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Abstract—Satellite-IoT networks are being increasingly de-
ployed in mission-critical domains such as disaster response,
military communications, maritime surveillance, and remote
sensing. However, their heterogeneous architectures and resource-
constrained nodes expose them to packet-level threats exploiting
semantic dependencies across structured packet fields. Tradi-
tional intrusion detection systems (IDSs) often fail to capture
such dependencies, particularly when packet fields are miss-
ing or incomplete. To address this challenge, we propose a
lightweight anomaly detection approach based on DistilBERT—
a compact Transformer-based language model fine-tuned to
classify sentence-based representations of structured Satellite-IoT
packets. The proposed sentence-based representation preserves
inter-field dependencies and contextual semantics while enabling
efficient processing in resource-constrained Satellite-IoT environ-
ments. A scenario-driven dataset was constructed to support this
approach, incorporating 15 protocol- and security-aware fields
derived from realistic communication flows. It includes three
attack categories (injection, replay, and privilege abuse) and one
Normal class, simulating diverse traffic conditions observed in
operational Satellite-IoT environments. Experimental evaluations
confirm that the proposed model accurately detects semantic
anomalies under both complete and missing-field conditions,
achieving 99.0% accuracy and a 98.9% F1-score. These results
confirm the feasibility and practicality of applying a lightweight
large language model (LLM) for semantic packet analysis in
space communication systems and contribute to interpretable,
context-aware intrusion detection in next-generation Satellite-IoT
architectures.

Index Terms—Satellite-IoT Networks, cybersecurity, anomaly
detection, lightweight transformers, packet classification

I. INTRODUCTION

Satellite-IoT networks support mission-critical applications
such as maritime surveillance, disaster response, climate mon-
itoring, and defense communications by linking space, ground,
and user segments [1]. These systems connect satellites with
terrestrial control infrastructure, including gateways and fire-
walls, and with user-side platforms such as Internet-of-Things
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(IoT) sensors, unmanned aerial vehicles (UAVs), and global
navigation satellite system (GNSS) receivers operating across
diverse operational and regulatory contexts [2]. Moreover,
IoT devices positioned at the edge of Satellite-IoT networks
frequently operate with outdated firmware and insufficient
authentication mechanisms, exposing them as vulnerable end-
points and expanding the attack surface for threat actors [3],
[4]. Compared with conventional terrestrial systems, Satellite-
IoT environments must contend with bandwidth limitations,
intermittent connectivity, and constrained device capabilities;
these factors significantly complicate end-to-end security de-
ployment [5]. These architectural and operational constraints
hinder consistent security enforcement and fragment trust
boundaries across ground, space, and user segments, thereby
increasing the risk that vulnerabilities in one layer may
propagate through others due to protocol heterogeneity. One
illustrative case is the 2022 Viasat KA-SAT breach, in which
attackers exploited a ground-based management network to
distribute malicious firmware, ultimately disrupting satellite
modem functionality across Europe [6]. This incident demon-
strated how a compromise at the ground level can reverberate
through the space-ground communication infrastructure. Such
risks remain prevalent throughout the Satellite-IoT ecosystem,
particularly when firmware, protocol configurations, or identity
credentials are insufficiently protected [7].

Beyond infrastructure-level exploits, Satellite-IoT networks
are increasingly exposed to semantic-level threats that ex-
ploit contextual inconsistencies across packet fields [8]. These
anomalies—such as orbit-region mismatches, unauthorized
control attempts, and replayed telemetry—often appear syn-
tactically well-formed yet semantically inconsistent with op-
erational logic, thereby evading conventional parsing-based
checks [9], [10]. These threats reveal a core limitation of
conventional intrusion detection systems (IDSs): their inability



to model semantic relationships among packet fields. Al-
though deep learning architectures such as recurrent neu-
ral networks (RNNs) and Transformers offer stronger rep-
resentational capabilities [9], [11], they typically introduce
significant computational overhead and struggle to interpret
semantic relationships when input fields are incomplete or
noisy [12]. As a result, persistent challenges remain for
prevailing detection frameworks, especially within resource-
constrained Satellite-IoT infrastructures. To overcome these
limitations in capturing semantic inconsistencies, we propose
a semantic-aware detection approach that leverages struc-
tured packet formats and Transformer-based reasoning. The
method utilizes DistilBERT [13], chosen for its efficiency and
compatibility with resource-constrained satellite platforms.
Each structured packet is encoded as a natural-language-
style sentence that reflects cross-field semantics, allowing the
model to infer dependencies without relying on protocol-
specific encoders. We construct a domain-specific dataset
informed by realistic traffic patterns and attack behaviors,
incorporating Satellite-IoT packet specifications (e.g., CubeSat
Space Protocol (CSP) [14], MIOTY [15], and Consultative
Committee for Space Data Systems (CCSDS) [16]), field
schemas from public security datasets (e.g., TON-IoT [5]),
and operational constraints derived from protocol rules and
communication flows—such as orbit-region bindings, time-
to-live (TTL) ranges, and port configurations. The dataset
also includes adversarial cases involving contextual violations,
including field tampering, unauthorized command injection,
and payload-role inconsistencies.

