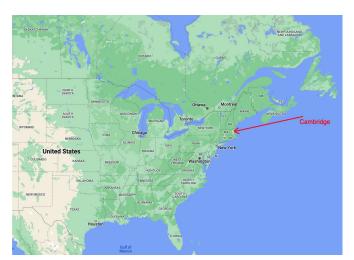

On the uncertainties of astrometric observations

Federica Spoto, Matthew Holman, Matthew Payne, Peter Veres,
Jorge Perez-Hernandez
Minor Planet Center
Center for Astrophysics, Harvard and Smithsonian

EU-ESA Workshop on Astrometric and Radar Observations of NEOs October 6, 2025



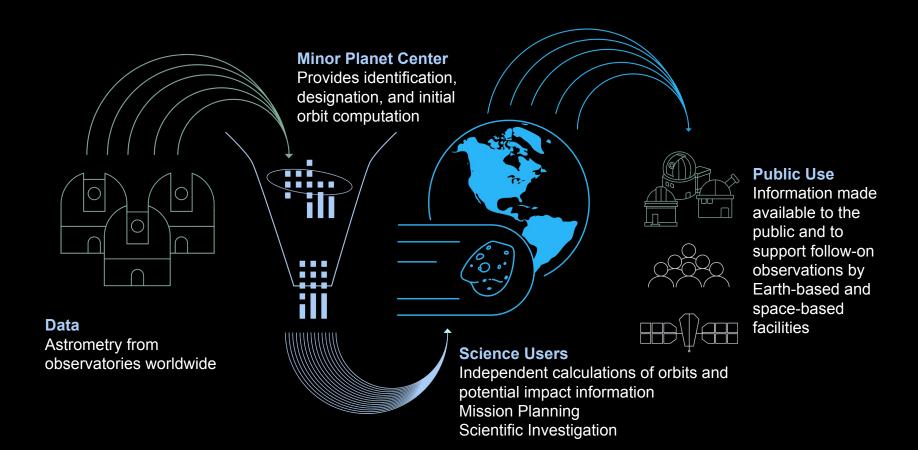
Credit: NASA
Planetary Defenders Documentary

The Minor Planet Center

The MPC is the single worldwide location for receipt and distribution of positional measurements of minor planets, comets and outer irregular natural satellites of the major planets.

The MPC is responsible for the identification, designation and orbit computation of all of these objects.

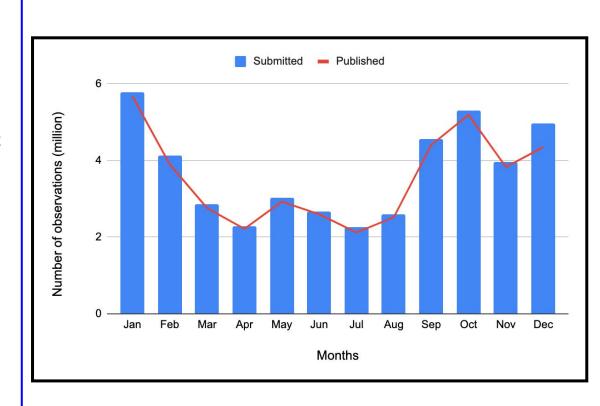
The MPC was set up in 1947 at the University of Cincinnati under the direction of Paul Hegert.



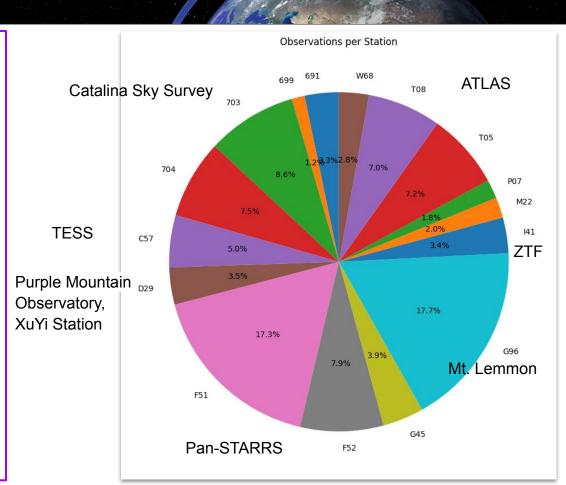
We are **physically located in Cambridge** (MA) as part of the Center for Astrophysics (Harvard & Smithsonian), **but we serve the small body community worldwide** under the auspices of the IAU (Division F).

