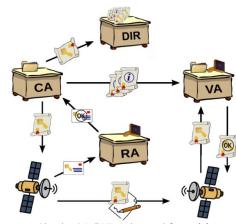
Delegated Certificate Validation for Federated Space Public Key Infrastructure

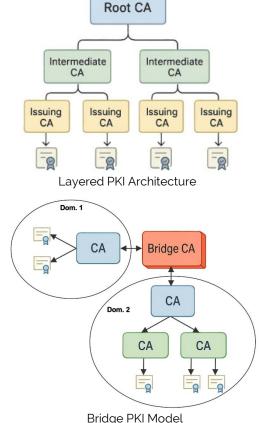
Alin-Petru Roșu
(Delft University of Technology)

Oana-Alexandra Graur (European Space Agency)

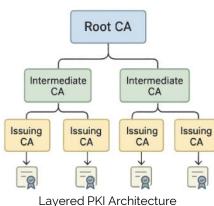
Security for Space Systems (3S) 2025 ESTEC, The Netherlands November 05, 2025



Context


- Space missions increasingly require international collaboration (e.g., Artemis)
- ECSS & CCSDS key management limited to symmetric cryptography which lacks scalability
- PKI deployment in space is challenging; federated PKI, even more
- Certificate validation remains an open problem under limited connectivity and multi-agency trust models

Single CA PKI. Adapted from [1] under CC BY-SA 3.0


Problem Statement

- Path construction is challenged by intermittent connectivity and limited bandwidth
- Classical revocation mechanisms (CRLs, OCSP) are hard to adopt in space
- Potential lack of reliable time source (validity check)
- Validation in federated PKIs requires policy mappings and constraint extensions processing
- Post-Quantum Cryptography (PQC) further complicates validation

Mitigation

- Delegated Path Validation (**DPV**) and Discovery (**DPD**) RFC 3379
- Protocol to achieve DPV/DPD: Server-Based Certificate Validation Protocol (SCVP) - RFC 5055
- "applications are burdened with the overhead of constructing and validating the certification paths"
- "delegating path discovery and/or validation processing to a server, and to allow central administration of validation policies within an organization"
- SCVP servers can be trusted or not for full validation

SCVP and Validation Policies

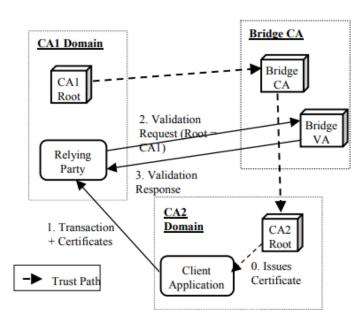
- Request-response model under a specified validation policy:
 - Defines the list of trust anchors
 - Configures the sources and type of **revocation information**
 - Check if certificates strictly adhere to predefined profiles (e.g., specific extensions and algorithm sets)
- High configurability (e.g., policies can be parametrized, clients can specify time for validation or trust server's time)

SCVP Security Considerations

- **Trust scope:** DPV clients can trust different servers
- Integrity protection: Requests and responses protected with digital signatures or MACs
- **Trust implication:** Trusting a server is equivalent to trusting local validation software.
- Security requirement: An SCVP server must be secured at least as strongly as its trusted anchors
- **No confidentiality:** SCVP does not provide encryption
- Replay protection: Nonce extensions prevent replay attacks

Advantages

Disadvantages


- Relayed requests
- Simplified software on constrained assets
- Centralized policy management (auditability)
- Lowers computational and network load on client side
- Stapling-like mechanisms are possible (but not standard)

- Complex server implementation and management
- Complex PKI architecture
- Single point of failure
- Limited commercial adoption (SCVP providers: HID, Axway, Ascertia ADSS, Trusted Hub SCVP Appliance)

Proposal

- PoC SCVP implementation
- For this demonstration, the server will be deployed on the ground and compare with local validation
- SCVP can be deployed as part of a Bridge VA
- Future architectures can explore in-orbit SCVP relays

Architecture with a Bridge VA

THANK YOU!

Questions?

Contact

