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Abstract—Satellite systems are increasingly targeted by cyber
threats, yet training platforms that reproduce realistic space-
ground conditions remain limited. OpenSatRange is a domain-
specific cyber range designed to support satellite security train-
ing through integrated simulation, emulation, and monitoring
capabilities. It combines accurate network simulation (NS-3) for
orbital and link modeling, low-level emulation of communication
links (OpenSAND), and full-stack scenario deployment using
containerized sandboxes orchestrated via KYPO and SDN. Un-
like generic cyber ranges, OpenSatRange supports both LEO
and GEO constellations and enables detailed observability of
trainee actions through embedded telemetry, facilitating real-time
instructor feedback and post-exercise analysis. We describe the
system architecture, deployment workflow, and telemetry design,
and present illustrative training scenarios such as broadcast
hijacking and insecure ground control that demonstrate the plat-
form’s flexibility and educational impact. The platform enables
training that goes beyond binary outcomes, offering visibility into
the reasoning processes that lead to success or failure, crucial for
effective cybersecurity education in the space domain.

Index Terms—Satellite security, cyber range, emulation, simu-
lation, SDN, OpenSAND, KYPO, cybersecurity training, teleme-
try, LEO, GEO, NS-3

I. INTRODUCTION

The increasing reliance on satellite infrastructures for com-
munication, navigation, earth observation, and defense opera-
tions has amplified their strategic relevance and consequently,
their exposure to cyber threats. Historically, space systems
were perceived as inherently secure due to their physical iso-
lation, proprietary protocols, and high cost of access [1], [2].
However, this assumption no longer holds. The proliferation of
affordable ground station kits, open-source satellite software,
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and cloud-based services such as Ground Station as a Service
(GSaaS) has dramatically lowered the technical and economic
barriers to accessing satellite networks [3].

At the same time, adversaries have demonstrated growing
interest and capability in targeting the satellite ecosystem.
Real-world incidents such as the KA-SAT modem wipe during
the 2022 Ukraine conflict [4], [5], [6], GPS spoofing affecting
maritime and aerial operations [5], [7], and (so far) theoretical
attacks on broadcast encryption schemes [8] illustrate the
diversity and severity of emerging threats. These attacks affect
not only the satellite payloads but also the extended infras-
tructure, including control segments, communication channels,
firmware updates, and inter-satellite links.

As the complexity and accessibility of the attack sur-
face grow, so does the need for proper cybersecurity risk
assessment procedures [9], but also targeted training and
preparation. Operators, engineers, and security analysts must
be equipped not only with theoretical knowledge but with
practical, domain-specific skills to detect, analyze, and respond
to threats across the satellite-ground continuum. Traditional
security training platforms, however, rarely capture the con-
straints and idiosyncrasies of satellite systems. This motivates
the development of specialized environments that simulate
real-world space system behaviors while enabling hands-on
cybersecurity training under realistic conditions.

A. Gaps in existing training infrastructures

While cyber ranges have become increasingly common for
security training across various domains—including enterprise
IT, industrial control systems, and critical infrastructure they
often fall short when applied to the satellite domain. General-
purpose platforms such as KYPO [10] or Nautilus [11] provide
valuable abstractions for simulating adversarial behavior and
conducting Capture-The-Flag (CTF) exercises, but they typi-
cally lack support for satellite-specific elements such as orbital
dynamics, radio link modeling, and multi-layered ground-
space architectures.

Moreover, most existing cyber ranges reduce training out-
comes to binary success metrics, such as whether a specific
flag has been captured, without capturing the detailed rea-
soning or decision-making path followed by the trainee [12].
This lack of process-level visibility limits the pedagogical
value of the exercise, as instructors are unable to assess the
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student’s strategic approach, tool choices, or misconceptions
that occurred during the scenario. This lack of observability
limits the instructor’s ability to evaluate progress, provide
targeted feedback, or adapt the difficulty in real time. In
satellite systems, where latency, determinism, and physical
constraints affect system behavior, such limitations are par-
ticularly pronounced.

Another common limitation is the rigid user management
model. Many platforms require centralized administration for
creating or modifying users and scenarios, which is impractical
in educational or operational contexts where instructors must
rapidly configure exercises for diverse teams.

These gaps underscore the need for a satellite-focused cyber
range that not only supports realistic space-specific scenarios
but also integrates advanced monitoring, flexible role manage-
ment, and scenario customization as first-class capabilities.

B. Contributions

This paper presents OpenSatRange (OSR), a modular and
monitoring-aware cyber range specifically designed for satel-
lite cybersecurity training. OSR addresses the limitations of
traditional training platforms by combining realistic satellite
simulation and emulation with comprehensive user monitoring
and flexible role-based access management.

