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Autonomous Visual Navigation

nighly complex Computer Vision algorithms
ow processing power CPUs (space-grade)
nuge execution time, not very practical to use

MER rover: speed only 120 m/h with VO (124 without!)
use only for dangerous maneuver, e.g., edge of crater

future: faster + more accurate (more complex!)
1 hour for 3D map on 150 MIPS CPU (budget = 20sec)
1 minute for 1 step on 150 MIPS CPU (budget = 1sec)
looking for speed-up factors 10x to 1000x



Solution: Space-Grade FPGA

SPARTAN/SEXTANT projects (ESA, completed)

HW/SW co-design of rover navigation algorithms

commercial FPGA/CPU, emulate Martian scenarios

= project time to 150 MIPS CPU and limit the FPGA resources
= synthetic datasets of Mars, real images of Atacama, Devon
v" achieved “localization” in 1sec with 512x384 images

v" achieved “"mapping” in 20sec with 1120x1120 images
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SEXTANT: Localization Algorithm

input: 1 stereo image, per second (2x 512x384 pixels)
output: pose of rover, per second (6D vector)
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HW/SW co-design methodology

Phase 1: SW coding, algorithm analysis/profiling

complexities: time, mem., comm., parallelizable, etc
Phase 2: partitioning to FPGA and CPL
Phase 3: design HW architecture, develop VHDL
Phase 4: integration, tuning, verification
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HW architecture: overview

Target low-cost implementations

especially w.r.t. memory: bottleneck for CV on FPGA
= resource reuse: decompose input data, process successively

Target sufficient speed-up (for ESA specs)
pipelining on pixel-basis
= burst read of image, transform on-the-fly (2 datum/cycle)

parallel memories & parallel processing elements
= parallel calculation of arithmetic formulas

Target configurability (tuning, adaptation)
parametric VHDL: data size, accuracy, parallelization,




HW architecture: techniques
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SEXTANT: Mapping Algorithm

Input: 3 stereo images (3x 2x 1120x1120 pixels)
output: depth map (1037x3111 values)

basic kernel: “space-sweep”

bruteforce search: loop over depths, loop over pixels

= in brief: assume 200 depths in front of rover. Hypothesize
pixels were recorded at each depth, back-project them to
other camera based on geometry. Find correct projection

very intensive, entire algorithm on FPGA (99.9%)
= double decomposition, two pixel-based pipelines, 8-bank
memory, parallel aggregation of pixels (convolution-like)



CPU-FPGA communication

Virtex FPGA Board
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custom scheme with raw Ethernet
on CPU: developed kernel driver

= LKM, Rx-Tx SysCalls at Network layer, C++ API
on FPGA: developed data-flow controller

* low-level functions of Link-layer by "Eth. MAC
IP” from OpenCores (CSMA/CD LAN IEEE 802.3)

= custom: packets, handshake, backoff, arbitration
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System Integration, Tuning, Tests

- Intel Core 2 Duo E8400
- Running Ubuntu OS , . ;
- Executing C algorithms ' b - Xilinx Virtex6 FPGA
(time scaled to 150 MIPS) XC6VLX240T-2
- Calling FPGA accelerators (150K-LUTs, 768-DSP, 416-RAMB3s6)

Modular integration: algorithms @ compile-time

many combinations were implemented and tested
= SURF, SIFT, Harris, BRIEF, FAST, Matching, 2D3, Horn, ...

tuning/exploration to meet all requirements (time,
accuracy, cost): importance of parametric VHDL



Conclusion

Successfully designed and implemented both

Localization (VO) and Mapping (3Drec.) on FPGA
meet all ESA specifications: time, accuracy, HW cost

Space applications can greatly benefit by FPGA
speed-up factors 10x to 1000x
robotics (not only) become more practical/useful

Future work:
COMPASS: optimization, multi-FPGA (2014-2015)
PELORUS: put on MUSE FPGA (2M €, start in 20157?)
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