

Analysis of Coverage of ZD Technical Booklet by the ESA Clean Space Roadmap

Clean Space team

→ THE EUROPEAN SPACE AGENCY

11/06/2025

ESA UNCLASSIFIED – For ESA Official Use Only

Zero Debris Technical Booklet: Aim and Contents (1/2)

ISSUE 1.0

- The aim of the Booklet is to serve as a resource for the ZD Community to direct its resources towards research and future technology developments.
- Mapping of Key Enablers with ZD roadmap

Zero Debris Technical Booklet: Aim and Contents (2/2)

💳 🔜 📲 🚍 💳 🕂 📲 🔚 🔚 🔚 📲 🚍 📲 🔤 🛶 🚳 🍉 📲 🚟 🚍 🖬 🖬 👘 → THE EUROPEAN SPACE AGENCY

Clean Space roadmap 25-28: Main Blocks

Main blocks

System level Integration and Validation aspects

Reliability and resilience

Passivation Systems

De-orbiting Systems and technologies

Design for Demise (D4D)

Launcher evolution/adaptation

SDM requirements consolidation and development of verification models

Dark and Quiet Skies

Design for Removal (D4R)

Removal Services (CAT, multi-debris removal studies, debris removal in protected regions)

Space Surveillance and Tracking (SST) & Space Traffic Coordination (STC)

Impacts of spacecraft re-entry on the Earth's environment

Atmospheric and Ocean - Ground Testing and Tech Development

Atmospheric - Field Data

Atmospheric and Ocean - Modelling

93 activities considered

Clean Space CMIN25 roadmaps:

- Ecodesign (*)
- Zero Debris
- In-Orbit Servicing (*)

(*) Only extracts from the Ecodesign and IOS roadmaps are considered in this mapping

CS roadmap 25-28: Overview

Satellites platforms evolution

System level integration & validation aspects

- Following phases of LEO ZD P/Fs (Large, Small, Cubesats) (OPS, EOP, TEC)
- Implementation of the ZD RM for Satcoms constellations sustainability (CSC)
- Adaptation of constellations for Navigations in MEO & Disposal Strategies in MEO (NAV)
- Adaptation of Lunar Missions (HRE)

Technology building blocks

- Reliability and resilience of disposal systems
- De-orbiting Systems
- Passivation Systems
- Design for Demise (D4D)
- Dark and Quiet Skies

Launchers evolution/adaptation

SDM requirements consolidation and development of verification models

- System studies
- Reliability and resilience
- Passivation
- Design for Demise (D4D)
- Dark and Quiet Skies

Technical Booklet Mapping Methodology

ENABLERS Count per Technical Chapter

Chapter	Count
1. Prevent Release of Debris	8
2. Guarantee Timely and Successful Clearance	61
3. Prevent Debris Generation through Break-ups or Collisions	32
4. Improve Space Traffic Surveillance and Coordination	32
5. Prevent Casualties on Ground	65
6. Understand and Mitigate Adverse Consequences of Space Objects and Debris	59

→ THE EUROPEAN SPACE AGENCY

Coverage of NEEDS by this roadmap (1/3)

→ THE EUROPEAN SPACE AGENCY

Chapter	Needs	Enablers mapped count	
1 Drovent Debrie Delegas	1.1. Avoid unintentional release of debris in orbit	2	
	1.2 Do not intentionally release debris	6	
	2.1 Improve orbital clearance with high probability of successful de-orbiting	28	
2. Guarantee Timely and Successful Clearance	2.2 Prepare space objects for removal	14	
	2.3 Demonstrate removal services	19	
	3.1 Improve collision risk assessment	14	
	3.2 Standardised evaluation of implied and encountered risks	1	
3. Prevent Break-up/ Collision Debris	3.3 Improve collision avoidance capabilities during design stage	1	
	3.4 Minimise risks linked to untrackable objects by design	4	
	3.5 Minimise risks of internal break-ups	12	
	4.1 Improve space traffic coordination and information sharing	6	
4. Improve Space Traffic Surveillance and Coordination	4.2 Improve space surveillance performance	22	
	4.3 Enhance correlation and uncertainty quantification methodologies	3	
	4.4 Robust tasking of tracking for larger catalogues	1	
	5.1 Reduce risks linked to uncontrolled re-entry	57	
5. Prevent Casualties on Ground	5.2 Reduce technical impacts of controlled re-entry	6	
	5.3 Minimising debris impacts on human population and infrastructure	2	
6. Understand & Mitigate Adverse	6.1 Understand environmental impacts of re-entry	44	
Consequences of Space Objects and Debris	6.2 Protect Dark and Quiet skies	15	

Coverage of NEEDS by this roadmap (2/3)

Most mapped needs

Needs	Enablers mapped	
5.1 Reduce risks linked to uncontrolled re-entry	57	
6.1 Understand environmental impacts of re-entry	44	
2.1 Improve orbital clearance with high probability of successful de-orbiting	28	
4.2 Improve space surveillance performance	22	
2.3 Demonstrate removal services	19	
6.2 Protect Dark and Quiet skies	15	

The risk and environmental impacts of re-entry are the highest-priority areas in this roadmap in terms of number of enablers mapped. However, this can, for example, be due to many aspects needing to be investigated to fully cover a solution (D4D for different equipment)

Coverage of NEEDS by this roadmap (3/3)

Less mapped needs

Needs	Enablers mapped
1.1. Avoid unintentional release of debris in orbit	2
3.2 Standardised evaluation of implied and encountered risks	1
3.3 Improve collision avoidance capabilities during design stage	1
4.4 Robust tasking of tracking for larger catalogues	1
5.3 Minimising debris impacts on human population and infrastructure	2

Despite the limited representation of these needs and enablers in the current CS roadmap, we recognize their significance. These areas highlight **opportunities** where contributions from the **ZD community** would be highly valuable and appreciated.

Some needs (e.g. 1.1. or 3.3.) are also partially covered with on-going activities (thus not part of the future CS roadmap and not mapped here).

Only one gap identified:

Торіс	Activity		
System level integration & validation aspects	Adaptation of Lunar missions for Zero Debris		

Lunar Zero Debris needs and solutions not explicitly specified in the ZD booklet

Conclusions

- The Technical Booklet allowed us to **cross-check and compare our roadmap** of activities with the priorities identified by the wider space sustainability community
- Next steps for this mapping:

•	Include past and	on-going	activities -	not only	future ro	admap.
---	------------------	----------	--------------	----------	-----------	--------

- Weight this mapping according to the allocated **budget** for each activity
- Main gaps of the CS roadmap and opportunities for the community are highlighted

- Open to discuss more in depth these gaps in dedicated meetings
- Conversely, in the future ESA would like to use the mapping of the community to prioritize ESA's activities (next steps of the Booklet TBD).