This work offers three main contributions. First, we pro-
pose a semantic encoding scheme for structured packet data,
enabling Transformer-based inference without additional pre-
processing pipelines. Second, we demonstrate that a large lan-
guage model (LLM) can effectively detect multi-field semantic
anomalies, even under partial or degraded packet conditions.
Third, we introduce a reproducible data generation methodol-
ogy that produces a scenario-driven, labeled dataset tailored
for semantic anomaly detection in Satellite-IoT environments.
Unlike conventional IDSs based on rule matching, machine
learning, or deep learning techniques, our method leverages
language modeling to capture contextual inconsistencies across
multiple structured packet fields in an integrated approach
suitable for Satellite-IoT scenarios. The remainder of this
paper is organized as follows. Section II reviews related work,
Section III outlines the proposed detection approach, Sec-
tion I'V presents experimental results, and Section V concludes
with a summary and future directions.

II. RELATED WORK

Prior studies on intrusion detection for Satellite-IoT systems
have explored protocol-level behavior analysis across hetero-
geneous segments in response to increasingly complex packet-
level threats. This section reviews two key areas of related
work: intrusion detection techniques for Satellite-IoT network
security and the application of LLMs for semantic anomaly
detection in cyber-physical communication environments.

A. Security of Satellite-IoT Networks and Intrusion Detection

Research on the security of Satellite-IoT networks has
examined various intrusion detection mechanisms designed for
heterogeneous protocols and resource-constrained nodes span-
ning integrated terrestrial and space-based systems. Alsaedi et
al. introduced the TON_IoT dataset as a telemetry corpus tai-
lored for IoT and Industrial IoT (IIoT) environments, offering
structured features to support intrusion detection research [5].
While this dataset provides a valuable starting point, its
applicability to satellite communication remains limited due to
the absence of orbital context and satellite-specific semantics.
Wang et al. applied co-attention and entropy-based mecha-
nisms for anomaly detection in satellite telemetry streams,
demonstrating strong performance on structured sequence in-
puts [17]. However, these methods may be less effective under
dynamic protocol-level changes or degraded packet structures.

Lightweight IDSs for CubeSats have also gained traction
as a complementary direction, given their strict constraints on
memory, processing, and autonomy. Driouch et al. conducted a
survey on CubeSat IDS frameworks that prioritized autonomy
and low computational overhead [18], and later proposed
a distributed IDS based on deep learning for classifying
CSP-based packets [8]. These approaches have contributed
significantly to the CubeSat security domain; nevertheless,
the broader challenge of addressing semantic diversity across
layers and message formats remains unresolved.

Complementary research on deep learning for IoT security,
such as the work by Aldhaheri et al., has proposed hybrid de-
tection frameworks that incorporate multiple modalities [19].
While prior methods have shown reasonable performance in
general [oT and satellite contexts, many rely on rigid data for-
mats and struggle with semantic interpretation—particularly
in the presence of ambiguous, degraded, or partially missing
field data. Consequently, these limitations highlight the need
for IDSs that extend beyond packet-level features. Detecting
adversarial, semantically inconsistent, or partially missing field
data requires models—such as LLM-based architectures—that
can capture dependencies across structured packet fields.

B. LLM-Based Anomaly Detection

LLMs have emerged as a promising paradigm for network
security due to their ability to capture semantic relationships
across diverse protocol fields and traffic patterns [20]. Recent
studies have explored integrating LLMs into anomaly detec-
tion pipelines targeting both IoT and satellite communication
networks. Hassanin et al. [9] introduced PLLM-CS, a pre-
trained Transformer-based model designed for threat detection
in satellite networks, integrating protocol-aware features with
hierarchical threat modeling concepts. While the approach
effectively captured satellite-specific attack vectors, it relied
on synthetic and publicly available datasets, limiting its rep-
resentativeness for real-world packet flows. Ferrag et al. [21]
proposed a privacy-preserving LLM-based intrusion detection
framework for IoT and IIoT devices. Their model, based on
a lightweight BERT architecture, demonstrated high accuracy
and scalability while preserving on-device privacy; however,



the evaluation was confined to generic IoT settings without
addressing protocol heterogeneity or orbital communication
constraints. Worae et al. [22] proposed a unified framework for
IoT management and traffic anomaly detection that combines
contextual modeling with recent advances in LLMs, emphasiz-
ing explainability and cross-layer integration. However, real-
time operational validation remains limited.

Collectively, these studies demonstrate the growing applica-
bility of LLMs in cyber threat detection across both structured
and unstructured telemetry. However, prior approaches often
rely on rule-based or machine learning (ML) models that
fail to capture semantic dependencies across packet fields,
or they apply deep models with prohibitive inference costs
for spaceborne systems. Some LLM-based methods exist, but
they primarily target general-purpose datasets and lack adap-
tation to structured, domain-specific telemetry in Satellite-IoT
networks. To address these limitations, we propose a compact
LLM-based method tailored for semantic anomaly detection in
Satellite-IoT environments. The approach leverages sentence-
based representations of structured packets to support robust
detection under incomplete, degraded, or adversarial condi-
tions.

