SUSTAINABLE SATELLITES: AIR-BREATHING PROPULSION FOR LOW-LATENCY, ECO-FRIENDLY GLOBAL 5G CONNECTIVITY

EcoStar SysNova Campaign

A project by:

Presented by Daniel Poças

18 September 2025

ECOSTAR CONSTELLATION

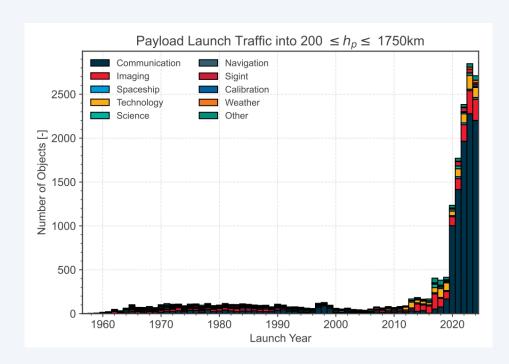
EcoStar SysNova Campaign

A project by:

Presented by Daniel Poças

18 September 2025

01BACKGROUND



THE CHALLENGE

Highest Launch Traffic Ever

"While the exponential growth in the number of new payloads slowed in 2024, the number of launches continued to rise, and in terms of mass and area, launch traffic is still at the highest rate seen thus far."

- ESA's 2025 Space Environment Report

HIGH MARKET DEMAND

Driver of Launch Traffic

Starlink doubled in size last year, increasing the number of internet customers it serves by 100%, growing revenue by 95%, and thus adding USD 8.18 billion in 2024.

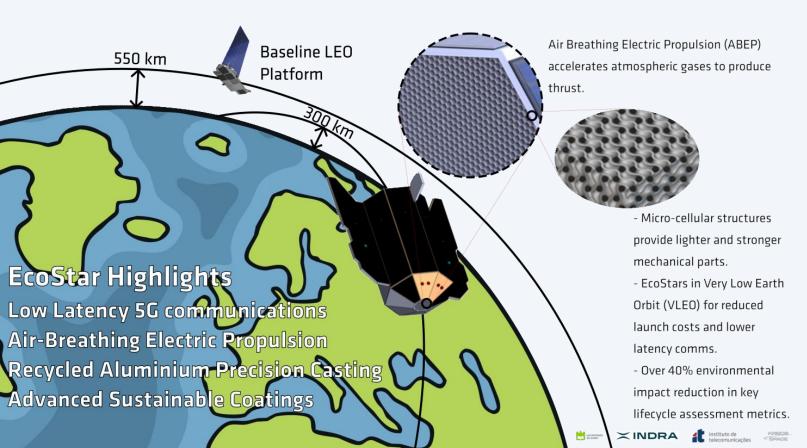
CATEGORY	TYPE	#(KS)	AVG PE	ER/PERMO	TOTA	AL (M USD)
Hardware	Residential	2,825	\$	375	\$	1,059
(terminal sales)	Roam, Mini, Land Mobility	800	\$	500	\$	400
	Business, Fixed Site	150	\$	1,000	\$	150
	Maritime	125	\$	500	\$	63
	Aviation	0.5	\$	150,000	\$	68
Customer (subscription sales) Speciality Starlink	Residential	3,475	\$	85	\$	2,500
	Roam, Mini, Land Mobility	900	\$	125	\$	652
	Business, Fixed Site	150	\$	500	\$	653
	Maritime	75	\$	780	\$	344
	Aviation	0.5	\$	25,000	\$	97
	Govt. & Enhanced Cybersecurity (incl. Starshield)				\$	2,000
	Other (Community Gateway, John Deere, accessories)				\$	200
	,		Starli	nk Revenue	\$	8,186

⁻ Source: https://payloadspace.com/estimating-spacexs-2024-revenue/ [Accessed: 10-September-2025]

ENVIRONMENTAL IMPACT

- Life-cycle environmental impact
- Stratospheric contamination
- Aluminium oxide as a major by-product
- Potential impacts on atmospheric chemistry and climate
- Large uncertainties

REFERENCES


J. P. Ferreira, Z. Huang, K. Nomura, and J. Wang, "Potential ozone depletion from satellite demise during atmospheric reentry in the era of mega-constellations," *Geophys. Res. Lett.*, vol. 51, Apr. 2024.

C. Maloney, R. W. Portmann, K. H. Rosenlof, and C. Bardeen, "Stratospheric loading and radiative impacts from increased Al2_22O3_33 emission caused by an anticipated increase in satellite re-entry frequency," in *Proc. AlAA SciTech Forum*, Orlando, FL, USA, Jan. 2024.

A. C. Boley and M. Byers, "Satellite mega-constellations create risks in low Earth orbit, the atmosphere and on Earth," *Sci. Rep.*, vol. 11, no. 10642, May 2021.

