internal configuration port (ICAP).

9) Acknowledgment: After successful configuration, the
FPGA Shell acknowledges completion to TAFPGA,
which in turn issues a final acknowledgment to AppX .

This workflow ensures end-to-end protection of partial bit-
stream confidentiality and integrity while maintaining isolation
between the control logic and user applications.

To illustrate practical usage, we implemented vFPGAs on
the same FPGA. The statistics for the allocated size of blocks
provide an estimate of resource usage for the two implemented
applications on the FPGA, based on Vivado’s floorplanning
estimator. (1) vFPGA1: A lightweight CNN accelerator for
image classification, comprising a 3×3 convolution, quantiza-
tion, ReLU activation, and pooling, processing a 6×6 input
feature map. Resource usage includes 30 CLB LUTs, 30
LUTs as Logic, 32 CLB Registers, 32 Registers as flip-flops,
and one F7 Muxes. (2) vFPGA2: A configurable shift circuit
supporting left and right shift operations. Resource usage
includes 2 CLB LUTs, 2 LUTs as Logic, 35 CLB Registers,
35 Registers as Flip Flops, 5 CARRY8s, one Block RAM Tile,
and RAMB36/FIFO.

The system was tested end-to-end by simulating a secure
ground station to satellite reconfiguration scenario. AppX
acted as the ground station, transmitting a partial bitstream
and emulating a radio link. TAFPGA works as the receiver



TABLE II
CONFIGURATION TIMES FOR DIFFERENT PARTIAL BITSTREAMS.

Module Mean Up. Time (ms) Std. Dev. (ms)
vFPGA1 495.21 8.64
vFPGA2 528.21 0.27

of the satellite. The update triggered secure boot procedures,
cryptographic validation, and partial reconfiguration on the
FPGA. Pre-emptive detection of hardware Trojans, especially
those incorporating sensor or power-draining circuits, is essen-
tial prior to deploying configurations on the FPGA. Here we
adopted the tool from [163] to analyze and identify malicious
circuits. Despite minimal cryptographic overhead and multi-
core coordination, the reconfiguration latency remained ac-
ceptable, demonstrating the approach’s suitability for in-orbit
reconfiguration scenarios. The reconfiguration time for each
vFPGA is presented in Tables II. The configuration times were
measured by performing 25 trials for each partial bitstream.
The sample standard deviation reflects the variability within
these limited trials. While the example CNN is lightweight,
the same methodology supports more complex accelerators.

VI. RESEARCH OUTLOOK

As future missions demand greater adaptability, resilience,
and assurance in adversarial or disconnected environments,
several technical and systemic challenges persist.

A. Post-Quantum Cryptography

Current secure boot and update mechanisms rely on clas-
sical public-key cryptography, such as RSA and ECDSA,
which are increasingly vulnerable to quantum attacks [164].
Given satellites’ long service lifetimes, integrating post-
quantum cryptographic (PQC) schemes into SoC FPGA
toolchains is essential. Algorithms like CRYSTALS-Dilithium
and SPHINCS+ are advancing toward NIST standardiza-
tion [165]. However, practical implementation is still a ma-
jor challenge. While proof-of-concept secure-boot demonstra-
tions exist on terrestrial hardware, designing constant-time,
radiation-tolerant PQC engines for space-grade, resource-
constrained FPGAs remains largely unexplored. Optimizing
PQC implementations for predictable timing and minimal
memory use is also crucial to avoid side-channel vulnerabili-
ties and ensure reliability in orbit.

B. Autonomous Attestation in Disconnected Missions

While secure boot establishes a root of trust at startup,
long-duration deep-space missions require continuous trust
evaluation without real-time ground oversight. Autonomous
attestation mechanisms are needed to detect unexpected behav-
ior, validate reconfiguration events, and respond to tampering
evidence. Notably, the development of in-orbit autonomous
attesters capable of continual self-measurement of the PL
fabric under severe communication delays remains an open
field. Future work should explore lightweight, self-verifying
architectures to provide resilience in disconnected scenarios.

C. Energy-Constrained Isolation Mechanisms

Isolation mechanisms such as ARM TrustZone, AXI Fire-
walls, and SMMUs are critical for domain separation but may
introduce latency and power overhead in energy-constrained
platforms like CubeSats. Optimized isolation techniques at
RTL and fabric level are needed, including logic-privilege tags,
dynamic bus gating, and low-overhead privilege-checking cir-
cuits. Additionally, energy-adaptive security policies, wherein
the isolation strength dynamically scales according to battery
state and mission phase, remain largely unexplored.

D. Cross-Domain Hardware-Software Co-Design

Securing AI-driven SoC FPGA satellites demands a holistic
approach across the AI model lifecycle, from development to
deployment and updates. Integrated toolchains must address
FPGA synthesis, AI compiler output validation, secure key
provisioning, and post-deployment telemetry, while accounting
for aerospace constraints such as radiation, communication
windows, and thermal budgets [166], [167]. Open-source
toolchains could balance security and accessibility [168],
[169]. Interdisciplinary collaboration is essential to develop
standardized frameworks that meet mission requirements. A
critical yet underexplored area is the integration of hardware-
assisted side-channel monitors within the FPGA fabric itself,
such as embedded glitch sensors and power anomaly detectors,
to detect physical or electromagnetic probing attempts in orbit.

E. Federated Learning Security in Satellite Swarms

Finally, emerging mission concepts envision large constel-
lations of cooperating small satellites performing federated AI
training and inference. Although secure aggregation protocols
have been explored in terrestrial settings, federated learning se-
curity against poisoning and Byzantine faults across hundreds
of Low Earth Orbit nodes remains unaddressed in hardware-
rooted frameworks. Developing scalable, resilient architectures
to enable trustworthy federated learning in space represents a
promising frontier [113], [157], [170].

VII. CONCLUSION

This paper addresses the pressing need for secure AI-
enabled satellite platforms by presenting a comprehensive
security framework, AegisSat tailored for SoC FPGAs. Recog-
nizing the unique challenges posed by reconfigurable comput-
ing in space,AegisSat integrates multiple layers of protection.
This holistic approach establishes a trusted chain from system
initialization to ongoing operations, critical for maintaining
mission integrity. By laying this security foundation, our work
supports the safe and effective deployment of AI in space,
enabling the next generation of intelligent satellite systems.
As satellite technology evolves, future research must focus on
adapting to new threats and constraints.

