

→ SERVING EUROPEAN COOPERATION AND INNOVATION

Static Design-Dependent SEE rates on SRAM-based FPGAs: a designer flow

David Merodio Codinachs, Sotirios Athanasiou European Space Research and Technology Centre (ESA) Noordwijk, The Netherlands

SEFUW 2014 Noordwijk - 28/09/14

Acknowledgements

- 1. Christian Poivey on his guidance through Virtex-4 radiation and CREME96
- 2. Politecnico di Torino Team (STAR/RoRA/VPLACE)
- 3. University of Sevilla Team (FT-UNSHADES/2)
- 4. INAF Team (Milano) (FLIPPER)
- 5. Airbus Space and Defense (Janus design)
- 6. ESA colleagues

Outline

1. Motivation

- a. UKube example
- 2. Designer Flow overview
 - a. Device specific
 - b. Application specific
- 3. Results and Future work

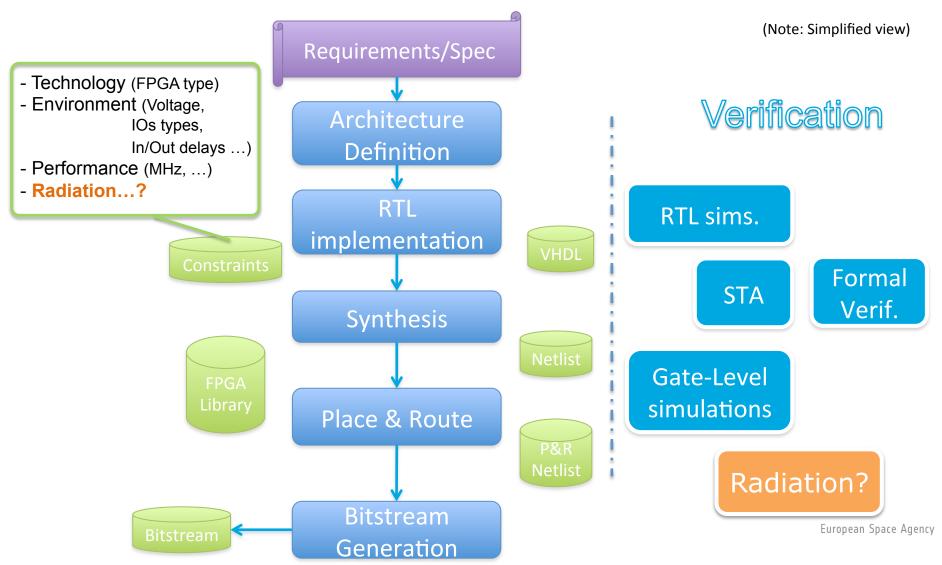
Motivation


1. FPGA SEE rate prediction, information to be considered:

- a. Space Environment
 - Orbit information, CREME96
- b. FPGA components:
 - Accelerated radiation testing. Provides radiation cross sections of the FPGA architectural elements
- c. Mitigation techniques
 - FPGA designer can implement several mitigation techniques that will change the final SEE rate

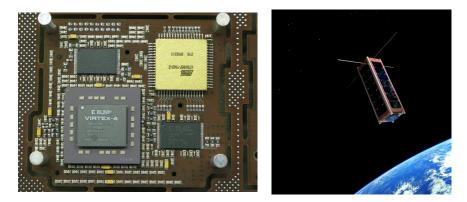
Can the FPGA designer <u>predict</u> the SEE rate of the Application (Place & Routed) in the FPGA?

Motivation, FPGA designer trade-offs: radiation hardness is included



European Space Agency

Motivation: How does Radiation fit in the FPGA Designer Flow?