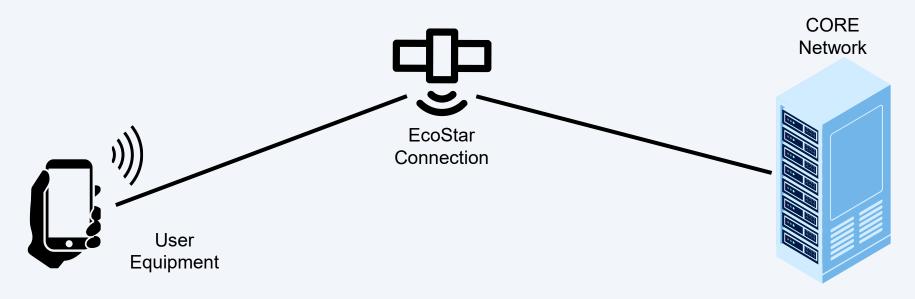
KREIOS SPACE

OUR PROPOSAL

TODAY'S AGENDA

September 18, 2025

02 System Requirements 03 **Constellation Design** 04 LCA Materials & 05 Manufacturing 06 **IOD Planning** 07 Conclusions



02

SYSTEM REQUIREMENTS

CHOICE: DIRECT-TO-DEVICE

The Direct-to-Device commercial application was chosen due to the perceived higher Total Addressable Market and reduced competition, while clearing programmatic constraints.

BASELINE

Starlink's D2D Constellation

JUSTIFICATION

- Relevance
- Data availability
- Comparability

RISKS

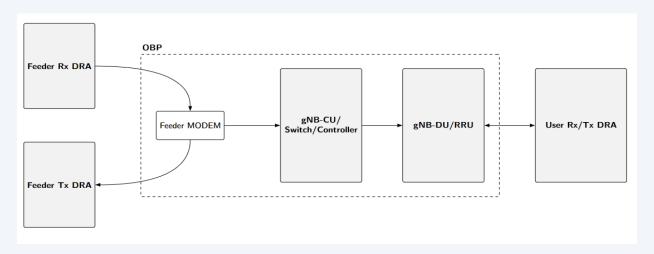
- Payload attribution
- Incomplete data disclosure
- Constellation architecture
- Temporal effects

BASELINE PERFORMANCE

- Direct LTE connection to unmodified smartphones.
- + Downlink: 4 Mbps.
- + Uplink: 256 kbps.
- * Continuous global coverage from 58° S up to 58° N.

SYSTEM REQUIREMENTS

- **SR 1**. The system shall provide direct-to-device connectivity with unmodified 3GPP-compliant mobile phones.
- SR 2. The system shall support a user downlink throughput of at least 4 Mbps per satellite beam.
- SR 3. The system shall support a user uplink throughput of at least 256 kbps per satellite beam.
- **SR 4**. The system shall provide continuous 5G coverage up to at least
- SR 5. The system-shall operate in Very Low Earth Orbit between 150 km and 350 km.
- **SR 6**. The system shall allow seamless integration with existing 5G mobile core networks via standardized interfaces.
- **SR 7**. The system shall be shown, via a lifecycle cost-benefit analysis, to achieve an Internal Rate of Return (IRR) of 10% over a 10-year analysis period starting from the beginning of the initial service phase.
- **SR 8**. The system shall reduce its environmental impact of the following indicators: a. Global warming potential at 100 years minimum by 28%, targeting above 40%. b. Primary energy consumption minimum by 20%, targeting above 30 %. c. Mineral resources depletion minimum by 20%, targeting above 30 %, by maximising circular economy on Earth.
- **SR 9**. The system shall employ an ABEP subsystem as its primary means of drag compensation, enabling sustained operations in VLEO without reliance on consumable propellants.


03

CONSTELLATION DESIGN

BASELINE PAYLOAD

Regenerative 5G Payload

L. Berthoud, R. Hills, A. Bacon, M. Havouzaris-Waller, K. Hayward, J.-D. Gayrard, F. Arnal, and L. Combelles, "Are very low Earth orbit (VLEO) satellites a solution for tomorrow's telecommunications needs?," *CEAS Space J.*, vol. 14, no. 4, pp. 609–623, Dec. 2022

AIR BREATHING ELECTRIC PROPULSION

Key Requirement for constellation design

ABEP 2. The overall efficiency of each Helicon Plasma Thruster shall be greater than 15% during nominal operations at 150-300 km.

TRADE-OFF

- Highest altitude in range yields the least drag.
- Higher altitudes reduce the number of satellites.
- Impacts in the datarate can be mitigated by increasing bandwidth.