Our main contributions are as follows:

« Domain-specific architecture: We design and implement
a cyber range tailored to satellite environments, support-
ing both LEO and GEO configurations, custom radio
link models, and realistic training scenarios derived from
actual attack patterns.

o Integrated monitoring infrastructure: We introduce a
telemetry subsystem that collects, processes, and visual-
izes real-time user activity, including terminal commands,
web interactions, and exploit usage, enabling trainers to
supervise and evaluate exercises in detail.

o Multi-role training workflow: The platform supports
scalable training sessions involving instructors and stu-
dents with distinct access rights, enforced through feder-
ated authentication and a role-aware API layer.

o Deployment and usage in realistic settings: We report
on the deployment of OSR in a functional training con-
text, including validation through operational testing and
preliminary user feedback in educational environments.

II. RELATED WORK
A. Satellite-specific cyber threats

The security of satellite systems has historically been un-
derestimated, often relying on high deployment costs and
proprietary protocols as implicit deterrents to cyber attacks [1],
[13], [14]. However, recent incidents have shown that such
assumptions are no longer tenable. A prominent case is the
2022 cyberattack on Viasat’s KA-SAT network (known as
AcidRain) which occurred during the Russian invasion of
Ukraine. The attack involved the deployment of a wiper
malware that rendered tens of thousands of satellite modems
inoperable across Europe and Ukraine, indirectly disrupting

critical services including over 5,800 wind turbines in Ger-
many [4], [5].

Satellite positioning services are among the most widely
known and frequently targeted components of satellite infras-
tructure. Attacks such as spoofing and jamming have become
increasingly accessible due to the availability of low-cost tools
like software-defined radios (SDRs), significantly lowering the
entry barrier for adversaries [8], [7].

Real-world cases of GPS spoofing and meaconing have
been reported in both academic literature and operational
scenarios. One widely cited example is the alleged capture
of the RQ-170 Sentinel drone by Iran, reportedly achieved
through spoofed navigation signals [5]. The continued reliance
on unauthenticated civilian GNSS signals makes such attacks
feasible even with modest technical resources [7], [15].

In parallel, researchers have uncovered critical vulnerabil-
ities in the firmware and onboard communication protocols
of satellites. Willbold et al. [16] conducted an analysis show-
ing that operational systems often lack robust authentication,
firmware integrity verification, and access controls, leaving
both spaceborne and ground-based components susceptible to
compromise.

In the context of LEO constellations, Giuliari et al. [8]
demonstrated the feasibility of DDoS-style attacks that satu-
rate inter-satellite links, potentially degrading communication
services across entire geographic areas. The widespread avail-
ability of orbital data and satellite configuration parameters
further increases the exposure of these systems to targeted
reconnaissance and attack planning. A comprehensive threat
landscape for the New Space paradigm is provided by Manulis
et al. [17], who map attack vectors across spaceborne, ground,
and communication segments.

B. Cyber ranges for vertical domains (ICS, military, space)

Cybersecurity training has progressively moved away from
generic, IT-focused models toward domain-specific programs
tailored to the distinct characteristics of vertical sectors. This
evolution reflects the increasing need for specialized expertise
in environments where operational constraints, legacy systems,
and unique threat models render traditional IT training inade-
quate.

In the industrial sector, for instance, initiatives like CISA’s
ICS training programs [18] emphasize the challenges of se-
curing real-time control systems, low-latency networks, and
long-lived infrastructure. Similarly, academic platforms such
as KYPO4Industry [19] provide hands-on training in realistic
industrial control environments, allowing trainees to explore
attacks and defenses under near-operational conditions.

In the healthcare domain, programs developed by institu-
tions like SANS [20] address sector-specific issues such as
ransomware targeting hospital infrastructure and the protection
of sensitive medical data, aligning technical exercises with
regulatory frameworks like HIPAA.

The defense and aerospace sectors have also adopted this
verticalized model. The U.S. Department of Defense, through
the Cyber Crime Center (DC3), delivers advanced courses
on critical infrastructure protection and forensic investigation
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in operational scenarios [21]. Similarly, centers such as the
University College Dublin’s CCI [22] train law enforcement
professionals in OSINT and digital forensics, adapting tech-
niques to real-world investigative contexts.

These examples illustrate the growing recognition that cy-
bersecurity training must be context-aware. In this landscape,
the space domain presents a particularly challenging environ-
ment: physical separation between segments, proprietary com-
munication protocols, broadcast links, and orbital dynamics
define a threat surface unlike any other. Addressing these chal-
lenges requires training platforms specifically engineered for
space operations, bridging simulation, emulation, and vertical
observability.

C. ESA initiatives and satellite-focused training platforms

Unlike conventional cyber ranges targeting IT or ICS do-
mains, satellite-oriented platforms must account for the dis-
tinctive constraints of space systems, including orbital dynam-
ics, proprietary communication protocols, and the coupling
between ground and space segments.