Design Example used in the presentation: Janus UKube payload

- 1. UKube is a Nanosatelite
 - a. Janus payload
 - b. The FPGA has a design without mitigation (the goal is to get events, not to mitigate them)
- 2. FPGA: Virtex 4 XQR4VSX55 [9]
 - a. UMC 90nm copper
 - b. CF1140 ceramic flip-chip
 - c. 55296 Logic Cells
 - d. 5760 Kb BRAM
 - e. 8 DCMs

[9] Xilinx, Space-Grade Virtex-4QV Family Overview, DS653 (v2.0) April 12, 2010.

Janus Design resources:

	Number	%
Slices Flip-Flops	41,000	83
4-input LUTs	120	83
IOs	320	18
RAMB16s	320	100
GCLKs	18	56
DCM	8	100

XQR4VSX55 architectural elements

1. Architectural Elements, as described in [4]:

Acronym	Description	XQR4VSX55
CFG	Configuration Bits	15,713,449
BRAM	Block Memory Bits	5,898,240
FFs	User Flip Flops	55,296

2. SEFIs considered for XQR4VSX55 ([4]):

Acronym	SEFI Description
POR	<i>Power-on-Reset.</i> This is a SEFI that results in global reset of all internal storage cells
SMAP	SelectMap Interface. Loss of read/ write capabilities through SelectMAP port. It is observed by acquiring meaningless data or inability to refresh data.
GSIG	Global Signal. This includes Global Set/Reset, Global Write enable and Global drive high signals

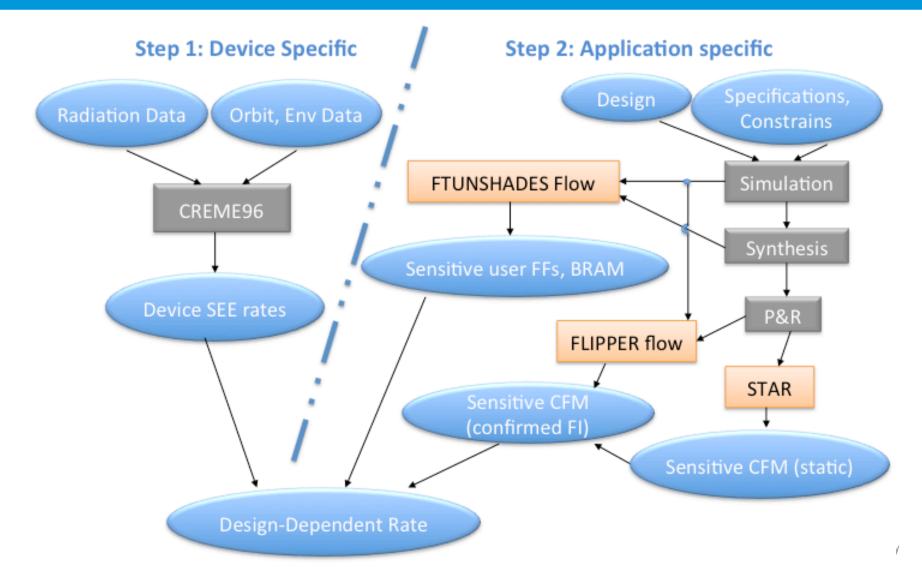
[4] Gregory Allen, Gary Swift, Carl Carmichael, "VIRTEX-4QV static SEU characterization summary" Jet Propulsion Laboratory California Institute of Technology Pasadena, California.

European Space Agency

Overview of the flow (1/2)

 Design-dependent static SEE rate of an application implemented in an FPGA, <u>2 steps</u>:

