

Results of Heavy-Ion Broad and Micro Beam Testing of Flash Based FPGAs

Adrian Evans, Dan Alexandrescu iROC Technologies – France {adrian,dan}@iroctech.com

<u>Véronique Ferlet-Cavrois</u> ESA-ESTEC – Netherlands veronique.ferlet-Cavrois@esa.int

Radiation Testing SEFUW – Wednesday, September 17th 2014

Outline

- Background ProASIC3L, SETs
- SET Measurement Techniques
- Results of Heavy Ion (HI) SET measurements (UCL)
- > HI Micro Beam Setup (GSI)
- Results of Micro Beam Testing
- Permanent Effects
- Conclusions and Future Work

Background - ProASIC3L, SETs

MicroSemi ProASIC3L

	A3PE3000L
Core Voltage (V)	1.2 1.5
Technology	130nm, 7ML
VeraTiles	75 264
4608 bit BRAMS	112
CCC (including PLL)	6
VersaNet Globals	18

One VersaTile can implement:

- Any 3 input combinatorial function
- A DFF or latch with options for preset, clear, enable
- Configuration is controlled by floating gate switch

Single Event Transients (SETs)

- Upsets in combinatorial logic (VersaTiles)
- Characterization requires :
 - Measuring rate of occurrence
 - > *Distribution* of pulse widths
- ➢ Function of :
 - VersaTile configuration (AND,OR, XOR, MAJ,...)
 - Input state
 - Voltage, Temperature
- SETs in flash based FPGAs have been extensively studied [1..7]
 - New contributions : finer temporal resolution and complex circuits

[1] S. Rezgui, et al., "New methodologies for set characterization and mitigation in flash Based FPGAs," TNS'07, vol. 54, no. 6.

[2] S. Rezgui, et al., "Configuration and routing effects on the set propagation in flash-based fpgas," TNS'08, vol. 55, no.6.

[3] C. Poivey, et al., "Radiation characterization of Microsemi Proasic3 flash FPGA Family," REDW , 2011.

[4] N. Battezzati, et al., "Analysis of SET Propagation in Flash-based FPGAs by means of electrical pulse injection," RADECs 2009.

[5] M. D. Berg, et al., "A comprehensive methodology for complex FPGA SEE Evaluation," TNS'09, vol. 56.

[6] L. Sterpone, et al. "Analysis of SET Propagation in flash-based FPGA by means of electrical pulse injection," TNS'10, vol. 57.

[7] L. Sterpone, et al., "An Analytical Model of PIPB on SETs in flash-based FPGAs," TNS'11, vol. 58.

SET Measurement Techniques

SEFUW

Existing SET Measurement Techniques

➢ Pulse Filter [1,2]

 Requires multiple filters to characterize pulse width distribution

- Subject to on-chip delay variation (voltage, variability, etc.)
- Resolution limited to 1 gate delay

Off-chip measurement [3]

- Subject to bandwidth of IO pads
- Number of observations limited by available channels on DSO

[1] S. Rezgui et al., "New methodologies for set characterization and mitigation in flash Based FPGAs," TNS'07, vol. 54, no. 6.

- [2] S. Rezgui et al., "Configuration and routing effects on the set propagation in flash-based fpgas," TNS'08, vol. 55, no.6.
- [3] L. Sterpone et al., "Analysis of SET Propagation in Flash_based FPGAs by means of Electrical Pulse Injection," TNS'10, vol. 57, no.4

- Two latches are used to detect the SET (rising and falling edge)
- Exploit the difference in delay along two chains for finer delay resolution
- "Slow" delay chain (t1)
 - Triggered by rising (leading) edge of the transient
 - Feeds data input of transparent capture latches
- "Fast" delay chain (t2)
 - Triggered by falling (trailing) edge of the transient
 - Feeds clock input of transparent capture latches
- > At each stage, the trailing edge catches up by (t2-t1) units of time
- After a number of stages equal to PW / (t1-t2), the edges cross

17-SEP-14

Vernier SET Measurement Technique (2)

- Detector was designed with :
 - Lt1 ≈ 780 ps (AO1 VersaTile)
 - L2 ≈ 640 ps (BUF VersaTile)
 - ➢ 36 stages
 - > \approx 140 ps delay resolution ; \approx 5 ns maximum transient detection
 - Placement all done by "hand" (TcL scripts)
- The detector is SEE robust
 - A valid event occurs only if both start and stop latches are triggered
 - The capture latches are normally open not immune to upsets
- Delays are calibrated prior to radiation testing
 - > Each delay chain can be configured as a ring-oscillator and the frequency is measured

SET Sensors (3 Topologies)

Simple Chain of Gates

Tree Topology

Multiple Parallel Chains

Full Device Under Test (DUT)

 In total 92 different detectors integrated into one A3P3000L
Configuration logic and interrupt logic (DMR/TMR) used to multiplex detectors and report events

SETs in Clocked Circuits

Combinatorial Network	PI / PO / VersaTiles
16-bit CLA Adder	33 / 17 / 136
32-bit priority encoder	32 / 6 / 76
State machine logic	25 / 12 / 63
4-bit, 8:1 MUX	35 /4 / 28
16-bit Hamming ECC Encoder	16 / 5 / 20
16-bit Hamming ECC Decoder	21 / 16 /60

- Objective is to measure SETs in clocked circuits (50 MHz)
- Study commonly used combo circuits (adders, state-machine...)
- Differentiate between SEUs and SETs
- SEU={001,010,100}; SET={110,101,011}
- Measures "effective" impact of SET (post temporal, logical masking)

Broad Beam HI Test Results (UCL)

Voltage and LET

- SETs are observed even at low LET (6.4 MeV * cm² / mg)
- SET sensitivity reduces with higher voltage
- At lower voltage (1.08V) increased t_{setup}, t_{hold} reduces detector sensitivity

 Pulse broadening[1,2] was studied using gate chains of different length
In BUF VersaTiles, positive (0->1) transients are broadened and negative (1->0) transients are reduced in width

[1] V. Ferlet-Cavrois, et. al, "New insights into SET Propagation in Chains of Inverters; Evidence for PIPB," TNS'07, vol. 54.
[2] V. Ferlet-Cavrois, et al., "Investigation of the PIPB effect on SET in SOI and bulk inverter chains," TNS'08, vol. 55.