ACKNOWLEDGEMENT

Our research work was partially funded by Intel’s Scal-
able Assurance Program, Deutsche Forschungsgemeinschaft
(DFG) – SFB 1119 – 236615297, the European Union under



Horizon Europe Programme – Grant Agreement 101070537
– CrossCon, and the European Research Council under the
ERC Programme - Grant 101055025 - HYDRANOS. This
work does not in any way constitute an Intel endorsement
of a product or supplier. Any opinions, findings, conclusions,
or recommendations expressed herein are those of the authors
and do not necessarily reflect those of Intel, the European
Union, and the European Research Council.

REFERENCES

[1] E. Rapuano, G. Meoni, T. Pacini, G. Dinelli, G. Furano, G. Giuffrida,
and L. Fanucci, “An fpga-based hardware accelerator for cnns inference
on board satellites: benchmarking with myriad 2-based solution for the
cloudscout case study,” Remote Sensing, vol. 13, no. 8, p. 1518, 2021.

[2] A. D. George and C. M. Wilson, “Onboard processing with hybrid
and reconfigurable computing on small satellites,” Proceedings of the
IEEE, vol. 106, no. 3, pp. 458–470, 2018.

[3] M. M. I. Mohamed, “Development and qualification of an fpga-based
multi-processor system-on-chip on-board computer for leo satellites,”
2014.

[4] C. M. Fuchs, T. P. Stefanov, N. M. Murillo, and A. Plaat, “Bringing
fault-tolerant gigahertz-computing to space: A multi-stage software-
side fault-tolerance approach for miniaturized spacecraft,” in 2017
IEEE 26th Asian Test Symposium (ATS). IEEE, 2017, pp. 100–107.

[5] Z. Zhao, “Reconfiguration control networks for fpga-based space
applications,” Ph.D. dissertation, UNSW Sydney, 2016.

[6] M. Petry, A. Koch, and M. Werner, “Zero-copy ai-augmented signal
processing pipeline on heterogeneous satellite processors,” in 2024 58th
Asilomar Conference on Signals, Systems, and Computers. IEEE,
2024, pp. 354–361.

[7] M. Petry, P. Gest, A. Koch, M. Ghiglione, and M. Werner, “Accelerated
deep-learning inference on fpgas in the space domain,” in Proceedings
of the 20th ACM International Conference on Computing Frontiers,
2023, pp. 222–228.

[8] J. N. Pelton and S. Madry, “Handbook of small satellites,” Cham:
Springer International Publishing, 2020.

[9] S. Vasudevan, “Design and development of a cubesat hardware archi-
tecture with cots mpsoc using radiation mitigation techniques,” 2020.

[10] T. Kuwahara, “Fpga-based reconfigurable on-board computing systems
for space applications,” 2010.

[11] C. Léonard, D. Stober, and M. Schulz, “Fpga-enabled machine learning
applications in earth observation: A systematic review,” arXiv preprint
arXiv:2506.03938, 2025.

[12] A. Raoofy, G. Dax, M. Ghiglione, V. Serra, M. Werner, and C. Trinitis,
“Invited Talk: Benchmarking and Feasibility Aspects of Machine
Learning in Space Systems.”

[13] D. D. Langer, M. Orlandić, S. Bakken, R. Birkeland, J. L. Garrett,
T. A. Johansen, and A. J. Sørensen, “Robust and reconfigurable on-
board processing for a hyperspectral imaging small satellite,” Remote
Sensing, vol. 15, no. 15, p. 3756, 2023.

[14] F. Viel and C. A. Zeferino, “A module for remote reconfiguration of
fpgas in satellites,” in IBERCHIP workshop, 2017, pp. 50–53.

[15] U. Legat, A. Biasizzo, and F. Novak, “Seu recovery mechanism for
sram-based fpgas,” IEEE Transactions on Nuclear Science, vol. 59,
no. 5, pp. 2562–2571, 2012.

[16] S. L. Eine, D. D. Langerb, R. Birkeland, and M. Orlandicc, “Re-
configuration of fpga during operation of small satellite for flexible
hyperspectral data compression,” 2024.

[17] C. R. M. Kiruki, “Study on fpga-based on-board inferencing for
spacecrafts in autonomous operations,” 2021.

[18] N. Boschetti, N. G. Gordon, and G. Falco, “Space cybersecurity lessons
learned from the viasat cyberattack,” in ASCEND 2022, 2022, p. 4380.

[19] N. Yadav, F. Vollmer, A.-R. Sadeghi, G. Smaragdakis, and A. Voulime-
neas, “Orbital shield: Rethinking satellite security in the commercial
off-the-shelf era,” in 2024 Security for Space Systems (3S). IEEE,
2024, pp. 1–11.

[20] J. Li, N. Song, X. Jia, and L. Wang, “An fpga partial reconfiguration
method for satellite cryptographic device verification,” in International
Conference on Cryptography, Network Security, and Communication
Technology (CNSCT 2023), vol. 12641. SPIE, 2023, pp. 46–52.

[21] P. Cotret, G. Gogniat, J.-P. Diguet, and J. Crenne, “Lightweight
reconfiguration security services for axi-based mpsocs,” in 22nd Inter-
national Conference on Field Programmable Logic and Applications
(FPL). IEEE, 2012, pp. 655–658.

[22] N. Vallez, R. Rodriguez-Bobada, A. Dunne, and J. L. Espinosa-Aranda,
“Efficient in-orbit cnn updates,” in 2023 European Data Handling &
Data Processing Conference (EDHPC). IEEE, 2023, pp. 1–5.

[23] M. Swartwout, “The first one hundred cubesats: A statistical look,”
Journal of Small Satellites, vol. 2, no. 2, pp. 213–233, 2016.

[24] M. Handley, “Delay is not an option: Low latency routing in space,”
Proceedings of the ACM SIGCOMM, pp. 411–426, 2019.

[25] D. Zelenyi, ““Satellite-as-a-Service”: A New Approach for Space In-
dustry,” Exodus Orbitals, Tech. Rep., 2020, https://www.exodusorbitals.
com/files/whitepaper.pdf.

