Overview of the XRTC Single-Event Test Results on the Xilinx 7-Series FPGAs

Gary M. Swift Swift Engineering and Radiation Services, LLC

SEFUW- SpacE FPGA User Workshop

September 17, 2014

Overview

- Introduction and Background
 - Comments on Commercial Parts Use in Space
 - Xilinx Radiation Test Consortium
- Four Recent Papers
 - E. Crabill (Xilinx) on SEM-IP at SELSE
 - × Available at: http://softerrors.info/selse/images/selse_2014/papers/ selse_2014_13_paper.pdf
 - D.S.Lee (Sandia) on Kintex-7 SEE at NREC REDW
 - × Proceedings in press; preprints on request.
 - G.M.Swift (SwiftERS) K-7 Current Steps at MAPLD
 - Prof. M.Wirthlin (BYU) on CRAM MBU/MCUs at NSREC × In review cycle for TNS Dec 2014

COTS in Space

- "Right" reasons
 - Speed
 - Size
 - Power
 - More I/O
- WRONG Reason
 - Cost
 - Be prepared for lots of expensive testing and waiving requirements and operational difficulties

Upset Results Overview

- Configuration Upsets less than 100 per day
- BRAM Upsets (100% use) less than 50 per day
- Flip-flop Upsets (100% use) less than 1 per week

Investigation of High Current Events in 28nm 7-Series FPGAs

Gary M. Swift Swift Engineering and Radiation Services, LLC

MAPLD- Military & Aerospace Applications of Programmable Logic Devices May 21, 2014

Overview

- Introduction
 - DUT 7-Series
 - Review of Latchup Basics
- Test Setup
- Observed: Single-event Current Steps ???
- Possible Explanations
- Working Hypothesis: Latchup with Significant Series Resistance
- Mitigation Ideas and Future Work

7 Series Xilinx FPGAs

- Current generation is 28 nm, TSMC process
- Four families
 - Artix high volume FPGA
 - Kintex mid-range FPGA
 - Virtex high performance FPGA
 - Zynq high-performance dual ARM processors plus large FPGA fabric and I/Os

- SCR-like action, due to parasitic bipolar transistors
- All CMOS inherently susceptible
- Can be suppressed by reducing carrier lifetime
- May be destructive or cause latent damage (or not)

Latchup's I-V Characteristics

Gain of two transistors > 1 causes regenerative feedback resulting in runaway current

In latchup, lowering the voltage lowers transistor gain; below "holding voltage" gain < 1 releasing the latchup

Test Setup

Power Supply/Analyzer

Current Steps on Vaux

STATISTICS, LLC

Observed Characteristics

- <u>No</u> functional problems observed
- What restores nominal current?
 - Resetting user circuit does not
 - Scrubbing configuration does not
 - Reconfiguring device does not
 - Power cycle <u>does</u>
- Distribution of current step sizes*
 - 105 mA average, 25 mA std.deviation at room temp.
 - 125 mA average, 40 mA std.dev at elevated temp.
- Higher cross section at high temperature

Vaux powers "mfg" level misc' I functions

- Configuration engine
- Efuse programming
- XADC (previous name: 'system monitor')
- I/O pin optional function(s)
 - •

Measured Susceptibility

X No functional problem observed

Only fix is power cycle

Current step size, roughly 100 mA

• Note this implies 18 ohms impedance

Worse at elevated temperature

What else can it be?

- Upset-induced internal contention
- Current too big Typical contention current is < 0.5 mA
- Dielectric Rupture

- Power cycle restores nominal current
- Snapback

Current steps exhibit a holding voltage signature

What are current steps ??

- Working hypothesis Latchup with series impedance
- More questions
 - •What's acting as the current limiting resistor ?
 - •Where are the high current sites on the die ?
 - •What circuit function(s) is/are involved ?
 - •Is this the mythical creature: micro-latchup ? Most important of all:
 - •How to prove it's non-destructive, non-damaging

Results Update

NASA/Goddard confirms they' ve seen these current steps

- The XADC block is likely culprit, Melanie Berg hypothesized New XRTC test results from Berkeley (6/20/14) show XADC is not a source of these single-event current steps
- With separated XADC power from Vaux, × Current steps are only observed on Vaux
- With XADC turned off via control bit and powered with 0.7 V (well below the holding voltage),

 \times The measured cross section did not change at LET=41

- 20 events vs. 21 events for fluence of 6.0×10^5 / cm²

JPL test results from Indiana (July 2014) with

200 MeV protons: NO proton-induced current steps.

Possible Future Work

- Localize structure involved
 - In-situ, thorough electrical "wring-out" test
 - Collimators (millimeter resolution)
 - Infra-red camera (ten micrometer resolution)
 - Micro-beam (few micrometer resolution)
 - Laser (micrometer resolution)
- Pursue damage questions
 - Do irradiated DUTs pass full production test ?
 - What's the current density? Is it capable of producing damage?
 - Do irradiated DUTs pass accelerated life testing?

If it is low-current latchup,

- Any SEL is scary to fly, <u>but</u>
 × The rate's really low (GEO: 1 in 5-20 years)
 × No obvious functionality problems or damage
- Mitigation options (though not very attractive)

 Running with Vaux below spec. min. reduces rate
 Minimizing time in SEL lowers damage risk
 Test neutron irradiated part
 - × Test neutron irradiated part
- Proving non-destructiveness is very difficult

Further investigation is needed