Variation Between VersaTiles

Ne : 6.4 MeV cm²/mg Ar : 16 MeV cm²/mg Kr : 40 MeV cm²/mg

- Characterization of a VersaTile presented as Cross Section (CS) versus pulse width
- Measurement occurs at the output of detector chain (7x22 cells)
 - Measured pulse subject to broadening / narrowing
- Significant variation based on input state

Temperature Effect

Little sensitivity in cross section or pulse width versus temperature

Complex Circuits : Cross Section

Cross section has been normalized per-VersaTile (50 MHz operation)

Significant variation (nearly 10x) depending on circuit function

Complex Circuits : Number of Affected Bits

- > Number of output bits that are affected by a single event
- Even at low LET (6.4 Mev cm²/mg), multiple output bits can be affected
- At higher LETs multiple output upsets are frequent
- Implications for parity protection techniques

17-SEP-14

Micro Beam Test Setup (GSI)

GSI Helmholtzzentrum für Schwerionenforschung GmbH

GSI Heavy Ion Micro-Beam

- Located in Darmstadt (near Frankfurt)
- Individual ions launched at specific x-y positions
- Beam is scanned over a region
 - ≻ 16 µm x 16 µm
 - ➢ 48 µm x 48 µm
 - ➢ 144 µm x 144 µm
 - ➢ 432 µm x 432 µm

500 nm resolution

➢ Ions accelerated up to 11.4 MeV/µm

- Au 4.8MeV/µm 94 MeV (mg/cm²)
- Ti 4.8 MeV/um 19 MeV/(mg/cm²)

Opened A3P3000L

- User requests an ion (hit request)
- GSI responds saying ion detected (gsi hit)
- > 5..10 ions available in a 5ms burst every 200 ms
- Typically repeat rate around 15..50 ions / second

- 1. Write pattern into memory. (~1.3 usec).
- 2. Read back pattern from memory + check. (~1.3 usec).
- 3. Wait for ions. (Handshaking).
- 4. Read back pattern from memory. (~1.3 usec). -> Report errors (macro, addr, bit)
- 5. Read back pattern from memory. (~1.3 usec). -> Report errors (macro, addr, bit)

PLL Test Flow (On Chip Monitoring)

CLK UUT 5(62.5MHz

YC

Reference PLL In : 50 MHz Out : 50,62.5,250 MHz PLL Under Test In : 50 MHz Output : 5 x (62.5 MHz)

PLL Test Flow (Off Chip Monitoring)

- To gain better insight into what is occurring when the PLL "error detector" triggers
- External DSO samples 4 of 5 of the PLL outputs
- Record signal trace if on-chip circuit triggers a PLL error

Micro Beam Test Results

Imaging of BRAM (1)

Imaging of BRAM (2)

- Results from imaging with Au ions
- Each color represents a bit cell
- Note image from ion beam slightly rotated

Imaging of BRAM (3)

38um

48um

Coloured dots represent bit cells

White dots represent points with no response

Zoomed in scan on BRAM region – Au ions \succ Bit cells overlap – not possible to identify shape of bit cells

Imaging of BRAM (4)

BRAM – All zeroes

BRAM – All ones

- BRAM image produced using **Ti ions**
- Colours represent individual bit cells
- > Shape of bit cell can be discerned (e.g. vertical mirroring)
- Logic to physical mapping has been extracted

PLL Imaging (Au Ions)

Purple = 5 outputs glitch

Pink = 1..4 outputs glitch

Dark Blue = Loss of lock ONLY

Yellow = Loss of lock + output glitches

PLL Imaging (Ti Ions)

Purple = 5 outputs glitch Dark Blue = Loss of lock ONLY Pink = 1..4 outputs glitch

Yellow = Loss of lock + output glitches

- Many cases where clocks glitch but no loss of lock
- From external captures, appears clock disappears for a handful of clock cycles

Permanent Effects

- Devices were re-programmed with beam OFF
- During broad beam testing (UCL)
 - One device failed to re-program after 1.37 part/cm² of Xe ions (≈4.2Krad)
 - Others failed after longer exposure
- During micro-beam testing (GSI)
 - ➤ One device failed to re-program after ≈1000 Au ions
- Messages were "Verification 0 failed at rows 7843"
- Devices appeared to function correctly if verification disabled
- Subsequent to the testing, some of the devices damaged at UCL could be successfully programmed at being annealed at 100°C for four days
- More work required to understand this effect (not focus of current work)

Conclusions and Future Work

Conclusions

Characterization of SETs is complex

Dependent on : VersaTile configuration, input state, propagation

- Vernier detector good sensitivity and temporal precision
- SET characterization of complex circuits more exploitable

- HI micro-beam highly effective tool for investigating sensitive regions
- Selection of ion energy is important for resolution
- Setup of experiments and data logging is complex

Future and Ongoing Work

- Complete data analysis for GSI experiments
- Extend SET measurement circuits to characterize ASIC standard cells
- Continue investigation of destructive effects

Thank You!

Questions?