In Europe, the European Space Agency (ESA) has es-
tablished the first dedicated Space Cyber Range in Tallinn,
Estonia, to support attack-defense simulations and resilience
testing for aerospace infrastructure [23]. In parallel, NASA has
developed NASA IV&V’s Cyber Range for Space Systems
[24] a cyber range supporting the “Capture the Spacecraft”
feature, and NOS3 (NASA Operational Simulator for Small
Satellites), an open-source framework originally designed for
the STF-1 mission, which enables full-cycle software testing
for CubeSats in virtual environments, supporting early valida-
tion and risk reduction [25].

Academic efforts such as the SAAMD testbed (Satellite,
Aerospace, Avionics, Maritime, and Drone) further illustrate
the need for integrated environments that span multiple do-
mains, enabling realistic security assessments across intercon-
nected platforms [26].

Building on this landscape, OSR offers a modular and
open-source platform promoted by the Italian Space Agency
(ASI). It enables realistic training exercises involving attack
simulation, GNSS interference, and ground-segment compro-
mise. Distinctive features include support for both LEO and
GNSS scenarios, SDR integration, and a telemetry infrastruc-
ture designed to enhance instructor insight and post-exercise
evaluation [27], [28].

III. SYSTEM OVERVIEW

A. Design goals and assumptions

The design of OpenSatRange (OSR) is guided by the need
to provide a realistic, flexible, and observable environment
for satellite cybersecurity training. Unlike traditional IT in-
frastructures, satellite systems pose unique challenges due to
their physical constraints, real-time communication properties,
and tight coupling between software, hardware, and mission-
specific configurations.

We identify the following design goals:
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e Domain realism: Accurately model satellite-specific
communication dynamics, including orbital motion, sig-
nal degradation, and broadcast/multicast patterns typical
of LEO and GEO networks.

« Hands-on training capability: Allow trainees to interact
directly with simulated and emulated components using
real tools (e.g., Metasploit, custom firmware payloads),
in a way that mirrors operational environments.

o Observability and supervision: Enable instructors to
monitor user activity in real time, trace command exe-
cution, and collect telemetry for post-exercise evaluation
and behavioral analysis.

o Scenario modularity and reuse: Allow trainers to cre-
ate, adapt, and share scenarios easily across multiple use
cases and training sessions.

o Multi-role access control: Support instructors and
trainees with distinct privileges, relying on scalable au-
thentication and authorization mechanisms.

The design assumes a trusted deployment environment,
where the infrastructure can be provisioned on a private cloud
or secure physical server, and where trainers have adminis-
trative control over scenario instantiation and monitoring. The
platform is designed to operate without internet connectivity
when necessary, in line with air-gapped training requirements.

B. Platform architecture

OpenSatRange builds upon the open-source KYPO Cyber
Range [10], extending it to support training scenarios specific
to satellite networks.

As shown in Figure 1, OSR follows a three-layer architec-
ture: a frontend interface, backend microservices, and a storage
layer with databases and repositories.

The frontend layer includes both the legacy KYPO Web
Frontend, which continues to provide access to existing train-
ing functionalities, and the new OSR Frontend, developed
specifically to handle satellite-specific features and workflows.
These frontends interact with the backend microservices via
standard APIs and share a common authentication system
based on protocols like OAuth, ensuring seamless integration
and secure user management.
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The backend uses a microservices architecture with com-
ponents deployed as containers or VMs. OSR reuses core
KYPO services such as sandbox management, orchestration,
user handling, adaptive training, to maintain compatibility and
ensure a unified experience.

In addition to the KYPO components, OSR introduces sev-
eral new backend modules to support satellite-based training.
Specifically:

e A Simulation module that models satellite constellations,
delays, intermittent channels, and orbital behavior, en-
abling realistic scenario setup.

o An Emulation module that supports satellite-specific pro-
tocols and allows the execution of scenarios in environ-
ments that mimic real-world satellite network conditions.

o A Marketplace module designed to facilitate the reuse
and sharing of training scenarios. This component enables
instructors to browse, retrieve, and upload preconfigured
satellite and ground scenarios through an organized in-
terface backed by Git repositories.

The data layer includes both the original KYPO database
and a new OSR database, along with integration with Git
repositories, hosted on GitLab in OSR’s case, for storing con-
figuration files, sandbox descriptors, and training definitions.
Importantly, the satellite scenarios maintain full compatibility
with KYPO’s data formats and training descriptors. This
design choice ensures that satellite-based scenarios can be
deployed using the same emulation infrastructure as terrestrial
ones.

Finally, OSR enhances the monitoring subsystem by ex-
tending its capabilities to visualize and track dynamic satellite
components during training sessions. This provides instructors
with greater insight into the behavior of the simulated envi-
ronment and allows for a more accurate assessment of student
performance in satellite-specific exercises.

