

Single Event Upset Characterization of Commercial Grade SRAM and FLASH-based Field Programmable Gate Array Using Proton Irradiation

Tomáš Vaňát, Jan Pospíšil, Jozef Ferencei, Filip Křížek

Nuclear Physics Institute of the Czech Academy of Science in Řež and och Tochnical University in Prague, Digital Design and Dependability Gre

Czech Technical University in Prague, Digital Design and Dependability Group

- Introduction NPI Řež cyclotron
 - Open Access
 - Parameters
 - Tools
- Motivation
 - ALICE ITS Upgrade (LHC, CERN)
 - FPGA Model Calibration
- FPGA Testing
 - Methodology
 - Results
- Conclusions and Future Work

- Introduction NPI Řež cyclotron
 - Open Access
 - Parameters
 - Tools
- Motivation
 - ALICE ITS Upgrade (LHC, CERN)
 - FPGA Model Calibration
- FPGA Testing
 - Methodology
 - Results
- Conclusions and Future Work

NPI Řež Cyclotron – Open Access

Center of Accelerators and Nuclear Analytical Methods (CANAM) offers scientists a unique experimental infrastructure in nuclear physics and neutron science: <u>http://canam.ujf.cas.cz/</u>

Funded by the Ministry of Education, Youth and Sports of the Czech Republic and Nuclear Physics Institute of the Academy of Sciences of the Czech Republic, experimental facilities are proffered to the users in Open Access mode.

Cyclotron at Nuclear Physics Institute of the Czech Academy of Science, Řež

- Negative running mode
 - Production of radiopharmaceuticals
 - Activation & irradiation experiments
 - High energy and flux intensity
 - Neutron background
 - Neutron Generator available
- Positive running mode
 - Astrophysical and biological research
 - Spectrometry experiments
 - No neutron background
 - Lower maximal intensities
 - Need to be arranged and planned in advance (blocks radiopharmaceutical production for at least a week)

NPI Řež Cyclotron U-120M – Basic Parameters

Tools: Beam Absorber and Energy Degrader

- Instant stopping and restoring the beam without changing it's parameters
- Lowering the beam energy without need of readjusting the cyclotron
- Integrated beam monitoring under development

Tools: Dosimetry – Ionization Chamber

- Commercial product from PTW Freiburg
- Placed close to the beam axis
- Calibrated by Timepix (CERN Medipix) device and cross-checked using SRIM/GEANT4 simulations

Tools: Positioning system

- Remotely controlled
- Positioning in X and Y axis
- +/- 5 cm in both axes
- 1 µm accuracy possible (now using 1 mm accuracy)

- Introduction NPI Řež cyclotron
 - Open Access
 - Parameters
 - Tools

Motivation

- ALICE ITS Upgrade (LHC, CERN)

– FPGA Model Calibration

• FPGA Testing

- Methodology
- Results
- Conclusions and Future Work

ALICE detector at LHC in CERN

ITS Upgrade – Technical Design Report

ALICE ALICE-TDR-017 CERN-LHCC-2013-024 07 November 2010 <u>http://cds.cern.ch/record/1625842</u>	116th LHCC Meeting - DRAFT Agenda OPEN Session chaired by Eckhard Elsen (Deutsches Elektronen-Synchrotron (DE)) from Wednesday, 4 December 2013 at 09:00 to Thursday, 5 December 2013 at 17:30 at CERN (500-1-001 - Main Auditorium)						
Technical Design Report	Table 9.2: Institutes participating in the ITS Upgrade Project.						
	Country City Institute						
for the	CERN Geneva European Organization for Nuclear Research China Wuhan Central China Normal University (CCNU) Czech Republic Praque Faculty of Nuclear Science and Physical Engineering, Czech						
Upgrade of the	Technical University						
ALICE Inner Tracking System	Czech Republic Řež u Prahy Nuclear Physics Institute of the ASCR						
The ALICE Collaboration	+ 32 other institutes from 14 countries Total cost = 12 MCHF						

Published in:

B. Abelev et al. (The ALICE Collaboration) 2014 J. Phys. G: Nucl. Part. Phys. 41 087002

<u>Time schedule</u> (*LHC Large Shutdown 2: start = July 2018 for 18 months*) : selection of design: beginning 2015, production: fall 2015 \rightarrow beginning 2017, global assembly: beginning 2018, commissioning: end 2018 \rightarrow beginning 2019

New ITS Layout

	Layer 0	Layer 1	Layer 2	Layer 3	Layer 4	Layer 5	Layer 6
Radial position (minimum (mm)	22.1	28.9	37.5	175.3	210.0	387.0	423.0
Length (mm) sensitive area	270		843		1475		
Nr. pixel chips	108	144	180	2688	2912	9408	9996
Pixel size (μm^2)	20×20		20×20		20 imes 20		

ITS Readout Scheme

Criteria for FPGA Candidate

- Price: ~1000 data channels → the price of the readout unit must not dominate the price of the total project
- **Speed:** up to 1.5 Gbit/s per data channel
- Radiation: 4-5 meters from the ITS detector, 1 m from the beampipe, still in the radiation environment of the LHC accelerator → 10 krad TID

- Introduction NPI Řež cyclotron
 - Open Access
 - Parameters
 - Tools

Motivation

- ALICE ITS Upgrade (LHC, CERN)
- FPGA Model Calibration
- FPGA Testing
 - Methodology
 - Results
- Conclusions and Future Work