COST MINIMIZATION

Algorithm 1: Constellation Design Procedure Input: Latitude bounds $\pm \gamma$, minimum elevation angle θ , satellite altitude h , lower and upper bounds for total number of satellites T_{\min} and T_{\max} Output: Optimal constellation configuration(s)
angle $ heta$, satellite altitude h , lower and upper bounds for total number of satellites T_{\min} and T_{\max}
bounds for total number of satellites T_{\min} and T_{\max}
and $T_{ m max}$
Output: Optimal constellation configuration(s)
with minimum cost satisfying
requirements
for $T \leftarrow T_{\min}$ to T_{\max} do
for each feasible number of orbital planes P do
for each feasible phasing F do
Check coverage constraints for the
Walker-delta constellation $T/P/F$;
if constellation satisfies coverage
constraints then
Record configuration (T, P, F) and
associated cost;

PARAMETER	VALUE
Launch Cost	69.75M EUR
Minimum Total Satellites (T_{min})	100
Maximum Total Satellites (T_{max})	2000
Latitude Bound	58°
Minimum Elevation Angle	25°
Altitude	300 km
Propulsion Power	1 kW
Payload Power	1280 W

Walker-Delta 1368/36/1 is the least cost solution.

Walker-Delta 1023/341/279 has the least number of satellites.

04

LIFE CYCLE ASSESSMENT

OBJECTIVE

To evaluate the potential environmental impacts of the proposed EcoStar constellation and to provide a comparison with the Starlink V2 Mini constellation (baseline constellation).

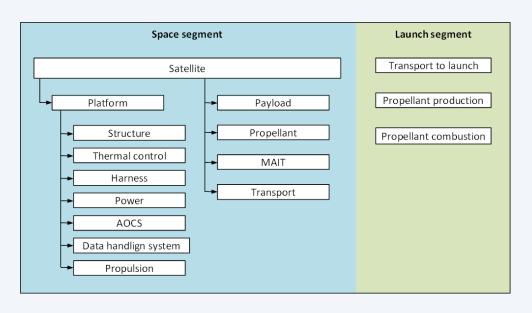
- To quantify the potential environmental gains of the EcoStar constellation
- To identify environmental hotspots

Launch scenarios:

EcoStar:

- Using Falcon 9 (SpaceX) launching from Cape Canaveral (United States of America, USA)
- Using RFA One (Rocket Factory Augsburg) launching from the Shetland Islands (Scotland)

Starlink


Using Falcon 9 (SpaceX) launching from Cape Canaveral (United States of America, USA)

Transport scenarios from the assembly site to the launch site (transport modes)

SCOPE

Boundaries & Functional Unit

Functional unit:

Provision of 5G connectivity from space with continuous coverage between latitudes of ±58°, over the lifespan of the satellites. Since the lifespan is unknown, similar lifespans are assumed for both the Ecostar and baseline satellites.

Reference flows for the scenarios assessed:

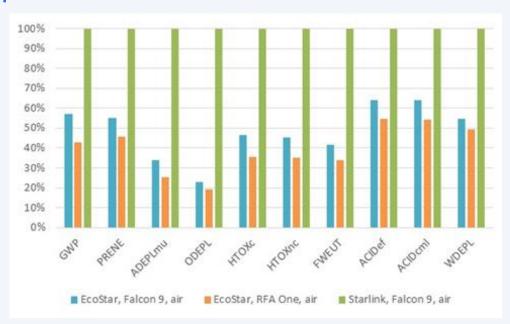
- EcoStar launched with Falcon 9: 1368 satellites;
- EcoStar launched with RFA One: 1023 satellites;

Starlink: 657 satellites.

DATA SOURCES

Amounts of materials and equipment

- EcoStar estimated by the project team
- Starlink V2 Mini satellites based on publicly available data; when information was not available at the required level of detail: data for the Microsatellite Bus MP42, developed by NanoAvionics


Impact factors

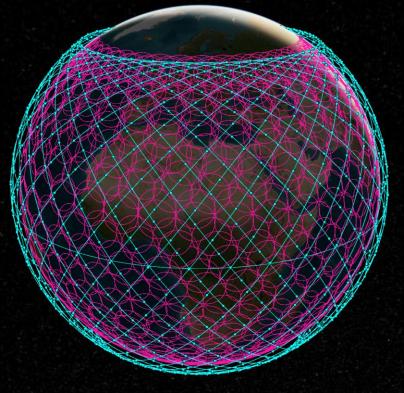
- ESA LCA Database
- Ecoinvent database

RESULTS

Comparison of EcoStar with the baseline

Total mass of the constellations:

- EcoStar launched with Falcon 9: 396 t;
- EcoStar launched with RFA One: 296 t;
- Starlink: 637 t.