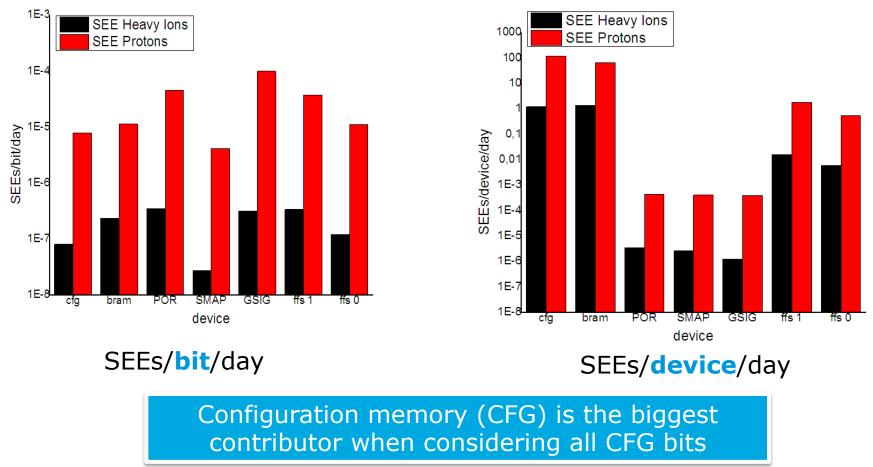
- a. Step 1: Device Specific
 - Computes the SEE rate for each FPGA architectural blocks according to the specific mission conditions (i.e. Orbit). Based on publication [5].


b. Step 2: Application Specific (Design Specific)

 During the Design Phase, detailed information from P&R of the design in the FPGA. Compute the SEE specific for the application ... <at least a first approximation>

[5] Joshua D. Engel, Michael J. Wirthlin, Keith S. Morgan, Paul S. Graham "Predicting On-Orbit Static Single Event Upset Rates in Xilinx Virtex FPGAs" 2006 Military and Aerospace Programmable Logic Devices Conference 26-28 September 2006 Washington, D.C.

Overview of the flow (2/2)



- 1. Static SEE rates for the FPGA architectural elements, methodology as published in [5], based on **CREME96**:
 - a. Mission-dependent information (orbital and environmental information).
 - UKube case : Perigee 600km, apogee 600km and inclination 97.79 deg.
 - b. Accelerator measurements [4] (using crosssection information in the form of Weibull distribution fitting)
- 2. Three cases have been studied:
 - a. solar minimum, flare enhanced worse day and solar maximum

Device Specific Results, architectural elements contribution

1. Results for Solar Minimum (other cases available in the report):

Device Specific Results, "worst case", including all bits

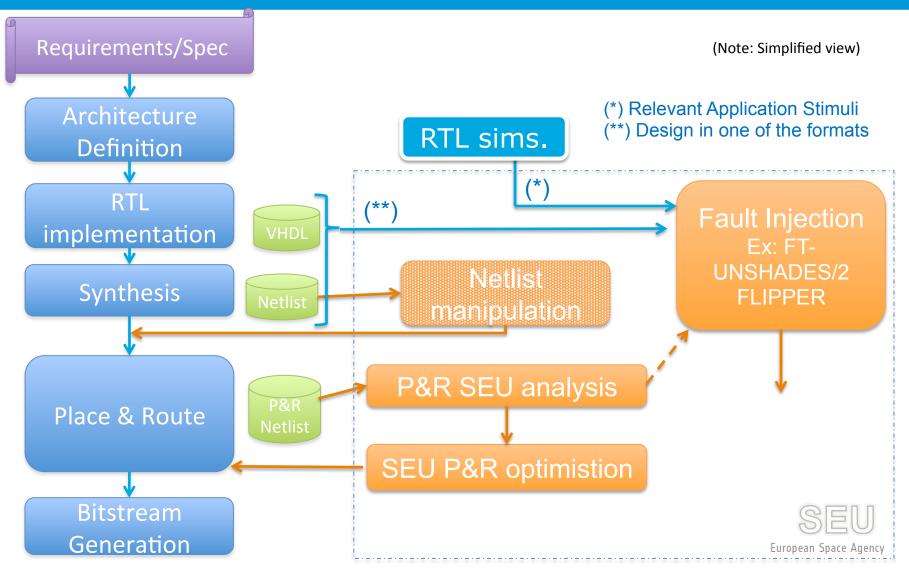
 Addition of all the architectural elements contribution (equivalent for SEFIs):

$$SEU_{device/day} = \sum_{k} N_k \left(SEU_{bd,k,HI} + SEU_{bd,k,Proton} \right)$$

k: FPGA architectural block N_k: Number of bits of the arch. block *k* SEU_{bd,k}: SEU bits/day of arch. block *k*