The MPC has been in Cambridge since 1978.

MPC Data Flow



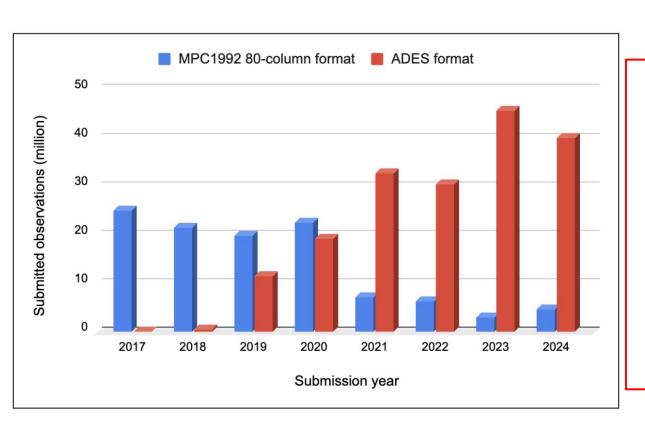
Data volume


- The MPC currently receives between 40 - 50 million observations per year
 - With an average of 125k observations per night
- The observations pattern is not smooth, it depends on lunar cycles, weather, etc.
- With Rubin, the MPC is expected to receive 2x the amount of observations
 - 100 110 million observations per year
 - o 300k observations per night
- Single large submissions, e.g.
 - Gaia observations of small bodies from DR4

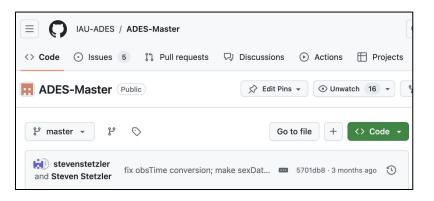
Catalog: observations

TAU The International Astronomical Union Minor Planet Center

- Observations catalog contains almost 500 million observations
 - 1.5 million are comet observations
- The majority of the observations are submitted from large surveys or large telescopes
 - Mostly funded in the United States by NASA
 - But also Chinese stations are now submitting large batches of observations
- The orbit catalog contains almost
 1.5 million objects
 - 39,000 objects are Near-Earth asteroids
 - 4,595 are comets



Data exchange standards


Legacy format: MPC-1992 80-column format

0003I	C2025	05	21.94461519	03	40.745-18	41	56.13	20.08cWE0020M01
0003I	C2025	05	22.37361119	03	19.698-18	41	58.91	20.49gUE0020I41
0003I	C2025	05	22.39681719	03	18.499-18	41	59.34	20.10rUE0020I41
0003I	C2025	05	27.37706018	58	53.951-18	42	35.00	20.29rUE0020I41
0003I	C2025	06	04.36164318	50	26.891-18	43	58.31	19.90rUE0020I41
0003I	C2025	06	08.34092618	45	32.947-18	44	39.84	UE0020I41
0003I	C2025	06	08.39967618	45	28.265-18	44	41.72	19.72gUE0020I41
0003I	C2025	06	10.34203718	42	54.201-18	44	58.54	19.31rUE0020I41
0003I	C2025	06	14.25203718	37	22.004-18	45	26.49	19.58gUE0020I41
0003I	C2025	06	18.35880818	31	01.100-18	45	35.06	18.65rUE0020I41
0003I	C2025	06	18.43649318	30	53.499-18	45	36.09	19.15gUE0020I41
0003I	C2025	06	21.23222218	26	14.460-18	45	24.35	20.21gUE0020I41

- The more recent ADES format was adopted by the IAU in August 2015.
- It was introduced with the goal of standardizing the exchange and storage of astrometric data (observations and uncertainties) and their associated data descriptions between observers and orbit computing centers.
- Since its stable (2017) version was released, ADES has become the format most commonly used for submissions

ADES

In Phase 1 we will add the new obsBlockLarge that can contain up to 500k optical-only observations. And there can only be a solo obsBlockLarge in a given ades element. So nothing besides the lone obsBlockLarge.

