SRAM-based FPGAs for Space Applications: Current Projects @INAF

M. Alderighi, F. Casini, S. D'Angelo INAF/IASF Milano, Italy

G. Sorrenti Sanitas EG, Italy

INAF

monica@iasf-milano.inaf.it

ESA initiative for using COTS in space FLIPPER 2

CoCs Computer

- Project: COTS based Computer for On Board systems (CoCs) (2009 - 4Q2014)
- **Objective**: Study and design on-board computing systems based on "Commercial Off-The-Shelf" components

Activity phase:

- 1. Design phase: defining the COTS computers as well as the methods for their manufacturing and qualification
- 2. Implementation and qualification phase: manufacturing of breadboards that target real missions
- 3 H/W Contracts

- High Availability Computer EADS-Astrium Germany
- High Reliability Computer Thales Alenia Space Italia
- High Performance Computer EADS-Astrium France

Hi Rel CoCs Project Team

- project management and reporting,
- overall technical coordination
- interface with ESA and the Working Group
- Overall HiRel CoCs detailed specification
- FDIR strategy
- final technology trade-offs and selection
- definition of the CoCs evaluation methods and strategy.

Dept. of Automation and Computer Engineering of Politecnico di Torino (PoliTo):

- Survey of commercial off the shelf (COTS) processors
- Developing the CoC simulator
- Benchmark SW development

INAF

Prime Contractor:

Sub-Contractors:

ISTITUTO NAZIONALE DI ASTROFISICA NATIONAL INSTITUTE FOR ASTROPHYSICS

Institute IASF Milano/INAF

- Survey of Reprogrammable Logic Devices
- Hi-Rel CoCs Evaluation Environment & EGSE Definition
- EGSE Development

Department of Electronic Engineering & ULISSE Consortium of the University of Rome "Tor Vergata":

- Survey of candidate Memory Devices
- DDR-II ECC Development

SME company :

- Modeling of Hi-Rel CoCs Building Blocks
- Board and Basic SW Development

M. Alderighi, SEFUW 2014, ESA/ESTEC, September 16-18, 2014, Noordwijk, The Netherlands

4

Step 1 - INAF Objective

- Evaluation of reprogrammable FPGAs in order to identify suitable candidates for Hi-Rel CoCs
- Guidelines
 - Major players in the market were considered
 - availability, support, information, heritage
 - No specific functionality
- Approach

- Select a preliminary list of candidates
- Measure how well candidates match the required criteria
- Select a few candidates with higher scores

Preliminary selection (as per 2009)

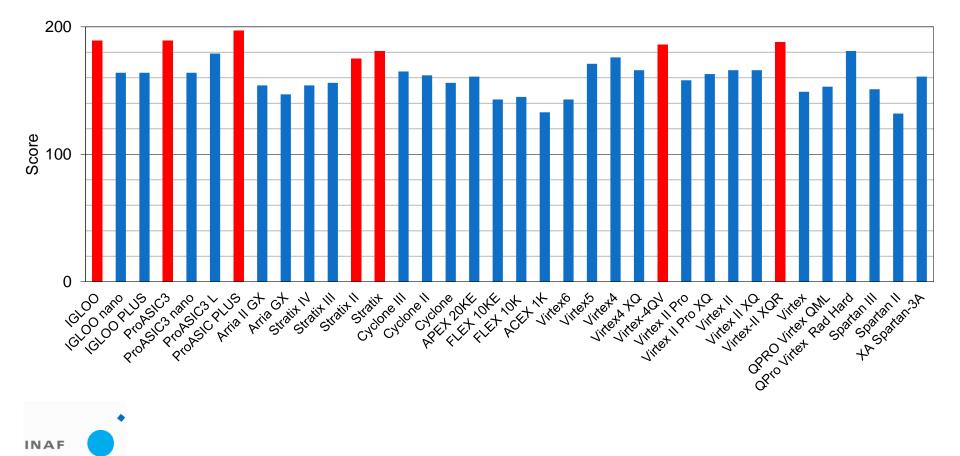
- Manufacturers
 - ACTEL (FLASH)
 - ALTERA (SRAM)
 - XILINX (SRAM)