[26] M. A. Ferrag, B. Kantarci, L. C. Cordeiro, M. Debbah, and K.-K. R.
Choo, “Poisoning attacks in federated edge learning for digital twin
6g-enabled iots: An anticipatory study,” in 2023 IEEE International
Conference on Communications Workshops (ICC Workshops). IEEE,
2023, pp. 1253–1258.

[27] P. H. Barros and H. S. Ramos, “A novel aggregation method to
promote safety security for poisoning attacks in federated learning,”
in GLOBECOM 2022-2022 IEEE Global Communications Conference.
IEEE, 2022, pp. 3869–3874.

[28] G. Pitsis, G. Tsagkatakis, C. Kozanitis, I. Kalomoiris, A. Ioannou,
A. Dollas, M. G. Katevenis, and P. Tsakalides, “Efficient convolutional
neural network weight compression for space data classification on
multi-fpga platforms,” in ICASSP 2019-2019 IEEE International Con-
ference on Acoustics, Speech and Signal Processing (ICASSP). IEEE,
2019, pp. 3917–3921.

[29] N. Ma, X. Yu, Y. Peng, and S. Wang, “A lightweight hyperspectral im-
age anomaly detector for real-time mission,” Remote Sensing, vol. 11,
no. 13, p. 1622, 2019.

[30] P. Antunes and A. Podobas, “Fpga-based neural network accelerators
for space applications: A survey,” arXiv preprint arXiv:2504.16173,
2025.

[31] S. Sabogal, A. George, and G. Crum, “Recon: A reconfigurable cnn ac-
celeration framework for hybrid semantic segmentation on hybrid socs
for space applications,” in 2019 IEEE Space Computing Conference
(SCC). IEEE, 2019, pp. 41–52.

[32] S. Liu and W. Luk, “Towards an efficient accelerator for dnn-based
remote sensing image segmentation on fpgas,” in 2019 29th Inter-
national Conference on Field Programmable Logic and Applications
(FPL). IEEE, 2019, pp. 187–193.

[33] L. Li, S. Zhang, and J. Wu, “Efficient object detection framework and
hardware architecture for remote sensing images,” Remote Sensing,
vol. 11, no. 20, p. 2376, 2019.

[34] P. Reiter, P. Karagiannakis, M. Ireland, S. Greenland, and L. Crockett,
“Fpga acceleration of a quantized neural network for remote-sensed
cloud detection,” in 7th International Workshop on On-Board Payload
Data Compression, 2020.

[35] E. Lemaire, M. Moretti, L. Daniel, B. Miramond, P. Millet, F. Feresin,
and S. Bilavarn, “An fpga-based hybrid neural network accelerator for
embedded satellite image classification,” in 2020 IEEE International
Symposium on Circuits and Systems (ISCAS). IEEE, 2020, pp. 1–5.

[36] R. Lent, “Evaluating the cognitive network controller with an snn on
fpga,” in 2020 IEEE International Conference on Wireless for Space
and Extreme Environments (WiSEE). IEEE, 2020, pp. 106–111.

[37] K. Cosmas and A. Kenichi, “Utilization of fpga for onboard inference
of landmark localization in cnn-based spacecraft pose estimation,”
Aerospace, vol. 7, no. 11, p. 159, 2020.

[38] N. Zhang, X. Wei, H. Chen, and W. Liu, “Fpga implementation for
cnn-based optical remote sensing object detection,” Electronics, vol. 10,
no. 3, p. 282, 2021.

[39] S. Sabogal, A. George, and G. Crum, “Reconfigurable framework for
resilient semantic segmentation for space applications,” ACM Trans-
actions on Reconfigurable Technology and Systems (TRETS), vol. 14,
no. 4, pp. 1–32, 2021.

[40] T. Pacini, E. Rapuano, G. Dinelli, and L. Fanucci, “A multi-cache sys-
tem for on-chip memory optimization in fpga-based cnn accelerators,”
Electronics, vol. 10, no. 20, p. 2514, 2021.

[41] R. Pitonak, J. Mucha, L. Dobis, M. Javorka, and M. Marusin,
“Cloudsatnet-1: Fpga-based hardware-accelerated quantized cnn for
satellite on-board cloud coverage classification,” Remote Sensing,
vol. 14, no. 13, p. 3180, 2022.



[42] B. Zhang, R. Kannan, V. Prasanna, and C. Busart, “Accurate, low-
latency, efficient sar automatic target recognition on fpga,” in 2022
32nd International Conference on Field-Programmable Logic and
Applications (FPL). IEEE, 2022, pp. 1–8.

[43] N. Abderrahmane, B. Miramond, E. Kervennic, and A. Girard, “Spleat:
Spiking low-power event-based architecture for in-orbit processing of
satellite imagery,” in 2022 International Joint Conference on Neural
Networks (IJCNN). IEEE, 2022, pp. 1–10.

[44] E.-A. Papatheofanous, P. Tziolos, V. Kalekis, T. Amrou, G. Konstan-
toulakis, G. Venitourakis, and D. Reisis, “Soc fpga acceleration for se-
mantic segmentation of clouds in satellite images,” in 2022 IFIP/IEEE
30th International Conference on Very Large Scale Integration (VLSI-
SoC). IEEE, 2022, pp. 1–4.

[45] N. Perryman, C. Wilson, and A. George, “Evaluation of xilinx versal
architecture for next-gen edge computing in space,” in 2023 IEEE
aerospace conference. IEEE, 2023, pp. 1–11.

[46] A. Ekblad, T. Mahendrakar, R. White, M. Wilde, I. Silver, and
B. Wheeler, “Resource-constrained fpga design for satellite component
feature extraction,” in 2023 IEEE Aerospace Conference. IEEE, 2023,
pp. 1–9.

[47] Z. Gao, S. Gao, Y. Yao, Q. Liu, S. Zeng, G. Ge, Y. Wang, A. Ullah, and
P. Reviriego, “Systematic reliability evaluation of fpga implemented
cnn accelerators,” IEEE Transactions on Device and Materials Relia-
bility, vol. 23, no. 1, pp. 116–126, 2023.

[48] G. Carmeli and B. Ben-Moshe, “Ai-based real-time star tracker,”
Electronics, vol. 12, no. 9, p. 2084, 2023.