C. Satellite simulation layer

The satellite simulation layer of OpenSatRange offers a
flexible and extensible framework for evaluating satellite
communication scenarios prior to full-scale emulation. Built
on top of the NS-3 discrete-event network simulator, this
layer extends NS-3’s native functionality with satellite-specific
models for mobility, antennas, and channels, enabling the
simulation of both LEO and GEO communication systems.

Figure 2 illustrates the simulation workflow. Users can de-
fine the scenarios through the OSR web interface by specifying
parameters such as satellite type (LEO/GEO), orbit charac-
teristics, ground stations, user terminals, frequency bands,
antenna gains, and environmental settings. The system accepts
user-provided TLE files or generates synthetic constellations
as needed. Once the configuration is complete, the simulation
is triggered via REST API and executed in the VM-SIM
backend. Simulation results including metrics like satellite
visibility, propagation delay, throughput, and routing paths,
are exported as json files and saved in the market place. These
outputs support scenario validation and serve as ground truth
for downstream emulation phases, where they can guide SDN
route activation or the configuration of OpenSAND emulation

links. All artifacts are stored per user to ensure reproducibility
and version control.
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Fig. 2: Workflow of the simulation engine.

To accurately simulate the physical and spatial dynamics
of satellite networks, the simulator replaces NS-3’s default
Cartesian coordinate system with an Earth-Centered Earth-
Fixed (ECEF) model, as recommended by 3GPP. In this model,
node positions are referenced to the Earth’s center, with a
mean Earth radius of R, = 6,371 km. This enables realistic
modeling of long-range communications where curvature and
elevation angles must be accounted for. A custom satellite mo-
bility model was implemented in C++, integrating NORAD’s
SGP4 algorithm for precise orbit tracking using TLE data.
This allows the simulation of real satellite constellations such
as Starlink or the generation of synthetic orbital patterns by
adjusting key orbital parameters.

The simulator also incorporates detailed antenna models
to capture directional gain and polarization effects. Satellite
antennas are modeled as circular apertures with circular polar-
ization, following 3GPP TR 38.811. The gain pattern is given

by:
1 if 6 = 0°,
Ga(0) =

. 2 1
J1(k-£-sin 0) if 0° < |0| < 90° ( )

4 k-£-sin O

where 6 is the elevation angle, J;(+) is the Bessel function of
the first kind, £ is the aperture radius, and k = 27 f./c with
fe the carrier frequency and c the speed of light.

To model signal propagation, a custom satellite channel
model was developed based on 3GPP TR 38.811. The total
path loss is computed as:

PLIPLfS(d,fC)-f—PLsh +PLc((97fc) +PLsc+PLa (2)

where PLj, represents the free-space path loss given by

PLys(d, fe) = 32.45 + 201log;(d) + 201og,(fe), 3)

and PLgy, accounts for log-normally distributed shadowing.
PL, captures clutter effects due to scattering and reflec-
tion, though typically negligible under Line-of-Sight (LOS)
conditions. Scintillation loss PL,. varies by frequency and
elevation angle—capturing ionospheric effects below 6 GHz
and tropospheric effects above 6 GHz—while atmospheric
absorption PL, is modeled as:
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Azenit c
PLa(0, f) = #9()”

4)
where A,cnitn(fe) is the zenith attenuation.

These enhancements allow the simulator to capture temporal
link variations, mobility-induced visibility constraints, and
multi-user dynamics in realistic satellite-ground configura-
tions. Static gateways, vehicular terminals, and UAVs can
all be modeled, enabling thorough evaluation of coverage,
throughput, and routing behavior under diverse operational
scenarios.

D. Satellite emulation layer

The emulation layer in OpenSatRange is designed to support
both GEO and LEO satellite constellations, enabling realistic
reproduction of end-to-end communication scenarios across
diverse orbital regimes. Upon instantiation, OSR leverages
OpenStack [29], an open-source cloud computing platform
designed to manage large pools of compute, storage, and
networking resources, to dynamically allocate the virtual in-
frastructure defined in a sandbox descriptor. The resulting
topology consists of multiple Linux-based virtual machines,
each representing a functional component within a satellite
communication ecosystem. These virtual entities include not
only satellite elements, such as payload controllers, but also
terrestrial components such as ground stations and user ter-
minals. Each virtual machine hosts real services, enabling
students to interact with them using standard tools in a realistic
training environment.

For GEO constellations, the emulation relies on Open-
SAND, a user-space satellite network emulator developed by
CNES [30]. OpenSAND is deployed as a transparent bridge
between virtual machines and enables the execution of the
actual satellite communication protocol stack (e.g., DVB-
S2), while also replicating the physical and data-link layer
characteristics such as latency, bandwidth, framing, and bit
error rate. Although physical transmission does not occur, this
set-up provides a high-fidelity reproduction of real satellite
communication links, particularly suited for space-ground sce-
narios with high latency and asymmetric bandwidth.