LATTICE < 5%

ACTEL 8%

ALTERA 32%

- IGLOO, IGLOO nano, IGLOO PLUS, ProASIC3, ProASIC3 nano, ProASIC3 L, ProASIC PLUS
- ALTERA
 - Arria II GX, Arria GX, Stratix IV, Stratix III, Stratix II, Stratix, Cyclone III, Cyclone II, Cyclone, APEX 20KE, FLEX 10KE, FLEX 10K, ACEX 1K
- XILINX


INAF

 Virtex6, Virtex5, Virtex4, Virtex4 XQ, Virtex-4QV, Virtex II Pr0, Virtex II Pro XQ, Virtex II, Virtex II XQ. Virtex-II XQR, Virtex, QPRO Virtex QML, QPro Virtex Rad Hard, Spartan III, Spartan II, XA Spartan-3A

Criteria

- Maturity and Stability of the design and manufacturing process
- Rapid Obsolescence / long term availability
- Diffusion in commercial and embedded markets
- Availability and maturity of development tools
- Availability of validated / certified Software (e.g. O.S.)
- Availability of Radiation tests results
- Availability of up-screened versions, for harsh environment applications
- Access to manufacturers data (process, roadmap, reliability data,...)
- No ITAR or other export restrictions
- Use of silicon technologies having intrinsic radiation tolerance capabilities
- Internal error detection and correction features
- Power consumption
- Packaging

Candidate selection

Top-performers candidate

- 7 out-performers out of 38 devices reviewed
- Space devices were withdrawn \rightarrow higher purchase cost (~ x10)
- Altera devices were withdrawn due to reported SEL vulnerability

DEVICE	TECHNOLOGY		
Actel			
ProASIC3	Flash, 130 nm		
IGLOO	Flash, 130 nm		
Xilinx			
Virtex 4 XQ/Virtex 4	SRAM 90 nm		
Virtex 5	SRAM 65 nm		

Step 1 - Further activities

- Analysis of top-performers in the target radiation environment (CGR in L2 orbit)
- Evaluation of candidate expected radiation sensitivity (cross section) on the basis of available data
- Definition of countermeasures for the category of radiation effects on selected devices
- Recommendations of usage
 - Actel ProASIC3 for TC/TMC
 - Actel ProASIC3 for RM
 - Xilinx Virtex 4 for PM

- Xilinx Virtex 4 for fast I/Os
- Actel ProASIC3 for slow I/Os.

Hi Rel CoCs - Step 2 Objective

- Step 2 started in September 2011
- Activities are focusing on PM development and validation:
 - PM Board and FPGAs detailed design
 - Basic SW

- PM Breadboard Manufacturing
- PM Board EGSE development
- PM Breadboard Verification Test
- Development of benchmark Software
- PM Performances evaluation and Validation (including Faults injection)
- Planned Step 2 activities completion by 4Q2014

PM Module - Features

- CPU based on PPC 7448
- Working memory based on DDR-II
- Use High Speed FPGA (Virtex4) as Bridge
- Virtex4 scrubbing managed by external device
- Combination of SW and HW FDIR strategies
- HW Features specifically supporting SW FDIR
 - Selective Memory Protection
 - Individual Memory power switching to cope with SEFI
 - Smart watch-dog (supervisor) to check program flow
- ESA Standard data Interfaces
 - SpaceWire

INAF

High Speed Serial links

SBC PowerPC-7448 product definition

- It is the new TAS High Performance Processing Module, based on PowerPC 7448 (2300DMIPS@1GHz core clock), offering performances not available from other European Manufacturers.
- Development has been started in the frame of ESA COTS Based Computer and ARPA ASI Technology program.
- Space Qualified version development is going-on
- Envisageable Applications:
 - Optical Observation payloads
 - Radar Payload
 - Scientific Payloads
 - Planetary exploration Computers
 - Any application requiring high Processing performances

SBC PowerPC-7448

© 2014, Thales Alenia Space

ThalesAlenia Space

FLIPPER 2

• Second release of our Fault Injection platform for Xilinx FPGAs

- Inject bit-flip faults within the FPGA configuration memory by means of partial re-configuration
- Verify DUT functionality by means of test vector application and comparison
- Major HW improvements
 - Virtex-4 DUT (XC4VSX55-FF1148)
 - DUT hosted by socket
 - 256 bidirectional IOs available
 - 1GbE link (optical/copper)
 - DDR2 SODIMM
- SW