[49] M. Coca and M. Datcu, “Fpga accelerator for meta-recognition
anomaly detection: Case of burned area detection,” IEEE Journal of
Selected Topics in Applied Earth Observations and Remote Sensing,
vol. 16, pp. 5247–5259, 2023.

[50] Y. Zhao, Y. Lv, and C. Li, “Hardware acceleration of satellite remote
sensing image object detection based on channel pruning,” Applied
Sciences, vol. 13, no. 18, p. 10111, 2023.

[51] A. E. Mazouz and V.-T. Nguyen, “Online continual streaming learning
for embedded space applications,” Journal of Real-Time Image Pro-
cessing, vol. 21, no. 3, p. 68, 2024.

[52] H. Kim, J. Park, H. Lee, D. Won, and M. Han, “An fpga-accelerated cnn
with parallelized sum pooling for onboard realtime routing in dynamic
low-orbit satellite networks,” Electronics, vol. 13, no. 12, p. 2280, 2024.

[53] C. Castelino, S. Khandelwal, S. Shreejith, and S. V. Bogaraju, “An
energy-efficient artefact detection accelerator on fpgas for hyper-
spectral satellite imagery,” in 2024 27th Euromicro Conference on
Digital System Design (DSD). IEEE, 2024, pp. 551–558.

[54] Z. Zhang, G. Du, Z. Li, Q. Kang, W. Zhao, and X. Wang, “An energy-
efficient dehazing neural network accelerator based on e 2 aod-net,”
Journal of Real-Time Image Processing, vol. 21, no. 6, p. 197, 2024.

[55] A. Cratere, M. S. Farissi, A. Carbone, M. Asciolla, M. Rizzi,
F. Dell’Olio, A. Nascetti, and D. Spiller, “Efficient fpga-accelerated
convolutional neural networks for cloud detection on cubesats,” IEEE
Journal on Miniaturization for Air and Space Systems, 2025.

[56] J.-H. Kim, Y. Kim, D.-H. Cho, and S.-M. Kim, “On-orbit ai: Cloud
detection technique for resource-limited nanosatellite,” International
Journal of Aeronautical and Space Sciences, pp. 1–14, 2024.

[57] J. Li, C. Zhang, W. Yang, H. Li, X. Wang, C. Zhao, S. Du, and Y. Liu,
“Fpga-based low-bit and lightweight fast light field depth estimation,”
IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
2024.

[58] G. Upadhyay, S. Ghosal, S. Kar, K. Jain, S. SH, S. A. Balwantrao et al.,
“Design and implementation of cnn-based custom net architecture
with improved inference time for realtime remote sensing application,”
in 2024 IEEE Space, Aerospace and Defence Conference (SPACE).
IEEE, 2024, pp. 647–651.

[59] J. Posso, G. Bois, and Y. Savaria, “Real-time spacecraft pose estimation
using mixed-precision quantized neural network on cots reconfigurable
mpsoc,” in 2024 22nd IEEE Interregional NEWCAS Conference (NEW-
CAS). IEEE, 2024, pp. 358–362.

[60] C. Ciancarelli, D. di Ienno, R. Trois, L. Scandelli, C. de Biase, P. Serri,
A. Leboffe, D. Pascucci, D. Steenari, and G. Furano, “Special session:
Exploring the potential of versal acap: Advancing onboard edge ai
for spacecraft,” in 2024 IEEE International Symposium on Defect and
Fault Tolerance in VLSI and Nanotechnology Systems (DFT). IEEE,
2024, pp. 1–5.

[61] V. Leon, P. Minaidis, D. Soudris, and G. Lentaris, “Mpai: A co-
processing architecture with mpsoc & ai accelerators for vision ap-

plications in space,” in 2024 31st IEEE International Conference on
Electronics, Circuits and Systems (ICECS). IEEE, 2024, pp. 1–2.

[62] R. Barnwal and S. Kala, “Morphological galaxy classification us-
ing convolutional neural networks on fpga,” in 2024 IEEE Space,
Aerospace and Defence Conference (SPACE). IEEE, 2024, pp. 190–
193.

[63] C. Bai, X. Zhang, S. Zhang, Y. Sun, X. Zhang, Z. Wang, and S. Zhang,
“Design and application of an onboard particle identification platform
based on convolutional neural networks,” Applied Sciences, vol. 14,
no. 15, p. 6628, 2024.

[64] Y. Jiang, A. Vaicaitis, J. Dooley, and M. Leeser, “Efficient neural
networks on the edge with fpgas by optimizing an adaptive activation
function,” Sensors, vol. 24, no. 6, p. 1829, 2024.

[65] D. Shi, J. Gao, and Y. Zhang, “Aircraft image management based on
ai typical mainland zynq,” in 2024 2nd International Conference on
Machine Vision, Image Processing & Imaging Technology (MVIPIT).
IEEE, 2024, pp. 187–192.

[66] J. A. Justo, D. D. Langer, S. Berg, J. Nieke, R. T. Ionescu, P. G.
Kjeldsberg, and T. A. Johansen, “Hyperspectral image segmentation
for optimal satellite operations: In-orbit deployment of 1d-cnn,” 2024.

[67] L. Renaut, H. Frei, and A. Nüchter, “Deep learning on 3d point clouds
for fast pose estimation during satellite rendezvous,” Acta Astronautica,
vol. 232, pp. 231–243, 2025.

[68] L. M. Garcés-Socarrás, A. Nik, F. Ortiz, J. A. Vásquez-Peralvo,
J. L. G. Rios, M. Chehailty, M. Kuhfuss, E. Lagunas, J. Thoemel,
S. Kumar et al., “Artificial intelligence implementation of onboard
flexible payload and adaptive beamforming using commercial off-the-
shelf devices,” arXiv preprint arXiv:2505.01853, 2025.

[69] N. Perryman, S. Sabogal, C. Wilson, and A. George, “Dependable dpu
architectures on amd-xilinx versal adaptive socs for space applications,”
IEEE Transactions on Aerospace and Electronic Systems, 2025.

[70] G. Dessouky, A.-R. Sadeghi, and S. Zeitouni, “Sok: Secure fpga multi-
tenancy in the cloud: Challenges and opportunities,” in 2021 IEEE
European Symposium on Security and Privacy (EuroS&P). IEEE,
2021, pp. 487–506.

