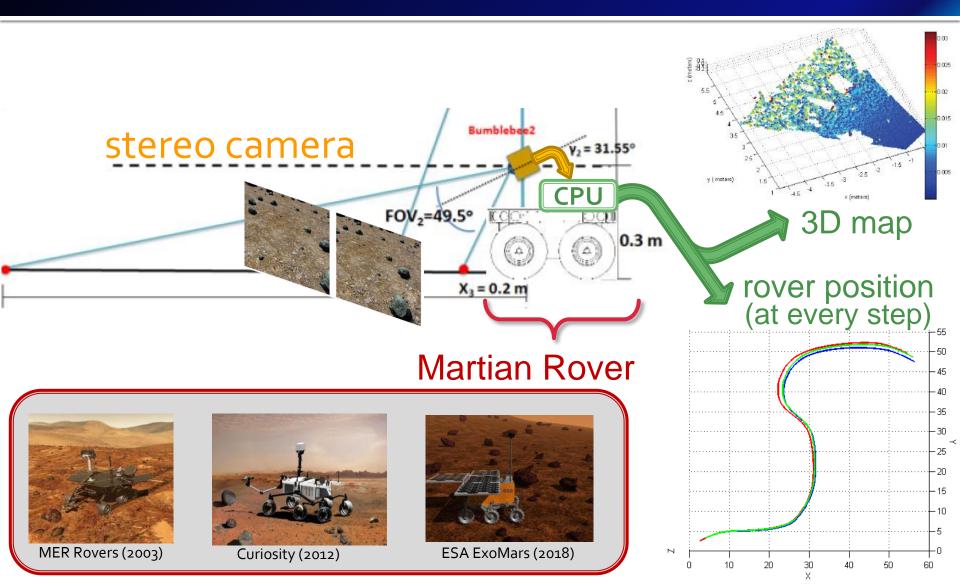
FPGA use in future space rover navigation

<u>G. Lentaris</u>, (glentaris@microlab.ntua.gr)
J. Stamoulias,
M. Lourakis,
X. Zabulis,
K. Maragos,
D. Diamantopoulos,
K. Siozios,
D. Soudris,
M. Aviles Rodrigalvarez

16-9-2014, ESTEC

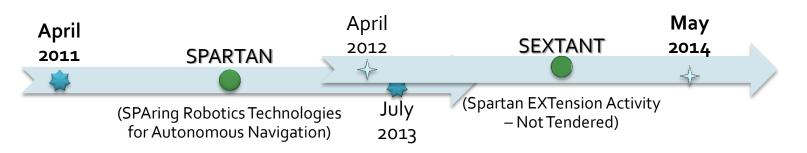
ECE, NTUA, GREECE


FORTH, CRETE, GREECE

GMV, MADRID, SPAIN

Autonomous Visual Navigation

Autonomous Visual Navigation


- highly complex Computer Vision algorithms
 low processing power CPUs (space-grade)
- > huge execution time, not very practical to use
 - MER rover: speed only 10 m/h with VO (124 without!)
 use only for dangerous maneuver, e.g., edge of crater
- future: faster + more accurate (more complex!)
 1 hour for 3D map on 150 MIPS CPU (budget = 20sec)
 1 minute for 1 step on 150 MIPS CPU (budget = 1sec)
 looking for speed-up factors 10x to 1000x

Solution: Space-Grade FPGA

SPARTAN/SEXTANT projects (ESA, completed)

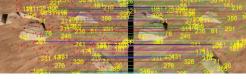
- HW/SW co-design of rover navigation algorithms
- commercial FPGA/CPU, emulate Martian scenarios
 - project time to 150 MIPS CPU and limit the FPGA resources
 - synthetic datasets of Mars, real images of Atacama, Devon
 - ✓ achieved "localization" in 1sec with 512x384 images
 - ✓ achieved "mapping" in 20sec with 1120x1120 images

histogram of gradients

SEXTANT: Localization Algorithm

- input: 1 stereo image, per second (2x 512x384 pixels)
- output: pose of rover, per second (6D vector)

- 1. Feature Detection: Harris (x2)
- 2. Feature Description: SIFT (x2)
- 3. Matching: x²-distance (x2)
- 4. Filter outlier matches
- 5. Motion Estimation