For LEO constellations, which present a much more dy-
namic and scalable scenario, a different strategy has been
adopted. A dedicated module was developed to interpret the
output of the simulation component, such as orbital positions
and inter-satellite visibility, and translate it into a structured
virtual network. The emulation of a LEO constellation is per-
formed entirely within a single Linux-based virtual machine,
taking advantage of lightweight, kernel-level virtualization
tools. In this architecture, each satellite is modeled as an
isolated Linux network namespace [31]. These namespaces
are arranged in a grid topology that mirrors the logical struc-
ture of the constellation itself: columns correspond to orbital
planes, while rows represent satellites within each plane. Each
namespace is configured with up to four virtual interfaces,
enabling it to communicate only with immediate neighbors:
the satellites above and below in the same orbital plane, and
the adjacent satellites in neighboring planes. The intra satellite

links are implemented using virtual Ethernet interfaces (veth)
while Linux bridges are employed to interconnect satellites
across different planes, maintaining fidelity to the intended
constellation topology. Based on this structure, the network
is dynamically configured using software defined networking
(SDN) technologies, which allow enforcing precise connectiv-
ity constraints according to satellite visibility and controlling
routing policies as the topology evolves. Emulation of physical
layer impairments, such as propagation delay and packet
loss, is achieved using the Linux traffic control (tc) and
network emulation (netem) tools, which inject these effects
at the network interface level. Thanks to this lightweight and
modular design, OpenSatRange can emulate even large-scale
LEO constellations without incurring excessive computational
overhead. Instead of instantiating one virtual machine per
satellite, the use of namespaces significantly reduces resource
usage while preserving the flexibility needed to model realis-
tic inter-satellite links, frequent handovers, and fast-changing
network topologies.

This hybrid architecture enables the emulation of realistic
communication scenarios, preserving physical realism while
maintaining full control and traceability. As a result, trainees
can interact with actual software stacks and experience authen-
tic satellite conditions—such as delayed acknowledgments,
asymmetric bandwidth, and link interruptions—in a controlled
and observable environment.

IV. TRAINING WORKFLOW AND MONITORING
INFRASTRUCTURE

A. Role-based access control and user management

User authentication and authorization in OpenSatRange are
managed by a centralized Keycloak identity provider [32],
which supports standard protocols such as OpenlID Connect
and OAuth2. Each user is assigned a custom Role attribute,
either student, professor, or admin, which is embedded within
the JSON Web Token (JWT) issued at login. This role governs
both frontend behavior and backend access control.

The OSR frontend is accessible exclusively to users with the
professor role, who can manage student accounts, configure
simulations, and create sandbox descriptors. Students cannot
access the OSR frontend but interact directly with the KYPO
platform. Both user types authenticate via Keycloak and re-
ceive role-specific permissions for KYPO features. FastAPI
backend microservices enforce access control by validating
JWTs and authorizing operations based on the embedded role.

Professor accounts are manually provisioned by administra-
tors through the Keycloak console, with the Role attribute set
accordingly. On the other hand, student accounts are created
and managed by professors via RESTful FastAPI endpoints
exposed by the OSR frontend. These endpoints require JWT-
based authentication, and the backend authorizes CRUD op-
erations on student entities exclusively to users with the pro-
fessor role. This design decentralizes user management while
maintaining centralized, role-based security enforcement.

B. Marketplace, sandbox instantiation and execution

The training workflow is organized around the concept of a
marketplace, where each training scenario is encapsulated as
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Fig. 3: OSR Marketplace. Each scenario contains
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a GitLab repository comprising infrastructure-as-code (IaC)
descriptors and detailed exercise documentation. Instructors
interact with the OSR frontend to browse, clone, and tailor
these repositories to their specific teaching needs, as shown in
figure 3.

Upon initiation of a training session, the instructor selects
one or multiple scenarios from the marketplace and triggers
sandbox instantiation. The KYPO orchestrator interfaces with
the corresponding Git repository, parses the declarative YAML
configuration files, and dynamically provisions the defined
containerized workloads and virtual network topologies. Each
sandbox instance is deployed on the underlying physical or
virtualized infrastructure with strict Linux namespace and
filesystem isolation, and is integrated into the designated
segment of the software-defined networking (SDN) overlay.

Sandbox lifecycle management—including instantiation,
suspension, reset, and teardown—is fully controlled via the
instructor’s dashboard. The execution environment provisions
real-world software stacks and intentionally vulnerable ser-
vices, with embedded monitoring agents configured at de-
ployment time for runtime telemetry and behavior analysis.
Students access their sandboxes through secure terminal or
web-based interfaces, authenticated using scenario-specific
credentials and governed by role-based access policies defined
within the scenario descriptor.