III. PROPOSED METHODOLOGY

This section presents a semantic anomaly detection ap-
proach for Satellite-IoT systems, which integrates domain-
driven packet simulation, sentence-based input construction,
and lightweight LLM-based classification to identify field-
level anomalies under constrained communication environ-
ments. Building upon prior work in hierarchical segmentation
and threat modeling [2], the proposed approach processes
structured Satellite-IoT packets composed of 15 fields aligned
with real-world protocols, including CSP, MIOTY, CCSDS,
and TON_IoT.

The 15 fields used in packet construction are summarized
in Table I. These include temporal attributes (t imestamp);
node-level identifiers (src, dst, src_region,
dst_region); link-level  parameters (priority,
src_port, dst_port); orbital context (orbit_class);
and message semantics (msg_type, payload_type,
payload, label, ttl, and flags). Each field is designed
to reflect protocol-compliant structures and operational
semantics across space, ground, and user segments, ensuring
compatibility with CSP, MIOTY, CCSDS, and TON_IoT
specifications.

Collectively, these fields encode both syntactic and se-
mantic dimensions of packet metadata—bridging low-level
protocol syntax with higher-level contextual semantics—and
are essential for capturing semantic inconsistencies. In par-
ticular, orbit_class and the region fields (src_region,
dst_region) are characteristic of Satellite-IoT systems and
describe orbital topology and spatial separation, thereby al-
lowing the model to learn contextual constraints inherent to
space-ground communication.

Unlike conventional IDSs based on static encodings or
shallow features, our method enables semantic inference
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Fig. 1. End-to-end flow diagram of the proposed sentence-based intrusion
detection process.

through a fine-tuned LLM while maintaining compatibil-
ity with resource-constrained nodes. The complete detection
pipeline is illustrated in Fig. 1, and each component is ex-
plained in the following subsections.

A. Packet Structure and Input Sentence Construction

Fig. 1 illustrates the end-to-end architecture of the pro-
posed semantic anomaly detection approach. The approach
comprises three main stages: (1) structured packet parsing and
conversion into sentence-based representations, (2) semantic
inference and anomaly classification using DistilBERT, and
(3) attack-type categorization and logging. This design aims to
preserve contextual semantics across heterogeneous communi-
cation flows among spaceborne nodes, ground control systems,
and user-operated devices.

(1) Semantic Packet Parsing: The first stage transforms
structured packet data into natural-language inputs suitable
for DistilBERT-based models. It consists of three components:
packet ingestion, field extraction, and sentence construction.

a) Packet Ingestion: Communication flows are generated
based on scenario-specific constraints that reflect realistic
interactions among ground (e.g., gcs, gwl), space (e.g., leo,
meo), and user-segment nodes (e.g., iot, uav). Each link ad-
heres to protocol-level constraints derived from CSP, MIOTY,



TABLE I
STRUCTURE AND DESCRIPTION OF PACKET FIELDS IN THE SATELLITE-IOT DATASET

Field Name Description Example Values
timestamp Packet generation time in ISO 8601 format 2025-07-01T03:15:20

src, dst Valid communication nodes defined in NORMAL_LINKS gwl—iot, leo—gcs?

priority Message priority determined by msg_type LOW, MEDIUM, HIGH, CRITICAL

src_port, dst_port
src_region, dst_region
orbit_class

msg_type Message type defined in VALID_MSG_TYPES per src—dst pair
payload_type Field type determined by msg_type

payload Formatted content generated according to payload_type
label Class label used for anomaly detection

ttl Time-to-live value determined by src/dst role
Control flags associated with msg_type

flags

Ports assigned per node from SRC_PORT_MAP / DST_PORT_MAP
Regional codes derived from REGION_MAP
Orbit category derived from ORBIT_CLASS_MAP

src=gw1— 1883, dst=leo—3001°
AS—AF, EQ—SP
LEO, MEO, N/A
telemetry, data, command, status, ack, alert®
TEMP, SIZE, MOVE, SIGNAL_LOSS, NORMAL{
TEMP=24.5, command=RESET, ...
Normal, Injection, Replay, Privilege Abuse
64, 128, 200, 255
ACK, PSH, SYN, ENC, RST®

2 Examples include (gwl, iot), (rt, gw2), and (gcs, meo), based on NORMAL_LINKS.
b Port values are statically mapped per node; e.g., gw1:1883, leo:3001.
¢ Allowed message types are predefined for each src—dst pair in the system design.
4 Mapping: telemetry—{ TEMP, HUM, POS, BATT}, data—{COORD, SIZE, DATA_TYPE, REF_ID}, command—{ACTIVATE, MOVE, RESET, ...},
ack—{RECEIVED, EXECUTED}, alert—{ANOMALY_DETECTED, ...}, status—{NORMAL, LOW_BATTERY, ...}.
¢ Flag options include ACK, PSH, ENC, SYN, RST, etc., as defined in FLAGS_BY_MSGTYPE.

CCSDS, and TON_IoT specifications. For instance, telemetry
messages are periodically broadcast from leo to ground
nodes, whereas command transmissions originate exclusively
from control nodes such as gcs to low-privilege endpoints like
iot, thereby enforcing access hierarchies defined by mission
protocols.

b) Field Extraction: Packets are parsed into 15 dis-
crete fields encoding spatial, temporal, and logical metadata.
These include routing identifiers (src, dst, src_port,
dst_port), semantic fields (msg_type, payload_type,
payload), timing information (t imestamp, tt1), and con-
trol descriptors (priority, £lags). Protocol-aware valida-
tion is applied to detect semantic inconsistencies. For example,
a command packet with flag SYN from a sensor-class node
(iot) to a control node (gcs) violates privilege boundaries
and is classified as anomalous.