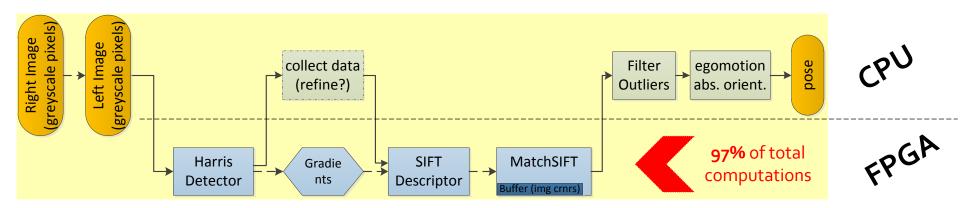

image 2

image 1

matching of histograms

HW/SW co-design methodology

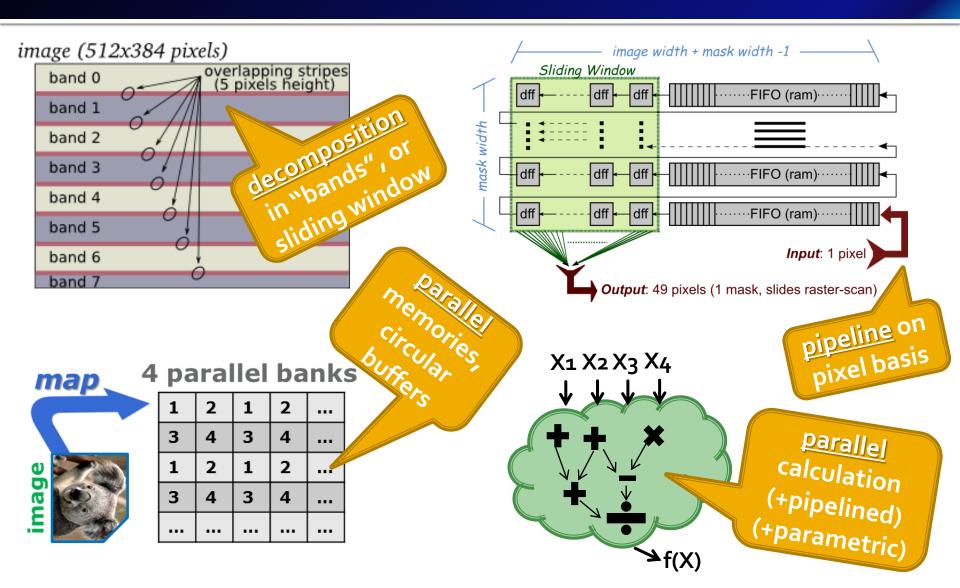
- <u>Phase 1:</u> SW coding, algorithm analysis/profiling
 complexities: time, mem., comm., parallelizable, etc
- Phase 2: partitioning to FPGA and CPU
- Phase 3: design HW architecture, develop VHDL
- Phase 4: integration, tuning, verification

HW architecture: overview

Target low-cost implementations

- especially w.r.t. memory: bottleneck for CV on FPGA
 - resource reuse: decompose input data, process successively

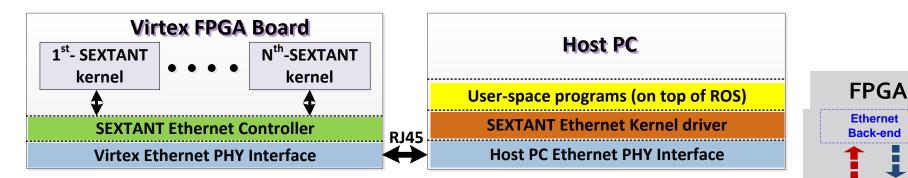
Target sufficient speed-up (for ESA specs)


- pipelining on pixel-basis
 - burst read of image, transform on-the-fly (1 datum/cycle)
- parallel memories & parallel processing elements
 - parallel calculation of arithmetic formulas

Target configurability (tuning, adaptation)

parametric VHDL: data size, accuracy, parallelization,

HW architecture: techniques



SEXTANT: Mapping Algorithm

- input: 3 stereo images (3x 2x 1120x1120 pixels)
- output: depth map (1037x3111 values)
- basic kernel: "space-sweep"
 - bruteforce search: loop over depths, loop over pixels
 in brief: assume 200 depths in front of rover. Hypothesize pixels were recorded at each depth, back-project them to other camera based on geometry. Find correct projection
 - very intensive, entire algorithm on FPGA (99.9%)
 - double decomposition, two pixel-based pipelines, 8-bank memory, parallel aggregation of pixels (convolution-like)

CPU-FPGA communication

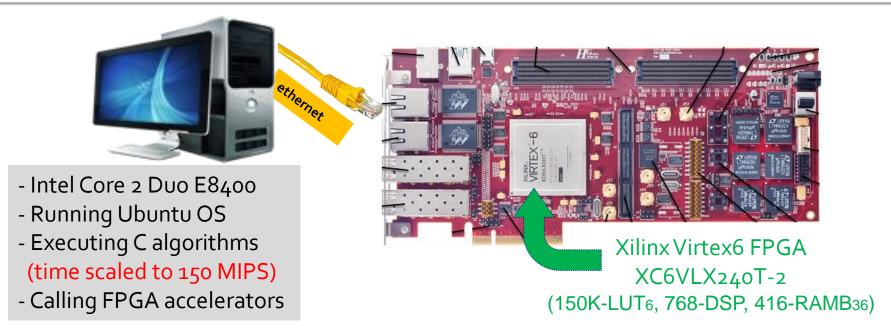
ΝΤΙ

ComCore Parametric VHDL

SEXTANT Arbiter

out size, prefetching mechanism)

SEXTANT IP Kernels


Data-in

Results out

- custom scheme with raw Ethernet
 - on CPU: developed kernel driver
 - LKM, Rx-Tx SysCalls at Network layer, C++ API
 - on FPGA: developed data-flow controller
 - low-level functions of Link-layer by "Eth. MAC IP" from OpenCores (CSMA/CD LAN IEEE 802.3)
 - custom: packets, handshake, backoff, arbitration

System Integration, Tuning, Tests

NTU

- Modular integration: algorithms @ compile-time
 - many combinations were implemented and tested
 - SURF, SIFT, Harris, BRIEF, FAST, Matching, 2D3, Horn, ...
 - tuning/exploration to meet <u>all</u> requirements (time, accuracy, cost): importance of parametric VHDL

Conclusion

- Successfully designed and implemented both Localization (VO) and Mapping (3Drec.) on FPGA
 meet all ESA specifications: time, accuracy, HW cost
- Space applications can greatly benefit by FPGA
 - speed-up factors 10x to 1000x
 - robotics (not only) become more practical/useful

Future work:

- COMPASS: optimization, multi-FPGA (2014-2015)
- PELORUS: put on MUSE FPGA (2M €, start in 2015?)

Thank You! Questions?

<u>George Lentaris, ECE, NTUA, Greece</u> (glentaris@microlab.ntua.gr)

* this work was partially supported by "TEAChER: TEach AdvanCEd Reconfigurable architectures and tools: project funded by DAAD (2014)