This architecture supports scalable concurrent training ses-
sions across multiple users or teams, ensuring consistent
sandbox state management and comprehensive audit trails for
all modifications and interactions.

C. Logging infrastructure and telemetry design

The monitoring component developed for the OSR cyber
range extends and integrates with the existing KYPO in-
frastructure, providing a scalable and modular solution for
real-time activity tracking during cyber training sessions to-
gether with post-exercise analysis. It consists of a multilayered
telemetry infrastructure that captures user activity across all
components of the training environment. Lightweight agents
deployed in virtual machines sandboxes (VMs), record satel-
lite commands and informations, shell commands, web in-
teractions and Metasploit commands; the Management Area
Network (MAN) which is a special VM, deployed in every
sandbox, transparent to the user, handles the routing of mon-
itoring messages from the agents of the VMs sandboxes to

the central system; central system components perform log
ingestion, processing, storage, and visualization.

A key innovation is the implementation of a dedicated
satellite logging pipeline, designed to capture user interactions
with aerospace-related components. Commands and telemetry
related to satellite subsystems are intercepted via a custom
logging script and tagged with the identifier sat. These
structured logs (in JSON/RFC5424 format) include unique
correlation IDs and metadata and are routed in real time via
MAN to the syslog-ng server.

This monitoring system is seamlessly integrated with the
emulation part to log all user actions and all topology changes
within the constellation, ensuring accurate traceability of the
network’s evolution over time. Each event is recorded with a
corresponding type, a descriptive comment, and the update sta-
tus. The system captures different types of updates: inter- and
ground-to-satellite visibility changes; link metrics (bandwidth,
loss, delay) for both ground and inter-satellite connections;
routing paths dynamically computed between ground nodes;
and user interactions such as command-line executions.

All logged information is periodically transmitted to the
monitoring platform as soon as the corresponding updates
are applied to the virtual infrastructure, enabling real-time
visibility and post-analysis of the emulated environment.

Syslog-ng service routes logs based on their tags (e.g., bash,
metasploit, training, sat) to dedicated Logstash pipelines. The
satellite pipeline specifically parses and enriches satellite-
related data (e.g. visibility, configuration parameters) and
forwards the processed information to Elasticsearch, enabling
advanced queries, indexed search, and historical data analysis.

A major strength of the architecture lies in the ease of
integration of the monitoring component into sandbox envi-
ronments. The deployment of monitoring agents is fully auto-
mated and triggered during the User Ansible stage of the OSR
provisioning toolchain (during the creation of the sandbox-
pool). Trainers can enable monitoring by simply referencing
the GitLab repository osr-sandbox—-logging.git in the
requirements.yml file of their training project. This
GitOps-based approach allows for selective inclusion of the
logging agents on a per-VM basis with minimal configuration
overhead.

The web-based frontend enables trainers to visualize user
activity in real time, as shown in the Appendix.

V. TRAINING SCENARIOS
A. Ground segment compromise

Story: A large company operates a Ground Station as a
Service (GaaS) platform accessible through a web application
hosted internally. Due to a complex security flaw, an external
attacker gains partial access to the server running this service.
Leveraging that access, the attacker extracts and modifies the
satellite firmware, which is later uploaded to a satellite through
an automated update process. This allows the attacker to
compromise orbiting satellites by pivoting through the ground
station.

Network: The network setup, shown in Figure 4a, includes a
constellation of LEO satellites. The configuration guarantees
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that at least one satellite is within communication range of the
ground station at all times, enabling continuous interaction for
updates and telemetry.

Walkthrough: The exercise begins with reconnaissance on
the ground station’s exposed web assets. Students perform
port scanning and directory enumeration, leading to the dis-
covery of an exposed Git repository [33]. Analysis of the
repository reveals configuration files referencing a hidden
virtual host. This host runs a test interface that allows basic
network checks and is vulnerable to a command injection
flaw. Exploiting this bug gives shell access to the ground
station. Once inside, students must locate the firmware binary,
extract it, and reverse-engineer it. Their goal is to modify the
logic to bypass conditional checks and force the firmware
to transmit a predefined secret flag. The altered firmware is
then repackaged into CCSDS-compliant packets. A scheduled
routine simulates the update process, uploading the patched
firmware to a satellite, which then emits the flag—marking
successful exploitation.

Relevance: Cyberattacks targeting ground infrastructures in
satellite systems are increasingly common. In 2022, Vi-
asat’s KA-SAT network was hit by the AcidRain malware,
which wiped satellite modem flash memory across Europe
and Ukraine [4]. Similarly, Russian satellite operator Dozor-
Teleport experienced a breach affecting its customer man-
agement systems, disrupting terminal operations [34]. These
incidents highlight the critical role of ground segment security
in protecting space-based assets.