To ensure data validity, all synthesized packets were verified
through range and type constraints (e.g., nonnegative ttl,
predefined port sets, and valid msg_type-payload_type
pairs). Normal packets were generated strictly within these
protocol-defined limits, whereas attack samples intentionally
violated one or more constraints—for instance, a field value
exceeding the valid range (e.g., tt1=300 for a normal range
of 0-255) or an invalid combination of msg_type and
payload_type. For robustness evaluation, certain fields
were intentionally omitted to simulate incomplete or lossy
packet conditions. In such cases, the field label was retained
in the input sentence, but its value was left blank, preserving
the syntactic structure without injecting artificial tokens. For
malformed numerical values, such as negative tt 1, a sentinel
indicator (e.g., INVALID_TTL) was used. This design allows
the model to learn semantic irregularities arising from both
missing and invalid fields, including those that explicitly vio-
late protocol-level constraints, without explicit feature removal
or imputation.

c¢) Sentence Construction: Validated fields are
serialized into structured sentences that preserve semantic

dependencies. A representative example is: “At timestamp
2025-07-10T08:30:002, node iot (region=AF,
orbit=LEO, port=3001) sent a command message
to gcs (region=EU, port=1001) containing payload
command=RESET, with priority HIGH, flag SYN, TTL 128,
and protocol fields indicating payload_type=command.”

This representation captures both field-level syntax and
contextual intent, enabling the LLM to infer anomalies arising
from spoofed roles, improper field combinations, or orbit—
region mismatches. Unlike conventional IDSs that rely on flat
feature vectors or static field encodings, our sentence-based
formulation captures the semantic interplay among protocol
fields—such as source role, message intent, and payload
content—without requiring explicit parsers or manual feature
design. This enables the LLM to infer context-sensitive anoma-
lies, including unauthorized command injections, repeated
telemetry sequences, and violations of communication hier-
archies, which are typically indistinguishable in conventional
field-isolated models.

(2) Semantic Inference and Anomaly Classification: Af-
ter sentence construction, each packet sentence is processed
through a lightweight semantic encoder based on DistilBERT.
As illustrated in Fig. 1, this stage comprises three sequential
modules: tokenization, semantic inference, and anomaly deci-
sion.

a) Tokenization (DistilBERT): Each serialized packet sen-
tence is tokenized using the WordPiece tokenizer embedded
in the DistilBERT architecture. The tokenizer decomposes
domain-specific field—value pairs (e.g., command=RESET,
orbit=LEO) into subword units, thereby enabling the model
to capture fine-grained semantics of protocol terms. Special
classification tokens—[CLS] for sentence-level summariza-
tion and [SEP] for boundary demarcation—are inserted to
conform to the Transformer input format. The resulting to-
ken sequence is then mapped into high-dimensional embed-
dings that preserve both syntactic structure and contextual
semantics, thereby optimizing performance under bandwidth-



constrained and latency-sensitive aerospace environments. To-
kenization follows the WordPiece algorithm inherited from
BERT [23]. This subword-based method decomposes rare
or compound identifiers into smaller semantic units, allow-
ing consistent representation of protocol-specific tokens such
as orbit_class=LEO or payload_type=command.
WordPiece is particularly suitable for Satellite-IoT packet sen-
tences, as it enables robust handling of unseen abbreviations
and structured field values without expanding the vocabulary
size.

b) Semantic Inference: The token embeddings are prop-
agated through six Transformer encoder layers, each em-
ploying self-attention mechanisms and residual feed-forward
operations. These layers learn long-range dependencies across
heterogeneous fields such as src_region, msg_type, and
flags, thereby enabling the model to infer higher-order
semantic inconsistencies that span multiple fields. For in-
stance, a RESET command transmitted from a low-trust node
(e.g., iot) to a mission-critical control node (e.g., gcs),
accompanied by a SYN flag, may indicate a potential privilege-
escalation attempt. The attention weights dynamically adapt
to cross-field interactions, thereby modeling latent security
policies and protocol-specific role constraints without relying
on protocol parsers or handcrafted logic.

The DistilBERT backbone employs six Transformer en-
coder layers distilled from BERT-base, providing a balanced
trade-off between representational depth and computational
efficiency [13]. Each layer refines token embeddings through
multi-head self-attention and feed-forward transformations,
enabling progressive modeling of inter-field dependencies
across sentence-level packet representations. This architec-
ture captures long-range contextual relations while remaining
lightweight enough for onboard or gateway-level deployment.

¢) Anomaly Decision: The final [CLS] token output rep-
resents a global semantic summary of the entire packet. This
representation is passed through a lightweight classification
head, which consists of a fully connected layer followed by a
softmax (or sigmoid) activation. The head produces a scalar
anomaly score, denoted as Sanom, Which is compared against a
threshold 7, calibrated on the validation set. If s.nom > Tinh,
the packet is flagged as anomalous. This step remains com-
putationally efficient and thus suitable for real-time inference
on embedded systems. Moreover, the architecture is readily
extensible to multi-class threat classification (e.g., injection,
replay, privilege abuse) by adjusting the output dimension of
the classifier.