	SEUs device/ day	SEFIs device/ day
SOL MIN	1,94E+002	1,28E-003
WORSE DAY	4,56E+003	1,51E-002
SOL MAX	1,30E+002	8,61E-004

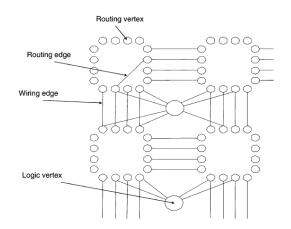
1. Application specific


a. How many bits of each architectural feature are really relevant for a given application?

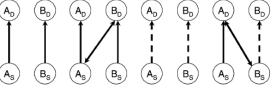
$$SEU_{device/day} = \sum_{k} N_{k} \left(SEU_{bd,k,HI} + SEU_{bd,k,Proton} \right)$$

b. What tools are available to get the N_k for the specific application?

FPGA designer flow, tools to help implement and assess mitigation



Configuration Memory: Static Analysis with STAR



- 1. No commercial tool available ! It is in the wish list ...
- 2. But ... the STAR tool from Politecnico di Torino [7]. Single event effects in Configuration Memory:

Equivalent routing graph

<u>Goal</u>: get the Configuration Static Critical bits (i.e. Sensitive Bits) of the application after the Place&Route

Effects of an SEU

The STAR tool validation is ongoing. Needs extra correlation with more Radiation Results

[7] L. Sterpone and M. Violante, "A new analytical approach to estimate the effects of SEUs in TMR architectures Space Agency implemented Through SRAM-Based FPGAs". IEEE Transactions On Nuclear Sciense, Vol. 52, No. 6, December 2005.

STAR Report

Report of Violations: Output is number of cfg memory sensitive bits

STAR Discovery Results

Total Sensitive Bits: 892060

Bit Type Programmed : 497104 Not Programmed : 394956

Resource Bits

LUT : 439552 MUX : 224688 CLB Config : 14122

 ALONE PIP
 : 0

 OPEN PIP
 : 57552

 SHORT PIP
 : 5995

 INTRASHORT PIP
 : 152

 ANTENNA PIP
 : 149999

TOTAL PIP : 213698 -------1 Intrashort : 152 1 Short : 5995

1 Antenna : 149999

1 Open : 57552

Total TMR Failure: 0

TMR Failure Warning One Domain Warning Different Partition TMR Warning Same Signal	Multiple Open S 0 0 0 0	Short (C O (0) 0
TMR FAILURE Detailed Nets			-
Ground (GND) Power (VCC) Clock (CLK) Reset (RST)	Multiple Open 5 0 0 0 0	Short	- 0 0 0 0

Time to perform the analysis: 959 seconds

Reads Design after mapping STAR reads .xdl netlist (ncd2xdl command)

inst "G3[6].wide_larger_shift/G1[10].larger_shift/G1[15].large_shift/q<1>" "SLICEL",placed CLB_X13Y76 SLICE_X18Y153 ,

cfg " BXINV::#OFF BYINV::#OFF CEINV::#OFF CLKINV::CLK COUTUSED::#OFF CY0F::#OFF CY0G::#OFF CYINIT::#OFF DXMUX::X DYMUX::Y F:G3[6].wide_larger_shift/

G1[10].larger_shift/G1[15].large_shift/Mxor_q_1_xor0000_Result1:#LUT:D=(A2@A1) F5USED::#OFF FFX:G3[6].wide_larger_shift/G1[10].larger_shift/G1[15].large_shift/q_1:#FF FFX_INIT_ATTR::INIT0 FFX_SR_ATTR::SRLOW FFY:G3[6].wide_larger_shift/