B. Broadcast channel decryption

This scenario focuses on the role of cryptography in secur-
ing satellite communications.
Story: This scenario demonstrates how a misconfiguration
in a custom key exchange protocol can compromise the

confidentiality of satellite communications. A central satellite
periodically broadcasts a message containing an encrypted
symmetric key. The message includes:

e An RSA public key (PEM format);
o The symmetric key encrypted with that public key.

Each terminal checks whether the public key matches its
own private key and, if so, decrypts the symmetric key for
secure communications. An attacker, passively monitoring the
broadcast channel, leverages a flawed distribution of RSA keys
to perform a common factor attack, recovering the symmetric
key and decrypting sensitive data.

Network: As shown in Figure 4b, the setup involves a GEO
satellite broadcasting to multiple ground terminals over a
shared communication channel.

Walkthrough: The scenario begins with network traffic anal-
ysis to identify the broadcast channel, transport protocol
(UDP), and port number. Using Wireshark, students isolate
relevant packets and extract messages. A Python script is then
developed to parse these messages, extract RSA public keys
in PEM format, and perform an RSA Common Factor Attack
[35]. Successful exploitation reveals two private keys, allowing
decryption of two encrypted payloads containing the full flag.
Relevance: Cryptographic weaknesses in satellite systems are
a tangible risk. For instance, real-time attacks on the GMR-2
encryption used in satellite phones have demonstrated how im-
properly implemented ciphers can be reversed in practice [36].

C. LEO constellation DDoS

Story: This scenario emulates the ICARUS attack [8], target-
ing a misconfigured corporate network protected by a faulty
firewall and gateway. By compromising one internal machine,
the attacker builds a botnet to launch a Distributed Denial of
Service (DDoS) attack against a satellite link, saturating the
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limited bandwidth and disrupting inter-satellite communica-
tions.

Network: The topology (Figure 4c) includes a corporate net-
work connected to a satellite system via a limited-bandwidth
link. A test machine periodically pings two satellites and
confirms the attack’s success when one becomes unreachable.

Walkthrough: The attack begins with reconnaissance on the
firewall, which proxies access to an internal web server. This
proxy performs MIME-type validation for uploaded image
files. The student bypasses this check (e.g., using Burp Suite
to modify HTTP headers) to upload a PHP reverse shell.
Triggering the payload grants shell access. Next, the student
sets up a Command and Control (C2) system. Due to network
isolation, the web server machine is promoted as a local C2
server. It relays commands from the student’s external C2 host
to internal client agents, pre-installed on all network machines.
After establishing the botnet, the student identifies a vulnerable
satellite link (via t raceroute) and launches a DDoS attack
using iperf. Once the link is saturated, the test machine
detects the disruption and returns the flag.

Relevance: While DDoS attacks are well-known in traditional
networks, recent research, such as the ICARUS study [8],
highlights their applicability to satellite systems, where limited
bandwidth and critical links create high-impact vulnerabilities.

D. Firmware exploitation and satellite hijacking

This attack targets a vulnerable implementation of a library
used to parse telecommands.

Story: This scenario highlights how a low-level vulnerability,
such as a buffer overflow in satellite firmware, can be exploited
to hijack satellite behavior. The firmware uses unsafe functions
like strcpy, enabling an attacker to overwrite memory and
alter control logic. The target is a weather satellite respond-
ing to telemetry requests, with communications wrapped in
CCSDS format [37].

Network: Although only one satellite is needed for the attack,
the topology (Figure 4d) includes multiple LEO satellites to
minimize visibility gaps and make the scenario more realistic.

Walkthrough: Students begin by reverse-engineering the
satellite firmware to extract key information: the service port,
the CCSDS protocol format, and a vulnerable data structure.
The firmware includes a fixed-size buffer for message content,
followed by critical control data in memory. Due to the use
of unsafe functions like st rcpy, inputs exceeding the buffer
length can overwrite adjacent control bytes. The student crafts
a payload to overwrite these values, hijacking execution flow.
Since satellite visibility varies, they must scan multiple IPs to
find one within range. A successful attack corrupts satellite
behavior and triggers the flag.

Relevance: Satellite systems often rely on obscurity for secu-
rity, using proprietary firmware and undocumented protocols.
However, studies like Space Odyssey [16] show that reverse
engineering these components is feasible, and vulnerabilities
such as buffer overflows remain a critical threat.