This DistilBERT-based inference module enables robust
detection of semantic-aware threats—such as injection, re-
play, and privilege abuse—even under partially degraded or
missing-field conditions. Unlike conventional rule-based or
statistical models that rely on rigid packet structures, the
proposed approach generalizes across heterogeneous protocols
without manual feature engineering and remains robust under
bandwidth-limited satellite uplinks.

(3) Attack Type Classification and Logging: For packets
identified as anomalous, a secondary classification module

assigns a specific threat label—namely, injection, replay, or
privilege abuse. These categories correspond to protocol-
specific violations observed in Satellite-IoT environments and
are derived from semantic inconsistencies detected during
preceding encoding stages.

a) Intrusion Type Classifier: The final [CLS] token em-
bedding, representing a holistic summary of the input sentence,
is passed through a softmax-based multi-class classifier. This
classifier is trained to differentiate intrusion types based on
inter-field semantic patterns—such as mismatched payload
values and flag combinations (injection), reused timestamp—
payload pairs (replay), or unauthorized command issuance
from low-trust nodes (privilege abuse). Each class label cor-
responds to a distinct protocol misuse scenario verified during
dataset construction.

b) Logging and Response: Once classified, the threat label
is appended to a log entry along with relevant metadata,
including timestamp, source, destination, message type, and
payload content. This audit trail facilitates post-event forensic
analysis and enables policy-driven responses such as selec-
tive packet dropping, alert generation, or patch recommenda-
tions. In future implementations, these logs may also provide
feedback for reinforcement learning—based adaptation or for
retraining classifiers under evolving threat conditions.

This third stage completes the anomaly detection pipeline by
producing explainable threat labels and structured logs. When
combined with the preceding semantic parsing and binary
anomaly detection stages, it forms a lightweight, semantic-
aware intrusion detection mechanism tailored to the resource
constraints of Satellite-IoT systems.

B. DistilBERT-Based Semantic Anomaly Classification

The proposed anomaly detection approach operates as an
end-to-end semantic classification process tailored for struc-
tured Satellite-IoT packet streams. Unlike traditional mod-
ular intrusion detection systems that handle packet pars-
ing, inference, and decision-making as separate stages, our
architecture integrates protocol-aware sentence generation
with Transformer-based embedding, thereby enabling holistic,
semantic-aware threat classification. The detection pipeline
comprises four key stages: (i) structured packet ingestion
and sentence-based representation, (ii) semantic embedding
via a lightweight Transformer encoder (DistilBERT), (iii)
classification into operationally defined threat categories, and
(iv) structured metadata logging for forensic traceability and
downstream responses.

This architecture is designed to preserve semantic consis-
tency across spatial, temporal, and logical fields while main-
taining robust detection under incomplete, noisy, or protocol-
divergent conditions. Each packet is represented as a natural-
language sentence that captures field-level semantics, includ-
ing orbit-region associations, privilege constraints conditioned
on message type, and consistency between flags and payloads.
The sentence is tokenized using the WordPiece tokenizer,
encoded through six Transformer encoder layers, and sum-
marized by the final [CLS] token embedding. The resulting



sentence embedding is then passed through a fully connected
classification head, which is trained in a supervised manner to
assign an anomaly label.

To reflect security-relevant behavior in Satellite-IoT envi-
ronments, the classifier predicts one of four semantic labels:

o Normal: The packet adheres to system-defined field
constraints and segment-role policies. All field values—
including source, destination, message type, and
payload—comply with authorized communication flows.

o Injection: The packet contains malformed or semanti-
cally inconsistent payloads that violate structural rules or
protocol specifications. These anomalies typically arise
from unauthorized field manipulation or parser-directed
attacks (e.g., iot — gwl with msg_type=command,
payload=CALIBRATE, f1ag=URG).

o Replay: The packet reuses previously transmitted times-
tamp and payload values, thereby violating temporal
consistency. Such behavior may lead to state inconsis-
tencies or trigger unintended operations (e.g., repeated
telemetry from uav — gw2 with identical timestamp
and payload=P0S=37.4,127.1).

o Privilege Abuse: A low-privilege node (e.g., iot) at-
tempts to issue control-level commands (e.g., RESET,
SHUTDOWN) to high-privilege nodes (e.g., gcs),
thereby violating access-control policies enforced within
the communication model (e.g., iot — gcs with
command=SHUTDOWN).

This threat-aware semantic classification enables the model
to detect anomalies that, while structurally valid, violate
contextual expectations. For instance, a packet containing
command=RESET transmitted from an iot node may con-
form to protocol syntax yet violate sender-privilege policies.
Likewise, a telemetry message exchanged between disallowed
node pairs may appear syntactically correct yet raise behav-
ioral concerns. By modeling inter-field relationships through
self-attention mechanisms, the system performs reliably with-
out handcrafted rules.