[71] D. Koch, J. Torresen, C. Beckhoff, D. Ziener, C. Dennl, V. Breuer,
J. Teich, M. Feilen, and W. Stechele, “Partial reconfiguration on fpgas
in practice—tools and applications,” in ARCS 2012. IEEE, 2012, pp.
1–12.

[72] A. Karteris, E. Tsigkanos, M. Bernou, A. Chatzistylianos, and
G. Lentaris, “Towards ai onboard eo satellites: Assessment of virtu-
alization techniques for extreme edge computing,” in IGARSS 2024-
2024 IEEE International Geoscience and Remote Sensing Symposium.
IEEE, 2024, pp. 1727–1732.

[73] European Space Agency, “The use of reprogrammable fpgas in
space,” https://www.esa.int/Enabling Support/Space Engineering
Technology/Microelectronics/The use of reprogrammable FPGAs
in space, 2023, accessed: 2025-06-18.

[74] S. Meda and S. Morapally, “Secure multi-tenant architectures for
cloud-based space mission operations: Mitigating risks in shared en-
vironments,” International Journal of Communication Networks and
Information Security, vol. 14, 2022.

[75] R. Elnaggar, R. Karri, and K. Chakrabarty, “Multi-tenant fpga-based
reconfigurable systems: Attacks and defenses,” in 2019 Design, Au-
tomation and Test in Europe Conference and Exhibition (DATE), 2019,
pp. 7–12.

[76] M. J. Campola and J. A. Pellish, “Radiation hardness assurance:
Evolving for newspace,” in European Conference on Radiation Effects
on Components and Systems (RADECS 2019), no. GSFC-E-DAA-
TN72757, 2019.

[77] Y. Ren, M. Zhu, D. Xu, M. Liu, X. Dai, S. Wang, and L. Li, “Overview
on radiation damage effects and protection techniques in microelec-
tronic devices,” Science and Technology of Nuclear Installations, vol.
2024, no. 1, p. 3616902, 2024.

[78] S. Bhunia, M. S. Hsiao, M. Banga, and S. Narasimhan, “Hardware
trojan attacks: Threat analysis and countermeasures,” Proceedings of
the IEEE, vol. 102, no. 8, pp. 1229–1247, 2014.

[79] M. H. Rahman, “A comprehensive survey on hardware-software
co-protection against invasive, non-invasive and interactive security
threats,” Cryptology ePrint Archive, 2024.

[80] S. Jero, J. Furgala, M. A. Heller, B. Nahill, S. Mergendahl, and
R. Skowyra, “Securing the satellite software stack,” in Proceedings
2024 Workshop on Security of Space and Satellite Systems, San Diego,
CA, USA: Internet Society, 2024.



[81] J. Zhang and G. Qu, “Recent attacks and defenses on fpga-based sys-
tems,” ACM Transactions on Reconfigurable Technology and Systems
(TRETS), vol. 12, no. 3, pp. 1–24, 2019.

[82] F. Tramèr, F. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart, “Stealing
machine learning models via prediction {APIs},” in 25th USENIX
security symposium (USENIX Security 16), 2016, pp. 601–618.

[83] W. Xing, M. Li, M. Li, and M. Han, “Towards robust and secure
embodied ai: A survey on vulnerabilities and attacks,” arXiv preprint
arXiv:2502.13175, 2025.

[84] W. Hu, C.-H. Chang, A. Sengupta, S. Bhunia, R. Kastner, and H. Li,
“An overview of hardware security and trust: Threats, countermeasures,
and design tools,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 40, no. 6, pp. 1010–1038, 2020.

[85] T. Hoque, “Ip trust assurance through design and runtime solutions,”
Ph.D. dissertation, University of Florida, 2020.

[86] D. Giuffrida, “A foss-based toolchain for automated hardware trojan
injection in risc-v architectures,” Ph.D. dissertation, Politecnico di
Torino, 2024.

[87] S. R. Rajendran, N. F. Dipu, S. Tarek, H. M. Kamali, F. Farahmandi,
and M. Tehranipoor, “Exploring the abyss? unveiling systems-on-
chip hardware vulnerabilities beneath software,” IEEE Transactions on
Information Forensics and Security, vol. 19, pp. 3914–3926, 2024.

[88] J. Amacher and V. Schiavoni, “On the performance of arm trustzone:
(practical experience report),” in Distributed Applications and Inter-
operable Systems: 19th IFIP WG 6.1 International Conference, DAIS
2019, Held as Part of the 14th International Federated Conference on
Distributed Computing Techniques, DisCoTec 2019, Kongens Lyngby,
Denmark, June 17–21, 2019, Proceedings 19. Springer, 2019, pp.
133–151.

[89] I. Sünter, A. Slavinskis, U. Kvell, A. Vahter, H. Kuuste, M. Noorma,
J. Kutt, R. Vendt, K. Tarbe, M. Pajusalu et al., “Firmware updating
systems for nanosatellites,” IEEE Aerospace and Electronic Systems
Magazine, vol. 31, no. 5, pp. 36–44, 2016.

[90] A. Marchand, Y. Imine, H. Ouarnoughi, T. Tarridec, and A. Gallais,
“Firmware integrity protection: A survey,” IEEE Access, vol. 11, pp.
77 952–77 979, 2023.

[91] P. Yue, J. An, J. Zhang, G. Pan, S. Wang, P. Xiao, and L. Hanzo, “On
the security of leo satellite communication systems: Vulnerabilities,
countermeasures, and future trends,” Authorea Preprints, 2022.

[92] R. R. Shrivastwa, “Enhancements in embedded systems security using
machine learning,” Ph.D. dissertation, Institut Polytechnique de Paris,
2023.

[93] L. Diana and P. Dini, “Review on hardware devices and software tech-
niques enabling neural network inference onboard satellites,” Remote
Sensing, vol. 16, no. 21, p. 3957, 2024.

[94] AMD Xilinx, “Zynq ultrascale+ mpsoc security features,”
https://xilinx-wiki.atlassian.net/wiki/spaces/A/pages/18841708/Zynq%
2BUltrascale%2BMPSoC%2BSecurity%2BFeatures, 2020, accessed:
2025-06-18.