INAF

• CLI-based (GNU/Linux OS)

What's FLIPPER 2 for

- Quantitative characterization of design robustness
- Workload dependent analysis of sensitive bits
- Comparison of design hardening techniques
- Tuning of design redundancy and protection
- Optimization of radiation ground testing
- Ready to use set-up for radiation ground testing

Sample design

• ESA benchmark design

- FFT: Fourier Transform of a data matrix
- MULT16_LUT: LUT based multiplier chain
- MULT16_MULT18: embedded multiplier chain
- FFmatrix: shift register chain
- IOff_A/B: IO pad chain
- ROMff: read only register

Plain and XTMR design variants

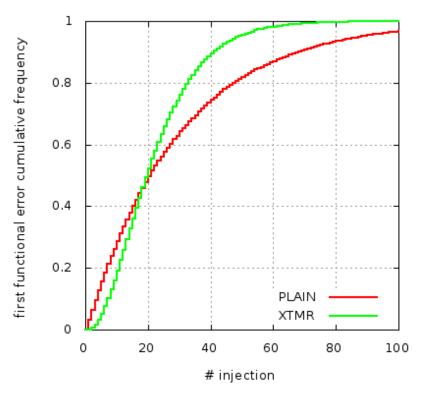
Logic Resource	Plain	XTMR	
Slices	12,841 (52%)	24,574 (99%)	
LUT	11,478 (23%)	42,965 (87%)	
IOB	87 (13%)	248 (38%)	
DSP48	20 (3%)	60 (11%)	
GCLK	1 (3%)	3 (9%)	

INAF

Fault Injection campaign

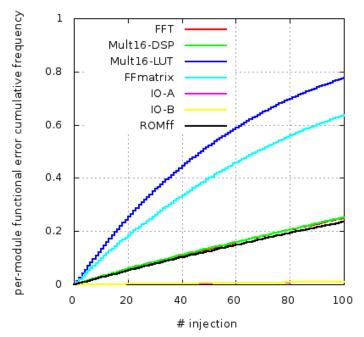
- Cumulative and single injection analyses
- By frame type and by module type analyses
- Injection at any time
- Typical performance, 100 injection/s
 - Bit flip injection
 - Functional test

INAF

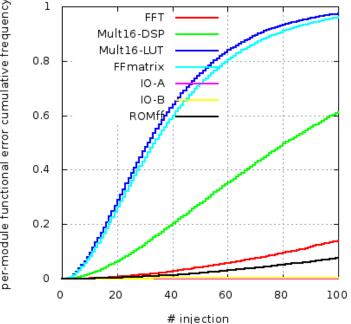

Bit flip correction

Results (1/4)

• # cycles: 20,000

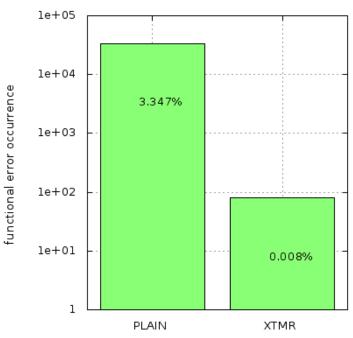

INAF

 100 cumulative injections per cycle Injection Cumulative Campaign - Design comparison (population 2e+04)

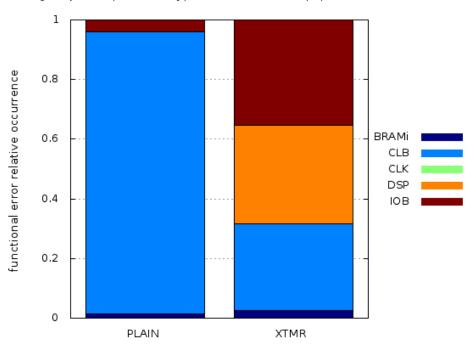

Injection Cumulative Campaign - Design PLAIN (population 2e+04)