Each threat class represents a distinct security risk within
Satellite-IoT systems: injection denotes payload-integrity vi-
olations, replay concerns the freshness and correctness of
temporal sequences, and privilege abuse involves unauthorized
attempts to execute privileged operations. This mapping to
domain-relevant threat semantics enhances both interpretabil-
ity and operational relevance, ensuring applicability in real-
world environments. In addition, these categories collectively
capture a broad spectrum of semantic inconsistencies ob-
servable at the packet level, ranging from data-field manip-
ulation to cross-segment privilege escalation. By associating
each anomaly type with a specific operational context, the
classification results can be directly interpreted in terms of
system behavior and mission impact, thereby bridging the gap
between packet-level detection and system-level situational
awareness.

Section IV presents an empirical evaluation of the proposed
detection approach under realistic Satellite-IoT conditions,
encompassing both normal and adversarial scenarios. The

model’s performance is compared with existing intrusion
detection methods—including rule-based and learning-based
approaches—to evaluate robustness and semantic generaliza-
tion.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

This section presents a comprehensive evaluation of the
proposed DistilBERT-based semantic anomaly detection ap-
proach.

A. Experimental Environment and Dataset Construction

We utilize a pre-trained DistilBERT model from
Hugging Face, fine-tuned for sentence-level multi-class
classification. Each input sentence is derived from a

structured packet comprising 15 fields, including attributes
such as src, dst, msg_type, orbit_class, and
payload. A representative input sentence (partial view)
is as follows: “Telemetry message from leo to gcs
carrying TEMP=22.5 with priority HIGH and flag
ENC at timestamp 2025-07-10T08:30:002.” To
illustrate an anomalous case, consider: “At timestamp
2025-07-10T08:45:122, node iot (region=AF,
orbit=LEO) transmitted a command=RESET message to
gcs with priority HIGH and flag SYN, thereby violating
access-control constraints.”

The objective of this evaluation is to assess the model’s
capability to classify Satellite-IoT packets into four security-
relevant categories—normal, injection, replay, and privilege
abuse—through three complementary experiments: (i) perfor-
mance benchmarking against baseline models, (ii) evaluation
under scenario-specific anomalies, and (iii) interpretability
analysis via attention-based field attribution.

To support these experiments, a scenario-driven Satellite-
IoT dataset was constructed using protocol-constrained synthe-
sis. The dataset integrates packet structures and field character-
istics derived from CSP logs, MIOTY sensor traces collected
in our testbed, CCSDS-formatted messages, and traffic patterns
from the TON_IoT dataset. These heterogeneous sources were
analyzed to establish unified specifications representing real-
istic cross-segment communication among space, ground, and
user nodes. Custom Python scripts were employed to synthe-
size packets according to these specifications, generating both
normal and malicious traffic through controlled randomization
and targeted field manipulation corresponding to injection, re-
play, and privilege abuse behaviors. This synthetic generation
ensures reproducible experimentation while avoiding the use
of sensitive real-world operational data.

The training set consists of 25,000 samples—comprising
10,000 normal packets and 15,000 attack instances equally
distributed across injection, replay, and privilege abuse. For
evaluation, 5,000 fully structured packets were used as the
primary test set. In addition, 5,000 test samples with randomly
missing two to five fields were constructed to assess robustness
under incomplete input conditions, simulating data degrada-
tion in lossy Satellite-IoT environments. All experiments are
conducted using fixed training and test splits derived from



the structured packet dataset. The model is trained using
the AdamW optimizer for ten epochs, with a batch size
of 16 and a maximum sequence length of 128. To address
class imbalance, a weighted cross-entropy loss function is
employed. Evaluation metrics include overall accuracy and
weighted Fl1-score.

B. Computational Efficiency and Edge Feasibility

We adopt DistilBERT as the base model owing to its effi-
ciency and suitability for deployment on resource-constrained
systems. With approximately 66 million parameters, it offers a
lightweight alternative to BERT-base while maintaining strong
detection capability [13]. To quantify the computational cost
of the proposed approach, two primary metrics were mea-
sured. All training and inference experiments were conducted
on a desktop running Windows 11 (64-bit) equipped with
an Intel Core i7-11700 CPU, 64 GB of system memory,
and an NVIDIA GeForce RTX 3060 GPU with 12 GB of
VRAM. The implementation was developed in Python 3.11
using PyTorch v2.7.1 (CUDA-enabled) and the Hugging Face
Transformers library (v4.53.0). The pre-trained model used
in all experiments was distilbert-base—uncased from
the Hugging Face model repository. Training was performed
for 10 epochs with a batch size of 16 and a maximum sequence
length of 128. The AdamW optimizer—the default optimiza-
tion method for Transformer-based models—was employed for
fine-tuning due to its effective weight-decay regularization and
stable convergence properties [24]. Under this environment,
the observed peak GPU memory consumption during training
(batch size = 16) reached approximately 789 MB, and the
average inference latency per packet was 26.2 ms.

The 789 MB figure corresponds to the GPU-based training
configuration, which includes additional memory allocations
for optimizer states and backpropagation buffers. During
training, extra memory is reserved for gradient computation
and optimizer updates, whereas these components are absent
during inference. In operational scenarios, model training is
performed offline, and only the fine-tuned DistilBERT weights
are executed for inference on satellite or ground-segment
devices. Under inference-only conditions, gradients are dis-
abled, and mixed-precision execution can be applied, sub-
stantially reducing memory demand. The inference footprint
is primarily determined by model parameters (approximately
66 million, typically stored in 250-300 MB) and minimal
runtime activations. Preliminary validation on two edge-class
platforms—a Raspberry Pi 4B (8§ GB RAM) connected to
MIOTY sensor nodes and an NVIDIA Jetson Nano used for
embedded inference—confirmed that the model consistently
operated within the 250-300 MB memory range, with minor
variations depending on runtime configurations. These results
demonstrate the feasibility of deploying the proposed model
on compact edge hardware in Satellite-IoT environments.