FPGA Model – Motivation

- SEU vulnerability depends on actual design
- New design need to be SEU-characterized
- Basic approaches known:
 - Simulation

too complex, unknown structure of FPGAs

 Accelerated Life Testing (ALT) in radiation fields too specific, too expensive only for specific device—design pair

FPGA Model – Approach

• Create a model of FPGA

Fault models library

- Create a framework to test the circuit implemented in the FPGA based on the given FPGA model
- Calibrate model through ALT (Accelerated Life Testing) on cyclotron

- Introduction NPI Řež cyclotron
 - Open Access
 - Parameters
 - Tools
- Motivation
 - ALICE ITS Upgrade (LHC, CERN)
 - FPGA Model Calibration
- FPGA Testing
 - Methodology
 - Results
- Conclusions and Future Work

Test Design Example

- Tests all LUTs and flip-flops
- Propagates any error to output
- Forms a long pipeline
- Is preloaded with data upon flip-flops reset
- Detects fault rate on the particular device under particular conditions

Pipeline

Entire Test System

- Based on Spartan 3 Starter Kit
- Two parts
 - One under radiation
 - One away from radiation
- Connected trough 16 differential lines
- Radiated part is controlled from the shielded one
 - Remote monitoring, reset, reload

Irradiation Setup

- Introduction NPI Řež cyclotron
 - Open Access
 - Parameters
 - Tools
- Motivation
 - ALICE ITS Upgrade (LHC, CERN)
 - FPGA Model Calibration

• FPGA Testing

- Methodology
- Results
- Conclusions and Future Work

Spartan 3 Irradiation

- Xilinx SRAM FPGA
- Starter Kit used
 XC3S200 device
- 90 nm CMOS technology
- Only SEU in configuration memory measured

Spartan 3 Irradiation – Results

Configuration error rate vs. proton

Configuration error rate vs. energy

SmartFusion2 Irradiation

- Microsemi FLASH SoC
 - Only the FPGA part tested
- Starter Kit used
 - M2S050-FGG484 device
- 65 nm CMOS technology
- No SEU in configuration memory (as expected)
- Some SEU in "data" flip-flops (D-FFs)

- Programming SEFI after approx. 10-70 krads)
 - results confirmed and refined to 4 krads by Ketil Røed et al. (RCU for ALICE TPC)

SmartFusion2 Irradiation – Results

IGLOO2 Irradiation

- Microsemi FLASH FPGA
- Same FPGA fabric as SF2
- Starter Kit used
 - M2GL010T device
- 65 nm CMOS technology
- No SEU in configuration memory
- SEU rate in "data" flip-flops (D-FFs) comparable to SF2 device
- Only one short (6 min) irradiation performed till now.
- Programming SEFI after approx. 1 krad

- Introduction NPI Řež cyclotron
 - Open Access
 - Parameters
 - Tools
- Motivation
 - ALICE ITS Upgrade (LHC, CERN)
 - FPGA Model Calibration
- FPGA Testing
 - Methodology
 - Results
- Conclusions and Future Work

Conclusions I

- Cyclotron in NPI Řež is a suitable instrument for a radiation testing of FPGAs and other components
- Within the Open Access project the cyclotron is available for a broad community
- ALICE ITS Upgrade project requires to identify the radiation hardness of (commercial grade) FPGAs, suitable for use in the Readout Control Unit
- We have proposed a method for predicting the quantitative characteristics of SEU sensitivity of digital circuits implemented in the FPGA
- This method can be used for verifying dependability and security parameters of various designs implemented in FPGA
- We have completed the first runs of ALT for different FPGAs

Conclusions II

- FLASH based SmartFusion2 and IGLOO2 (65 nm) has better resistance to Single Event Effects in comparison with Spartan 3 (90 nm)
 - Configuration memory is completely safe
 - D flip-flops are less vulnerable, although it is a smaller technology
- On the other side, the SmartFusion2 and IGLOO2 FLASH programming controller is very sensitive to total ionizing dose. It is permanently destroyed at:
 - ~4 krads for SF2
 - ~1 krad for IGLOO2
 - Spartan 3 already survived several hundreds of krads without permanent error noticed
- SF2 and IGLOO2 are not suitable for the ALICE ITS Upgrade at the moment because of programming SEFI

Outlook and Future Work

- Improving the monitoring of the total ionizing dose
- Upgrade the communication module of DUT for higher data transfer rate
- Synchronization of the FPGAs clock with cyclotron frequency to study Single Transient Events
- Improving the FPGA model, collect a set of data to calibrate the model
- Select and test another candidate for ALICE ITS Upgrade project

Spare Slides

Acceleration of H⁻ ions and extraction using the stripping foil

Negative mode:

Acceleration of H with loosely bounded additional electron \rightarrow H⁻ Carbon stripping foil: H⁻ \rightarrow protons Carbon foil source of additional neutron background Transmission efficiency (source to extracted beam) typical: 52% for H⁻

Test Design Example – Code

- Symmetric
- After odd number of conversions, the output is same as input
- Any bit flip in any LUT appears as a change in the sequence

Code 1	Code 2		Code 1	
0000	1001		1000	
0001	1010		1001	
0010	1111		1010	
0011	0110		1011	
0100	0011	1	1100	
0101	0111		1101	
0110	1100		1110	
0111	0101		1111	

Code 2

1011

0000

0001

1000

0110

1110

1101

0010