DISCUSSION

Reductions with EcoStar

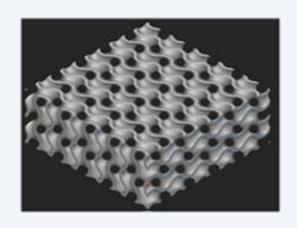
IMPACT CATEGORY	FALCON 9	RFA ONE	MINIMUM REDUCTION REQUIREMENTS	REDUCTION TARGETS
Climate change	43%	47%	28%	40%
Primary energy consumption	45%	54%	20%	30%
Resource use - minerals and metals	66%	75%	20%	30%

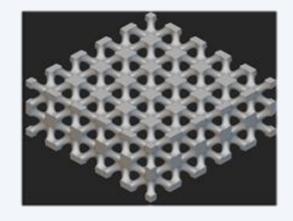
DECISION

Walker-Delta 1368/36/1 with coverage representation.

KEY ECONOMIC RESULTS

- → Estimated cost to deploy constellation: 1.72x109 EUR
- * Estimated Revenue:
 - Pessimistic (highest OPEX, smallest adoption)
 2.27x10⁹ EUR (<1% IRR over 10 years)
 - * Baseline
 - 4.01x109 EUR (13% IRR over 10 years)
 - Optimistic (lowest OPEX, highest adoption)
 6.29x10⁹ EUR (30% IRR over 10 years)


05


MATERIALS & MANUFACTURING

TPMS-BASED STRUCTURES: MANUFACTURING

Gyroid (left) and IWP (right)

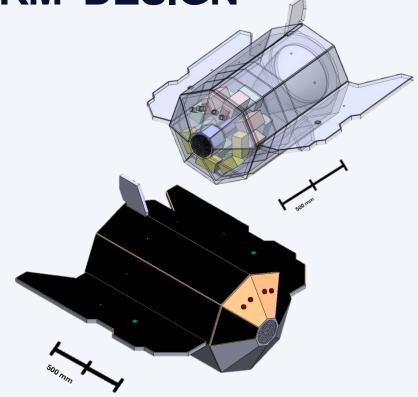
TPMS-BASED STRUCTURES: TESTING

	IWP	GYROID
Structure Density [g/cm³]	0.751 ± 0.009	0.730 ± 0.005
Mass reduction (comparison with solid)	$72.7\% \pm 0.003$	$73.5\% \pm 0.002$
1st max. compressive strength [MPa]	18.20 ± 1.39	42.39 ± 1.69
Plateau stress 20–40% [MPa]	11.08 ± 0.83	35.00 ± 2.14
Specific strength (1st max. comp. strength) [MPa.cm³/g]	24.19 ± 1.54	58.10 ± 1.95
Specific strength (plateau stress) [MPa.cm³/g]	14.73 ± 0.91	47.96 ± 2.68

In comparison to solid aluminium counterparts, a mass reduction of 72–74% was experimentally verified, which demonstrates strong potential for lightweighting structural satellite parts.

TPMS-BASED STRUCTURES: DISCUSSION

- **Higher strength:** IWP & Gyroid show higher maximum compressive and plateau stress than honeycomb, linked to higher density.
- Strength:
 - Honeycomb: 35.9 MPa (typ.), 49.8 MPa (max)
 - IWP: 24.2 MPa
 - Gyroid: 58.1 MPa
- → Performance strongly depends on architecture.
- Tailorable properties: Cell size, wall thickness, and geometry can be adjusted for mission-specific needs.
- Design freedom: TPMS structures allow energy absorption per unit mass and CADdriven orientation optimization → unlike pre-made sandwich panels.



06IOD PLANNING

PRELIMINARY PLATFORM DESIGN

- Baseline geometry derived from GOCE platform, scaled to fit 6.13 m² solar array surface;
- Resulting platform volume: ~1.01 m³;
- Challenging ABEP requirements.

CRITICAL TECHNOLOGIES

TRL targets

CRITICAL TECHNOLOGY	CURRENT TRL	TRL TARGET (BEFORE IOD)	TRL TARGET (AFTER IOD)
Sustainable anti-corrosion coatings	3	6	7-8
Regenerative 5G NTN payload	4	6	7-8
Air-Breathing Electric Propulsion	6	8	9

CONCLUSIONS

- Credible path to a VLEO 5G D2D constellation with 290 kg platform.
- Attractive IRR scenarios, strong market positioning vs. higher-orbit constellations.
- Environmental gains:
 - 43–47% climate impact (GWP)
 - 45–54% primary energy
 - 66–75% mineral resource depletion
- TPMS structures enable up to 72–74% mass reduction, design freedom, and improved durability.

	STARLINK	ECOSTAR
RTT	15 ms	8.6 ms
Standard	LTE	5G
Environmental Impact	1	-40% in key metrics

THANK YOU

Presented by Daniel Poças – pocas.daniel@av.it.pt