Compared with larger Transformer models such as BERT-
base, which typically require more than 1.2 GB of memory
even for inference [25], DistilBERT provides a lightweight
yet semantically capable alternative suitable for near real-time

TABLE II
PERFORMANCE COMPARISON OF DETECTION MODELS ON SATELLITE-IOT
PACKET CLASSIFICATION.

Model Accuracy (%) Precision (%) Recall (%) Fl-score (%)
Snort 48.1 48.0 39.0 34.0
Random Forest 87.6 88.0 87.0 87.0
LSTM 92.8 95.0 91.0 92.3
DistilBERT 99.0 99.0 99.0 98.9

packet-level analysis in Satellite-IoT systems [26]. Valida-
tion of performance and precise resource utilization within
an operational satellite environment remains an important
direction for future work. The evaluation encompasses both
standard classification performance under balanced label dis-
tributions and manually constructed, scenario-based anomalies
that reflect realistic security threats. These include malformed
payloads, unauthorized command issuance, and timestamp—
payload duplication indicative of replay attacks. The following
subsections present detailed evaluation results across three
dimensions: baseline comparison, scenario-specific detection
accuracy, and attention-based interpretability.

C. Performance Comparison with Baseline Models

We evaluate the effectiveness of the proposed semantic
anomaly detection approach by comparing it with three rep-
resentative baselines: a rule-based engine (Snort [27]), a
traditional machine-learning classifier (Random Forest [28]),
and a sequence-aware deep-learning model (LSTM [29]). The
results demonstrate that sentence-level modeling of inter-field
semantics significantly enhances anomaly detection accuracy
compared with conventional approaches that process each
packet field independently without contextual integration.

As shown in Table II, the rule-based Snort engine exhibits
low recall and F1-score due to its reliance on static signatures,
which renders it ineffective against semantically or structurally
inconsistent packets. The Random Forest classifier benefits
from data-driven learning but lacks awareness of semantic
relationships among protocol fields, resulting in only moder-
ate performance. The LSTM model demonstrates improved
sensitivity by capturing sequential dependencies; however,
its limited ability to model non-local interactions—such as
inconsistencies between flags and payloads or mismatches
between region and role—reduces its robustness in multi-
field anomaly scenarios. On the test dataset, the proposed
DistilBERT-based approach outperforms all baseline methods
across every metric, achieving 99.0% accuracy and 98.9% F1-
score. This performance improvement is attributed to the abil-
ity of DistilBERT to encode sentence-level representations of
packet structures and capture inter-field dependencies via self-
attention mechanisms. It accurately detects semantic anomalies
that span multiple fields, such as a RESET command issued
by a non-authoritative node or a telemetry message with a
contextually valid payload but paired with an unexpected or
unauthorized flag.

These results demonstrate that Transformer-based semantic
modeling can effectively capture inter-field dependencies and
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contextual inconsistencies. Such models are particularly suit-
able for the Satellite-IoT domain, where attacks often involve
subtle semantic inconsistencies rather than explicit field-level
anomalies [9].

D. Evaluation on Scenario-Based Anomalies

We evaluate the model’s robustness against anomalies that
reflect realistic operational challenges in Satellite-IoT net-
works, including partial field omissions, inconsistent payload—
flag combinations, and unauthorized command injections. We
consider two scenarios: (i) Normal packets, which include
all 15 predefined fields, and (ii) Missing-field packets, in
which two or more noncritical fields—such as flags, orbit
class, or time-to-live—are randomly omitted. These scenar-
ios emulate anomalous telemetry resulting from transmission
faults, protocol mismatches, or adversarial field tampering.
This evaluation assesses the model’s ability to generalize its
semantic reasoning to incomplete inputs, even when trained
exclusively on fully structured packets. This generalization
capability is critical for practical deployment in Satellite-
IoT networks, where intermittent connectivity and resource
limitations frequently result in partial field dropout.

Figure 2 illustrates the validation accuracy across epochs
for both input scenarios. Under normal conditions, the model
converges rapidly, achieving over 99% accuracy by the fourth
epoch. This indicates strong internalization of inter-field de-
pendencies when the full packet structure is available. In
contrast, when key fields are missing, the model maintains a
consistent validation accuracy of approximately 78%, demon-
strating tolerance to incomplete input. Despite the absence
of key semantic cues such as msg_type, payload, and
src, the model achieves robust classification performance.
Traditional ML and noncontextual DL baselines, on the other
hand, either fail to converge during training or exhibit near-
random classification under the same conditions, often unable
to detect any anomaly. This contrast underscores the advan-
tage of our attention-based approach in handling degraded
or partially structured packets by inferring missing semantics
from surrounding context. Furthermore, to assess training
stability, Figure 3 compares training and validation accuracy
under normal packet conditions. The close alignment of the
two curves confirms effective convergence without overfitting,
indicating that the model generalizes well even when trained
solely on fully structured inputs.