INAF

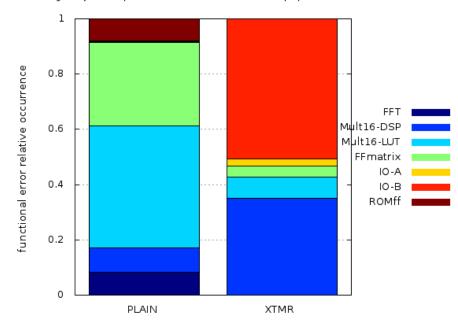
per-module functional error cumulative frequency


Injection Cumulative Campaign - Design XTMR (population 2e+04)

Results (3/4)

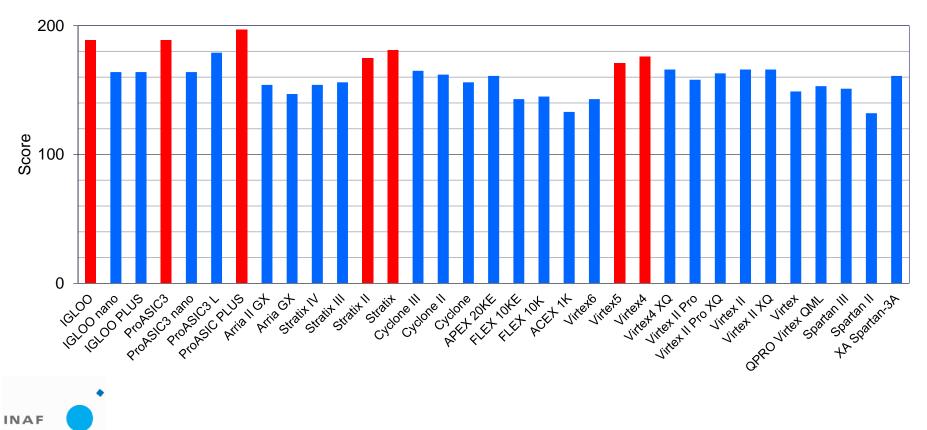

- # cycles: 1,000,000
- I injection per cycle

Single injection error occurrence (population 1e+06)



Single injection per-frame-type error distribution (population 1e+06)

Single injection per-module error distribution (population 1e+06)



Thank you!

Candidate selection

 Space devices were withdrawn → higher purchase cost (~ x10)

Upset rate - Conf Mem

• The largest device for each family was used

Upset rate/Device	AGL1000	A3P1000	XC4VLX200	XC5VLX330
Upset rate bit-1 Day-1 (conf mem)	Negligible (Configuration bit upsets were never observed)		2.62E-07	3.12E-07
Upset rate Day-1 (conf mem)			13.46	24.89
Upset rate bit-1 Day-1 - Worst day (conf mem)			5.67E-05	6.77E-05
Upset rate Day-1 - Worst day (conf mem)			2908.48	5395.01

M. Alderighi, SEFUW 2014, ESA/ESTEC, September 16-18, 2014, Noordwijk, The Netherlands

Upset rate - FF & User Mem

Upset rate/Device	AGL1000	A3P1000	XC4VLX200	XC5VLX330
Upset rate bit -1 Day-1 (ff)	1.53E-07	1.53E-07	2.26E-07	4.51E-07
Upset rate Day-1 (ff)	3.77E-03	3.77E-03	0.04	0.09
Upset rate bit-1 Day-1 - Worst day (ff)	3.79E-05	3.79E-05	4.89E-05	9.79E-05
Upset rate Day-1 - Worst day (ff)	0.93	0.93	8.72	20.29

Upset rate/Device	AGL1000	A3P1000	XC4VLX200	XC5VLX330
Upset rate bit-1 Day-1 (user mem)	2.38E-07	2.38E-07	8.16E-07	1.63E-06
Upset rate Day-1 (user mem)	0.04	0.04	4.94	16.93
Upset rate bit-1 Day-1 - Worst day (user mem)	5.33E-05	5.33E-05	1.84E-04	3.69E-04
Upset rate Day-1 - Worst day (user mem)	7.85	7.85	1115.39	3824.20

INAF

PM Module - Major Requisites

- Outage duration in case of transient failure lower than 10 s
- Mean time between these outages higher than 30 days
- Targeted PM performance: 400 MIPS
- 3 high speed buses (200 Mb/s each), 3 low speed buses (1 Mb/s each), 100 low speed I/O (few kb/s each).
- Lifetime of 15 years

INAF

• Reliability better than 0.95 over 15 years