G1[10].larger shift/G1[15].large shift/g 0:#FF

FFY_INIT_ATTR::INIT0 FFY_SR_ATTR::SRLOW FXMUX::#OFF FXUSED::#OFF G:G3[6].wide_larger_shift/G1[10].larger_shift/G1[15].large_shift/

Mxor_q_0_xor0000_Result1:#LUT:D=(A2@A4)

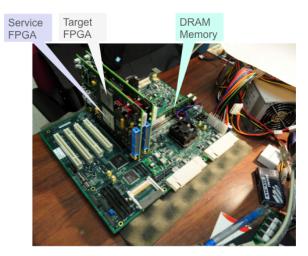
GYMUX::#OFF REVUSED::#OFF SRINV::SR_B SYNC_ATTR::ASYNC XBUSED::#OFF XMUXUSED::#OFF XUSED::#OFF YBUSED::#OFF YMUXUSED::#OFF YUSED::#OFF

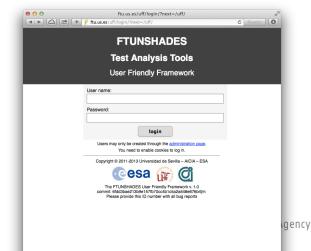
"Assisted" Fault Injection

- 1. Fault Injection "campaign" requires (simplified; it would require a full presentation in itself):
 - a. Goal and scope of the Fault Injection
 - b. Inputs for the application (DUT). They must be representative !
 - c. Define injection locations and time
 - d. Continuous or debug modes
 - e. Inject in the Design FFs/BRAMs or in the Configuration Memory (or both)
- 2. In our case:
 - a. Inject in all the design FFs. As a simple design, injecting at any time will produce an error at the output
 - b. Inject in the Configuration Memory to Confirm STAR results: PENDING (we did not have the right part at the F.I. system).

1. Fault Injection for Configuration

- a. The goal is to Inject on the Configuration Bits reported by STAR as critical and confirm which ones will change the nominal outputs if flipped.
- b. Fault Injection System used: FLIPPER

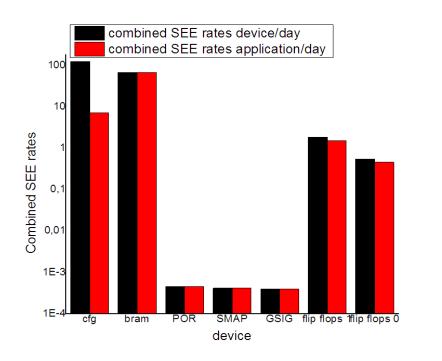


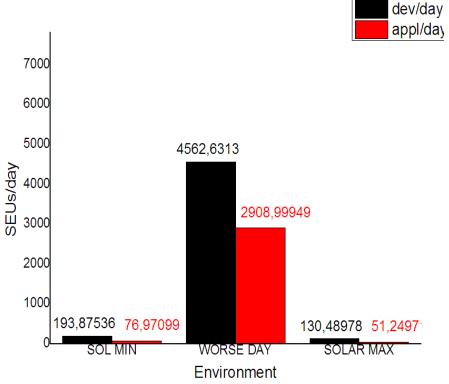

Status: Migration to **XQR4VSX55**: in the final stage. UKube Janus design: soon to be checked.

