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NTUA 

 highly complex Computer Vision algorithms 
 low processing power CPUs (space-grade ) 
huge execution time, not very practical to use 

MER rover: speed only 10 m/h with VO (124 without!) 
use only for dangerous maneuver, e.g., edge of crater 

 
 future: faster + more accurate (more complex!) 
1 hour for 3D map on 150 MIPS CPU (budget = 20sec) 
1 minute for 1 step on 150 MIPS CPU (budget = 1sec) 
looking for speed-up factors 10x to 1000x 
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SPARTAN/SEXTANT projects (ESA, completed) 

 HW/SW co-design of rover navigation algorithms 

 commercial FPGA/CPU, emulate Martian scenarios 

 project time to 150 MIPS CPU and limit the FPGA resources 

 synthetic datasets of Mars, real images of Atacama, Devon 

  achieved “localization” in 1sec with 512x384 images 

  achieved “mapping” in 20sec with 1120x1120 images   
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 input: 1 stereo image, per second (2x 512x384 pixels) 
 output: pose of rover, per second (6D vector) 

 
Iterations, per second: 
1. Feature Detection: Harris (x2) 

2. Feature Description: SIFT (x2) 

3. Matching: x2-distance (x2) 

4. Filter outlier matches 
5. Motion Estimation 

histogram 
of  gradients 

matching of histograms 

image 2 image 1 
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 Phase 1: SW coding, algorithm analysis/profiling 
 complexities: time, mem., comm., parallelizable, etc  

 Phase 2: partitioning to FPGA and CPU 
 Phase 3: design HW architecture, develop VHDL 
 Phase 4: integration, tuning, verification   
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 Target low-cost implementations 
 especially w.r.t. memory: bottleneck for CV on FPGA 
▪ resource reuse: decompose input data, process successively 

 

 Target sufficient speed-up (for ESA specs)  
 pipelining on pixel-basis 
▪ burst read of image, transform on-the-fly (1 datum/cycle) 

 parallel memories  &  parallel processing elements  
▪ parallel calculation of arithmetic formulas 

 

 Target configurability (tuning, adaptation) 
 parametric VHDL: data size, accuracy, parallelization,  
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 input: 3 stereo images (3x 2x 1120x1120 pixels) 
 output: depth map (1037x3111 values) 

 

 basic kernel: “space-sweep” 

 bruteforce search: loop over depths, loop over pixels 
▪ in brief: assume 200 depths in front of rover. Hypothesize  

pixels were recorded at each depth, back-project them to 
other camera based on geometry. Find correct projection 

 very intensive, entire algorithm on FPGA (99.9%) 
▪ double decomposition, two pixel-based pipelines, 8-bank 

memory, parallel aggregation of pixels (convolution-like)   
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FPGA 

 custom scheme with raw Ethernet  

 on CPU: developed kernel driver 

▪ LKM, Rx-Tx SysCalls  at Network layer, C++ API 

 on FPGA:  developed data-flow controller 

▪ low-level functions of Link-layer by “Eth. MAC  
IP” from OpenCores (CSMA/CD LAN IEEE 802.3) 

▪ custom: packets, handshake, backoff, arbitration  
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 Modular integration: algorithms @ compile-time 
 many combinations were implemented and tested 
▪ SURF, SIFT, Harris, BRIEF, FAST, Matching, 2D3, Horn, … 

 tuning/exploration to meet all requirements (time, 
accuracy, cost): importance of parametric VHDL 

Xilinx Virtex6 FPGA 
XC6VLX240T-2  

(150K-LUT6, 768-DSP, 416-RAMB36) 

- Intel Core 2 Duo E8400 
- Running Ubuntu OS 
- Executing C algorithms 
  (time scaled to 150 MIPS) 
- Calling FPGA accelerators 
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 Successfully designed and implemented both 
Localization (VO) and Mapping (3Drec.) on FPGA 
 meet all ESA specifications: time, accuracy, HW cost 

 

 Space applications can greatly benefit by FPGA 
 speed-up factors 10x to 1000x 

 robotics (not only) become more practical/useful 
 

 Future work:  
 COMPASS: optimization, multi-FPGA (2014-2015) 
 PELORUS:  put on MUSE FPGA (2M €, start in 2015?)  
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