VI. DEPLOYMENT AND PRELIMINARY EVALUATION
A. End-to-end system deployment on cloud

The OpenSatRange system is fully deployed within a private
OpenStack cloud infrastructure, leveraging the flexibility and
scalability offered by cloud-native technologies. At the core of
the deployment, the system services (Fig. 1) are orchestrated
through a Kubernetes cluster instantiated on top of a set
of dedicated OpenStack virtual machines. This architectural
choice brings several advantages. First, Kubernetes provides a
robust and fault-tolerant environment for managing container-
ized services, enabling automated deployment, self-healing,
and load balancing of the core components of the cyber
range. Second, the native integration between Kubernetes
and OpenStack enables the system services to dynamically
interact with the underlying infrastructure, provisioning new
virtual machines and virtual networks that form the training
sandboxes on demand.

This capability is particularly beneficial in the context of
training activities, where each session may involve multiple
user sandboxes with isolated and complex network topologies.
Thanks to the elasticity of the OpenStack cloud and the
orchestration power of Kubernetes, OpenSatRange can scale
horizontally by deploying and managing a large number of
training environments in parallel. This ensures that multiple
sessions can be hosted simultaneously, efficiently utilizing
cloud resources while maintaining strong isolation and repro-
ducibility guarantees.

B. Functional testing

Functional testing of the platform was conducted through
a combination of developer-led validation and controlled user
sessions. Each component was tested individually and in inte-
gration, following black-box and white-box methodologies.

The KYPO orchestrator was validated by deploying mul-
tiple concurrent sandbox instances for different users, en-
suring proper resource isolation, network segmentation, and
consistent scenario execution. All predefined scenarios from
the OSR marketplace were tested, including those requiring
OpenSAND integration and satellite-specific topologies. The
configuration parameters, such as satellite type, link condi-
tions, and SDN routing policies, were verified to be correctly
interpreted and enforced.

The monitoring infrastructure was tested by executing
known activity sequences within the sandboxes (e.g., bash
commands, web-based exploitation, reverse shells), and ver-
ifying their accurate collection and display in the instructor
dashboard. Event latency and logging throughput were evalu-
ated under load, and the system was able to sustain real-time
updates for over 10 concurrent users with no observable lag.

Simulation modules were tested independently by running
predefined satellite configurations via the NS-3 backend and
comparing link availability predictions against expected orbital
patterns. Logs and graphs generated by the simulator were
successfully exported and reused during emulation setup,
confirming the intended integration flow.

Overall, functional validation confirms the readiness of the
platform for structured training exercises and highlights the
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effectiveness of its modular design. Preliminary feedback from
instructors and testers emphasized the transparency of the
orchestration process and the richness of telemetry as key
strengths.

VII. CONCLUSIONS

This paper presented OpenSatRange, a cyber range archi-
tecture designed to support security training in the satellite
domain. The platform integrates simulation of orbital and
link-layer behavior, network emulation, and automated or-
chestration of containerized scenarios, enabling controlled and
reproducible exercises that reflect the specificities of satellite-
ground infrastructures.

Unlike generic cyber ranges, OpenSatRange models
satellite-specific characteristics such as orbital dynamics,
broadcast communication, and ground-space interactions. Its
monitoring infrastructure captures telemetry across multiple
layers, providing detailed insights into trainee actions and
enabling more structured feedback and assessment.

The current deployment demonstrates the feasibility of
this approach and highlights the importance of observabil-
ity and domain fidelity in vertical training contexts. Future
work includes extending the telemetry analysis pipeline and
conducting longitudinal studies on learning outcomes across
different user profiles.

APPENDIX
REAL-TIME DASHBOARD IN ACTION

This appendix illustrates how the real-time monitoring dash-
board was used during a training session based on Scenario
1. The dashboard aggregates telemetry from all active sand-
boxes into a unified web interface, continuously updated via
WebSocket channels.

It provides two main views: Progress, showing user ad-
vancement through the training flow (e.g., level completions,
hints used, answers, assessments), and Command Timeline,
logging executed commands including satellite terminal ac-
tions, Bash shell activity, and Metasploit usage. Examples are
shown in Figures 5b and 5a.

Instructors were able to inspect each student’s behavior in
real time: observing command sequences, open connections,
use of offensive tools, and interactions with emulated services.
Telemetry events were visualized as synchronized timelines
and could be exported as ZIP archives for offline analysis.

This setup allowed trainers to interpret the reasoning behind
student actions, regardless of whether a task was successfully
completed. Feedback was delivered during the session via chat,
video, or scenario annotations. Actions were also tagged with
evaluation metrics (e.g., tool selection, detection accuracy,
time to compromise) to support both formative and summative
assessment.

In multi-session use, the dashboard enabled comparison of
user behavior across training cohorts and supported adjust-
ments to scenario difficulty and pacing. The logging system
was extended to capture domain-specific events, as detailed in
Section IV-C and illustrated in Figure 6, integrating satellite-
related telemetry while remaining compatible with KYPO’s
experimental monitoring pipeline.
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