Fault Injection, Application FFs (and BRAMs)

- 1. Fault Injection for the Application Design:
 - a. Target FFs: Injection to all design FFs
 - b. DUT inputs: all test cases. (This is a simple case; in a general design it would be more complex)
 - c. Injection time: 1 injection per *RUN*, random (in this case simple because each injection is observable at the output within the *RUN*)
 - d. Results: ALL FFs are critical (as expected)
- 2. Fault Injection System used: FT-UNSHADES2 (FT-U2)
 - a. Access to FT-U2 in Sevilla: http://ftu.us.es/uff

1. UKube Janus Final Application critical bits:


	Application Critical Bits	XQR4VSX55
CFG	892,060	15,713,449
BRAM	5,898,240	5,898,240
FFs0	41,000	55,296
FFs1	41,000	55,296


- 2. Consideration of this case:
 - a. In this case no mitigation has been applied
 - A design with (selective) mitigation, would have a different number of critical bits for the Application would be lower

Results (2/2)

1. UKube Janus SEE rate prediction (compared with the device SEE rate):

Combined SEEs/device/day for Solar Minimum

Combined SEUs/device/day and SEU/appl/day

Conclusion (1/2)

- 1. Need of tools to help FPGA designers to predict application-specific SEE rates
- 2. An approach based on 2 steps has been presented:
 - a. Device specific (requires radiation acceleration test results and mission environment information, CREME96)
 - b. Application specific
- Static analysis (STAR) and Fault Injection (FT-U2 and FLIPPER) have been proposed as tools to assist in the SEE prediction

NOTE: there are other tools that will assist the FPGA designer; the list is not exhaustive

Conclusion (2/2)

1. Future work

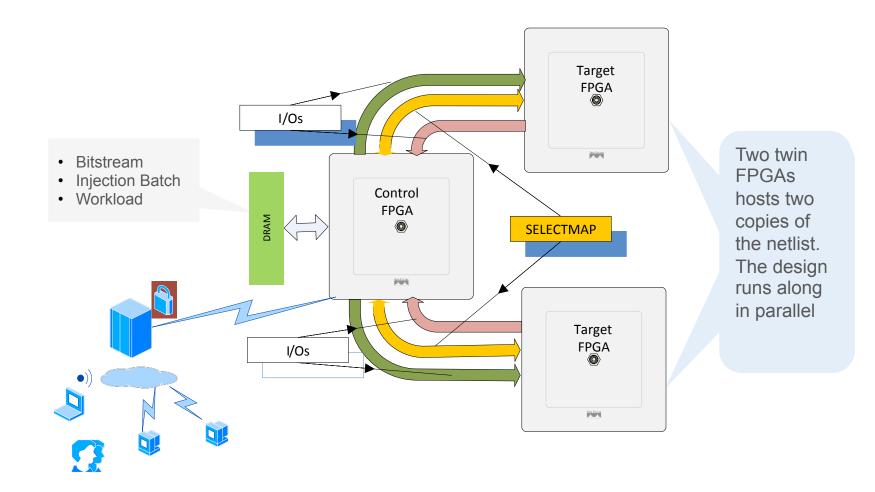
- To use other applications with mixed mitigated strategies for Flip-Flops and BRAMs in order to have trade-off cases
- b. STAR (VeriPLACE): finish correlation of data with radiation experiments to prove the models
- c. Fault Injection: investigate more in detail how to implement efficient and representative experiments
- d. Extension to dynamic SEE prediction

2. Request

- a. STAR (VeriPLACE) "validation": needs more users in order to validate it. Can you contribute?
- Designs: do you have designs that we could use? (or would you like to use FT-U2 and VeriPLACE?)

→ SERVING EUROPEAN COOPERATION AND INNOVATION

Would you like to know more? Visit www.esa.int



EXTRA SLIDES

European Space Agency

FT-UNSAHDES summary slide

FPGA selection

1. FPGA selection includes several aspects (not exhaustive list):

- a. Capacity and performance (frequency and power consumption)
 - Related to the internal architecture and technology node used
 - Related to **Mass** and **Volume**, as it enables miniaturization

b. Radiation hardness

- Addressed at different levels:
 - Process
 - Transistor/ Standard Cell
 - Register Transfer (RTL)
 - System
- c. Reconfigurability
- d. Quality, Packaging, Assembly
- e. Others:
 - **ITAR** (International Traffic in Arms Regulations)
 - Cost