These results demonstrate the practical viability of the
proposed model in Satellite-IoT environments, showing its
ability to generalize effectively even when packet inputs are
incomplete or partially corrupted due to bandwidth limitations,
transmission faults, or adversarial tampering.

E. Analysis of Attention-Based Feature Importance

Interpretability in decision-making is essential when de-
ploying anomaly detection systems in security-sensitive en-
vironments such as Satellite-IoT networks, where operational
transparency is critical for trust and accountability. To evaluate
the interpretability of the proposed model, we analyze attention
weights extracted from the final Transformer encoder layer
of DistilBERT. This layer captures high-level dependencies
across structured packet fields, providing insight into how
the model internally represents and prioritizes threat-relevant
information.

Table III summarizes the average attention allocation across
all 15 structured fields, categorized by the four threat labels:
normal, injection, replay, and privilege abuse. The results
reveal distinct and consistent patterns of attention distribution
aligned with the semantic properties of each threat class. For
instance, the flags field receives the highest attention in
both the normal and injection classes, suggesting that control-
level indicators such as ACK and URG are central to distin-
guishing benign traffic from tampered packets—particularly
when payload structure alone is ambiguous or unaltered. In
the replay class, the model assigns dominant attention weight
to the timestamp field, reflecting its reliance on temporal
redundancy as a key anomaly indicator. In contrast, for priv-
ilege abuse, attention concentrates on the src, src_port,
and priority fields, indicating that the model captures role-
based access violations through origin identity and command
criticality.



TABLE III
AVERAGE ATTENTION WEIGHTS PER FIELD ACROSS FOUR
CLASSIFICATION LABELS

Field Name Normal Injection Privilege Abuse Replay
flags 0.0231 0.0140 0.0091 0.0097
timestamp 0.0060 0.0102 0.0105 0.0088
src 0.0080 0.0103 0.0098 0.0078
src_region 0.0092 0.0087 0.0091 0.0084
payload 0.0049 0.0080 0.0087 0.0083
priority 0.0037 0.0073 0.0103 0.0081
orbit_class 0.0049 0.0071 0.0091 0.0076
dst_region 0.0072 0.0069 0.0087 0.0078
src_port 0.0048 0.0070 0.0086 0.0078
msg_type 0.0074 0.0068 0.0082 0.0083
payload_type  0.0032 0.0052 0.0082 0.0079
dst_port 0.0033 0.0057 0.0083 0.0075
ttl 0.0027 0.0050 0.0084 0.0066
dst 0.0025 0.0052 0.0086 0.0062

These observations indicate that the model does not rely
on a fixed set of predefined features but instead dynamically
adjusts its attention depending on the context and semantics
of each threat type. In contrast to traditional IDS approaches
that treat packet fields independently or rely on rigid rule
sets, the Transformer-based design captures meaningful inter-
actions across fields that reflect abnormal protocol behavior.
This flexible attention mechanism enhances generalization
to unfamiliar patterns while offering interpretability at the
field level—thereby facilitating understanding of how specific
combinations of inputs lead to each decision. By aligning
attention with threat-specific characteristics, the model helps
translate structural input variations into clear, security-relevant
signals for Satellite-IoT applications.

V. CONCLUSION AND FUTURE WORK

In this paper, we proposed a semantic anomaly detection
approach for Satellite-IoT networks that leverages sentence-
based representations of structured packets and a lightweight
Transformer model, DistilBERT. Each packet, composed of
15 predefined fields, was converted into natural-language-like
sentences to enable contextual reasoning and cross-field de-
pendency modeling—key capabilities for identifying protocol-
level anomalies in space communication systems. Experimen-
tal evaluation across four categories (normal, injection, replay,
and privilege abuse) showed that our DistilBERT-based model
outperformed rule-based systems (Snort), classical machine
learning (Random Forest), and sequential deep learning mod-
els (LSTM), achieving 99.0% accuracy and 98.9% F1-score
with low inference latency and memory usage. Scenario-
based evaluation confirmed robustness under missing-field
conditions, while attention-based interpretation showed that
the model’s field-level focus aligns with domain-specific threat
semantics.

While effective for single-packet anomalies, the current
approach does not explicitly model temporal dependencies
across sequential packets; as a result, certain false positives
or missed detections may occur when session-level context is
required. Future work will therefore extend the framework to
multi-packet and time-series inference to incorporate temporal

context for more reliable session-level detection. Another
direction is integrating LLM-based anomaly detection with
hierarchical threat modeling frameworks [2], [30], abstracting
packet-level predictions into higher-level semantic representa-
tions for system-wide threat propagation analysis. To enhance
interpretability and operational alignment, we will also explore
tactics, techniques, and procedures (TTP)-based abstraction
that links detected anomalies with adversarial tactics in struc-
tured threat models [31]. Finally, we will broaden coverage
to cross-layer threats at the physical and MAC layers (e.g.,
spoofing, signal manipulation, jamming) and validate compu-
tational feasibility on onboard processors to assess operational
constraints.

In conclusion, the proposed method provides a practical
and interpretable framework for semantic anomaly detection
in Satellite-IoT environments, combining structured packet
modeling with lightweight Transformer-based inference to
enhance both detection accuracy and system resilience.
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