[95] Intel Altera, “Intel soc fpgas secure boot user guide,”
https://www.intel.com/content/www/us/en/docs/programmable/
683735/current/arria-10-soc-boot-user-guide.html, Intel Corporation,
Tech. Rep., 2020, accessed: 2025-06-18.

[96] AMD Xilinx, “Secure boot and bitstream authentication on zynq-
7000 soc,” https://docs.amd.com/v/u/en-US/xapp1175 zynq secure
boot, Xilinx Application Note XAPP1175, Tech. Rep., 2015, accessed:
2025-06-18.

[97] Microsemi, Inc, “Overview of secure boot with microsemi igloo2
fpgas,” 2013, accessed: 2025-06-18.

[98] AMD Xilinx, “Zynq-7000 ap soc security,” https://xilinxwiki.atlassian.
net/wiki/spaces/A/pages/18841646/Zynq7000+AP+SoC+Security, Sep.
2018, accessed: 2025-06-22; Last updated: 24 Sept 2018.

[99] Intel Altera, “Intel stratix 10 configuration user guide,”
https://cdrdv2.intel.com/v1/dl/getContent/849885?fileName=
ug-s10-config-683762-849885.pdf, User Guide UG-S10CONFIG,
revision as of 2025-04-07.

[100] Microsemi, “Physically unclonable functions in smartfusion2,”
https://www.microsemi.com/products/fpga-soc/security/secure-boot,
accessed: 2025-06-18.

[101] AMD Xilinx, Zynq UltraScale+ MPSoC Technical Reference Manual,
https://www.xilinx.com/support/documents/sw manuals/xilinx2022 2/
ug1137-zynq-ultrascale-mpsoc-swdev.pdf, 2022, accessed: 2025-06-
18.

[102] Intel Altera, “Intel stratix 10 device security user guide,” Santa
Clara, CA, USA, User Guide UG-S10SECURITY (683642), Jul.
2023. [Online]. Available: https://www.intel.com/content/www/us/en/
docs/programmable/683642.html

[103] AMD Xilinx, “Zynq ultrascale+ mpsoc: Software developer’s
guide,” 2020, https://www.xilinx.com/support/documents/sw manuals/
xilinx2022 2/ug1137-zynq-ultrascale-mpsoc-swdev.pdf.

[104] Intel Altera, “Agilex 7 fpgas and socs device
overview,” Device Overview 683458, Mar. 2025. [On-
line]. Available: https://cdrdv2.intel.com/v1/dl/getContent/666707?
fileName=ag-overview-683458-666707.pdf

[105] T. Lu, R. Kenny, and S. Atsatt, “Secure device manager for intel
stratix 10 devices provides fpga and soc security,” Intel Corporation,
White Paper WP-01252-1.2, 2023, describes SDM-based FPGA/SoC
configuration, sector-level security, PUF, and encryption features.

[106] Intel Altera, “Security user guide: Intel fpga programmable acceleration
card d5005,” User Guide D5005 (683877), Aug. 2019, covers
Root of Trust (RoT), AFU signing, FIM/BMC security features.
[Online]. Available: https://cdrdv2.intel.com/v1/dl/getContent/679776?
fileName=ug-pac-security-d5005-683877-679776.pdf

[107] N. Dzemaili, “A reliable booting system for zynq ultrascale+ mpsoc
devices,” Ph.D. dissertation, CERN, 2021.

[108] F. Siegle, “Fault detection, isolation and recovery schemes for space-
borne reconfigurable fpga-based systems,” Ph.D. dissertation, Univer-
sity of Leicester, 2016.

[109] S. G. La Greca, “Study and development of fault tolerant operating
systems on fpga for aerospace applications,” Ph.D. dissertation, Po-
litecnico di Torino, 2022.

[110] M. Gross, N. Jacob, A. Zankl, and G. Sigl, “Breaking trustzone memory
isolation and secure boot through malicious hardware on a modern
fpga-soc,” Journal of Cryptographic Engineering, vol. 12, no. 2, pp.
181–196, 2022.

[111] P. Rech, “Artificial neural networks for space and safety-critical appli-
cations: Reliability issues and potential solutions,” IEEE Transactions
on Nuclear Science, vol. 71, no. 4, pp. 377–404, 2024.

[112] M. Wang, H. Qiu, L. Xu, D. Wang, Y. Li, T. Zhang, J. Liu, and
H. Li, “A case for application-aware space radiation tolerance in orbital
computing,” arXiv preprint arXiv:2407.11853, 2024.

[113] H. Li, P. Rieger, S. Zeitouni, S. Picek, and A.-R. Sadeghi, “Flairs:
Fpga-accelerated inference-resistant & secure federated learning,” in
2023 33rd International Conference on Field-Programmable Logic and
Applications (FPL). IEEE, 2023, pp. 271–276.

[114] A. Cratere, L. Gagliardi, G. A. Sanca, F. Golmar, and F. Dell’Olio,
“On-board computer for cubesats: State-of-the-art and future trends,”
IEEE Access, 2024.

[115] P. Yue, J. An, J. Zhang, J. Ye, G. Pan, S. Wang, P. Xiao, and L. Hanzo,
“Low earth orbit satellite security and reliability: Issues, solutions, and
the road ahead,” IEEE Communications Surveys & Tutorials, vol. 25,
no. 3, pp. 1604–1652, 2023.

[116] P. A. Oche, G. A. Ewa, and N. Ibekwe, “Applications and challenges
of artificial intelligence in space missions,” IEEE Access, vol. 12, pp.
44 481–44 509, 2021.

[117] A. Diro, “Space systems and malware: Potential threats,” in Ran-
somware Evolution. CRC Press, 2025, pp. 208–232.

[118] M. M. Utsash, “Implementing zero-trust for securing spacecraft,”
Master’s thesis, NTNU, 2024.

[119] C. Wu, Y. Li, M. Xu, C. Guo, Z. Yin, W. Gao, and C. Chi, “A compre-
hensive survey on orbital edge computing: Systems, applications, and
algorithms,” arXiv preprint arXiv:2306.00275, 2023.

[120] A. Geist, G. Crum, C. Brewer, D. Afanasev, S. Sabogal, D. Wilson,
J. Goodwill, J. Marshall, N. Perryman, N. Franconi et al., “Nasa
spacecube next-generation artificial-intelligence computing for stp-h9-
scenic on iss,” 2023.

[121] S. Pinto and N. Santos, “Demystifying arm trustzone: A comprehensive
survey,” ACM computing surveys (CSUR), vol. 51, no. 6, pp. 1–36,
2019.

[122] Z. Zhang, “Enhancing iot security through trusted execution environ-
ments,” in 2024 2nd International Conference on Image, Algorithms
and Artificial Intelligence (ICIAAI 2024). Atlantis Press, 2024, pp.
580–589.

[123] M. S. Islam, “Confidential computing with trusted execution environ-
ments,” Ph.D. dissertation, 2024.



[124] Z. Jian, X. Liu, Q. Dong, L. Cheng, X. Xie, and T. Li, “Smartzone:
Runtime support for secure and efficient on-device inference on arm
trustzone,” IEEE Transactions on Computers, 2025.

[125] H. Huang, F. Zhang, S. Yan, T. Wei, and Z. He, “Sok: A comparison
study of arm trustzone and cca,” in 2024 International Symposium on
Secure and Private Execution Environment Design (SEED). IEEE,
2024, pp. 107–118.

[126] AMD Xilinx, “Axi firewall ip documentation,” https:
//www.xilinx.com/support/documents/sw manuals/xilinx2022 2/
ug1137-zynq-ultrascale-mpsoc-swdev.pdf, 2022, accessed: 2025-06-
18.

[127] M. Gross, N. Jacob, A. Zankl, and G. Sigl, “Breaking trustzone
memory isolation through malicious hardware on a modern fpga-soc,”
in Proceedings of the 3rd ACM Workshop on Attacks and Solutions in
Hardware Security Workshop, 2019, pp. 3–12.

[128] I. Yarza, I. Agirre, I. Mugarza, and J. P. Cerrolaza, “Safety and secu-
rity collaborative analysis framework for high-performance embedded
computing devices,” Microprocessors and Microsystems, vol. 93, p.
104572, 2022.

[129] A. Proulx, J.-Y. Chouinard, P. Fortier, and A. Miled, “A survey on fpga
cybersecurity design strategies,” ACM Transactions on Reconfigurable
Technology and Systems, vol. 16, no. 2, pp. 1–33, 2023.

[130] I. Christoforakis, “Protection and safety framework for on-chip com-
munications and mixed-critical cyber-physical systems,” 2020.

[131] A. Silitonga, H. Gassoumi, and J. Becker, “Mites: Software-based
microarchitectural attacks and countermeasures in networked ap soc
platforms,” in 2020 IEEE 14th International Conference on Anti-
counterfeiting, Security, and Identification (ASID). IEEE, 2020, pp.
65–71.

[132] “Sha-256 standard,” https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.
180-4.pdf, NIST, 2015.

[133] D. Solet, S. Pillement, J.-L. Béchennec, M. Briday, and S. Faucou,
“Hw-based architecture for runtime verification of embedded software
on sopc systems,” in 2018 NASA/ESA Conference on Adaptive Hard-
ware and Systems (AHS). IEEE, 2018, pp. 249–256.

[134] F. Fons, M. Fons, P. Olivier, and A. Weimerskirch, “A modular recon-
figurable and updateable embedded cyber security hardware solution
for automotive,” in Proc. Embedded World Conf., 2017, pp. 1–10.

[135] S. P. Singh, S. Verma, P. Pali, H. Tiwari, and S. Kanojiya, “Application
of artificial intelligence (ai) to enhance satellite security,” International
Journal of Innovative Research in Computer and Communication
Engineering, 2023.

[136] K. Thangavel, R. Sabatini, A. Gardi, K. Ranasinghe, S. Hilton, P. Ser-
vidia, and D. Spiller, “Artificial intelligence for trusted autonomous
satellite operations,” Progress in Aerospace Sciences, vol. 144, p.
100960, 2024.

[137] C. Bader, “On requirements & concepts for tt&c link key management,”
in 2nd Workshop on the Security of Space and Satellite Systems
(SpaceSec), 2024.

[138] M. I. Morrison, “Method and system for providing secure
software updates via satellite transmission systems,” Patent
WO2 006 021 829A1, Mar. 2, 2006, international Publication Number:
WO2006021829A1. [Online]. Available: https://patents.google.com/
patent/WO2006021829A1/en

[139] A. Mody, E. Gonzalez, and T. Underwood, “Satellite tt&c,”
Patent WO2 019 234 406A1, Dec. 12, 2019, international Publication
Number: WO2019234406A1. [Online]. Available: https://patents.
google.com/patent/WO2019234406A1/en

[140] A. Toubi and A. Hajami, “Vulnerability assessment and mitigation
strategies for satellite communication systems under ddos attacks,” in
2024 International Conference on Global Aeronautical Engineering
and Satellite Technology (GAST). IEEE, 2024, pp. 1–8.

[141] M. Pinchas, E. Grunberg, and R. Hillel, “Satellite redundancy for
critical applications,” Aug. 20 2009, uS Patent App. 12/388,148.

[142] C. Poivey, “Radiation effects on space electronics,” https://ntrs.nasa.
gov/api/citations/20170002014/downloads/20170002014.pdf, NASA,
Tech. Rep., 2017, accessed: 2025-06-18.

[143] J. W. Cutler and J. Beningo, “Watchdog-based fault recovery on
nanosatellites,” Journal of Aerospace Information Systems, vol. 19,
no. 8, pp. 522–529, 2022.

[144] L. Dong, “Design of a five-level protection system based on
watch-dog for sepacecraft computer,” 2001. [Online]. Available:
https://api.semanticscholar.org/CorpusID:111767946

[145] A. M. El-Attar and G. Fahmy, “An improved watchdog timer to
enhance imaging system reliability in the presence of soft errors,”
in 2007 IEEE international symposium on signal processing and
information technology. IEEE, 2007, pp. 1100–1104.

[146] N. Wiatrek, K. Burnett, S.-L. Lin, S. Liu, and P. Saenz, “Advancing
spacecraft security through anomaly detection,” in 2024 IEEE 6th
International Conference on Trust, Privacy and Security in Intelligent
Systems, and Applications (TPS-ISA). IEEE, 2024, pp. 560–565.

[147] M. Rahmatian, H. Kooti, I. G. Harris, and E. Bozorgzadeh, “Adaptable
intrusion detection using partial runtime reconfiguration,” in 2012 IEEE
30th International Conference on Computer Design (ICCD). IEEE,
2012, pp. 147–152.

[148] S. Lu and R. Lysecky, “Analysis of control flow events for timing-
based runtime anomaly detection,” in Proceedings of the WESS’15:
Workshop on Embedded Systems Security, 2015, pp. 1–8.

[149] M. F. B. Abbas, A. Prakash, and T. Srikanthan, “Power profile based
runtime anomaly detection,” in 2017 TRON Symposium (TRONSHOW).
IEEE, 2017, pp. 1–9.

[150] X. Bailin, Y. Shunzheng, and W. Tao, “Application layer anomaly
detection based on hsmm,” in 2010 International Forum on Information
Technology and Applications, vol. 2. IEEE, 2010, pp. 411–414.

[151] S. Wankhade and R. Mahajan, “Dynamic partial reconfiguration im-
plementation of aes algorithm,” International Journal of Computer
Applications, vol. 97, no. 3, 2014.

[152] S. Burman, P. Rangababu, and K. Datta, “Development of dynamic
reconfiguration implementation of aes on fpga platform,” in 2017
Devices for Integrated Circuit (DevIC). IEEE, 2017, pp. 247–251.

[153] B. Manjith, J. Kokila, and R. Natarajan, “Adaptive dynamic partial
reconfigurable security system,” in International Conference on Next
Generation Computing Technologies. Springer, 2017, pp. 430–439.

[154] F. Unterstein, T. Sel, T. Zeschg, N. Jacob, M. Tempelmeier, M. Pehl,
and F. De Santis, “Secure update of fpga-based secure elements using
partial reconfiguration,” Cryptology ePrint Archive, 2020.

[155] S. Wankhade and R. Mahajan, “Performance enhancement of aes
algorithm using dynamic partial reconfiguration,” International Journal
of Advanced Research in Electrical, Electronics and Instrumentation
Engineering, vol. 3, no. 4, 2014.

[156] F. Anan, M. S. Kamal, K. S. Mamun, N. Ahsan, M. T. Reza, and M. I.
Hossain, “Securing federated learning: A defense mechanism against
model poisoning threats,” in 2024 IEEE International Conference on
Computing, Applications and Systems (COMPAS). IEEE, 2024, pp.
1–6.

[157] T. Gu et al., “Badnets: Identifying vulnerabilities in the machine
learning model supply chain,” arXiv, 2017.

[158] S. Sakib, D. Faizullin, Y. Koga, M. Uetsuhara, and S. Onishi, “In-orbit
fpga reprogramming device for small satellites,” Advances in Space
Research, vol. 71, no. 11, pp. 4549–4556, 2023.

[159] H. Ren, H. Liu, Q. Xue, X. Ma, T. Jiang, and B. Sun, “On-orbit
maintenance and reconfiguration of dsp based on fpga,” in Second
International Symposium on Computer Technology and Information
Science (ISCTIS 2022), vol. 12474. SPIE, 2022, pp. 89–95.

[160] A. Hanafi, M. Karim, T. Rachidi, and I. Latachi, “Fail-safe remote
update method for an fpga-based on-board computer system,” in WITS
2020: Proceedings of the 6th International Conference on Wireless
Technologies, Embedded, and Intelligent Systems. Springer, 2022, pp.
273–283.

[161] M. Cao, T. Jin, Y. Zhao, G. Wang, X. Wen, J. Xia, X. Ma, Y. Li,
and W. Lu, “On-orbit update and scrubbing design of sram fpga for
spacecraft,” in Journal of Physics: Conference Series, vol. 2870, no. 1.
IOP Publishing, 2024, p. 012017.

[162] Y. Zhao, L. Li, Y. Song, L. Wu, D. Luo, and Y. Wang, “Intelligent
fault diagnosis and health monitoring system for on-orbit fpga critical
components,” in 2024 8th International Conference on Imaging, Signal
Processing and Communications (ICISPC). IEEE, 2024, pp. 173–177.

[163] T. M. La, K. Matas, N. Grunchevski, K. D. Pham, and D. Koch,
“Fpgadefender: Malicious self-oscillator scanning for xilinx ultrascale+
fpgas,” ACM Transactions on Reconfigurable Technology and Systems
(TRETS), vol. 13, no. 3, pp. 1–31, 2020.

[164] V. B. Kumar, N. Gupta, A. Chattopadhyay, M. Kasper, C. Krauß,
and R. Niederhagen, “Post-quantum secure boot,” in 2020 Design,
Automation & Test in Europe Conference & Exhibition (DATE). IEEE,
2020, pp. 1582–1585.



[165] National Institute of Standards and Technology (NIST), “Post-
quantum cryptography standardization,” https://csrc.nist.gov/projects/
post-quantum-cryptography, 2023, accessed: 2025-06-18.

[166] S. Popa, A. Kazak, A. Dinu, M. Ivanovici, N. Secrieru, V. Carbune,
and V. Melnic, “Architecture and design choices for an ai-enabled fpga-
based cosmic radiation sensor,” in 2024 International Symposium on
Electronics and Telecommunications (ISETC). IEEE, 2024, pp. 1–4.

[167] A. M. Cabrera, Y. A. Yucesan, F. Y. Liu, W. Blokland, and J. S.
Vetter, “Errant beam detection using the amd versal acap and vitis
ai,” in 2023 IEEE High Performance Extreme Computing Conference
(HPEC). IEEE, 2023, pp. 1–6.

[168] G. Özdil and B. Örs, “Model-based fpga ai accelerator design using
vitis ai with in-depth performance and energy efficiency analysis,” in
2024 32nd Telecommunications Forum (TELFOR). IEEE, 2024, pp.
1–4.

[169] N. U. Pintos, H. Lacomi, and M. Lavorato, “Comparación de vitis-ai
y finn para implementar redes neuronales convolucionales en fpga,”
Revista Elektrón, vol. 8, no. 2, p. 200, 2024.

[170] S. P. Singh, S. Verma, P. Pali, H. Tiwari, and S. Kanojiya, “Application
of artificial intelligence (ai) to enhance satellite security,” International
Journal of Innovative Research in Computer and Communication
Engineering, vol. 11, no. 4, p. 284, 2023.