Once all of the high volume contributors have switched to this for submissions then we will implement limitations on the number and size of obsBlock s in a Phase 2.

I'll go ahead and implement Phase 1 in the draft PR #76. Maybe even this week...

(3)

ADES is the preferred submission format

And the preferred format for internal MPC processing

The GitHub repository containing the ADES code is **continuously updated** if fixes or improvement are needed:

- Co-maintained by JPL & MPC
- Available for public download
- Available for public discussion of issues and improvements

URL & QR-Code

https://github.com/IAU-ADES/ADES-Master

ADES

XML format

```
<obsData>
  <optical>
    <permID>1234567</permID>
    ovID>2018 AA1234
    <trkSub>a1b2c3d4</trkSub>
    <mode>CCD</mode>
    <stn>568a</stn>
    oq>31
    <obsTime>2016-08-29T12:32:34.12Z</obsTime>
    \langle ra \rangle 215.6560501 \langle ra \rangle
    <dec>-13.5478723</dec>
                                                   ellipses.)
    < rmsRA > 0.015 < / rmsRA >
    < rmsDec > 0.013 < / rmsDec >
                                                    ra
    <rmsCorr>-0.215</rmsCorr>
    <astCat>2MASS</astCat>
    <mag>21.91</mag>
    <rmsMag>0.25</rmsMag>
    <band>w</band>
    <photCat>PPMXL</photCat>
    <photAp>13.3</photAp>
    <logSNR>0.78</logSNR>
    <seeing>0.8</seeing>
    <exp>1200</exp>
    <notes>klmnp</notes>
    <remarks>High winds affected tracking</remarks>
  </optical>
</obsData>
```

Equivalent PSV format

```
permID |provID |trkSub |mode|stn |prog|obsTime |... | 1234567|2018 AA1234|a1b2c3d4| CCD|568a| 31|2016-08-29T12:32:34.12Z|... |

(The following lines are broken only for display in this document. In the actual PSV file, the lines continue beyond the ellipses.)

ra |dec |rmsRA|rmsDec|rmsCorr|astCat |mag |rmsMag|band|... | 215.6560501|-13.5478723|0.015|0.013 |-0.215 | 2MASS|21.91|0.25 | w|... | photCat |photAp|logSNR|seeing|exp |notes|remarks | PPMXL|13.3 |0.78 |0.8 |1200|klmnp|High winds affected tracking
```

Orbit fitting

TAU Minor Planet Center

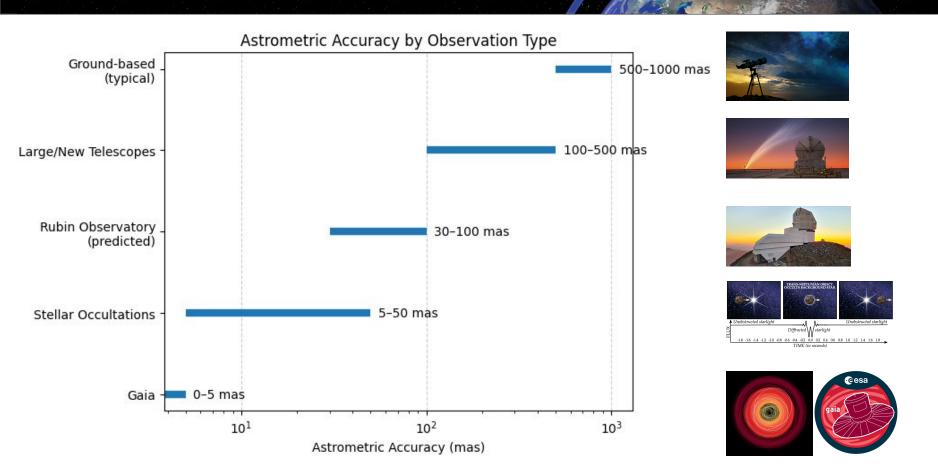
- Nonlinear weighted least squares fit
- 6 orbital parameters
- Up to 4 additional parameters for non-gravitational perturbations
- Masses can also be added
- Dynamical model includes all the planets (JPL DE
- ephemerides) + most massive asteroids in the belt
- General relativity included as well (EIH)
- Outlier rejection
- Observations with 9.21 are discarded where:

$$\chi_i^2 = \xi_i \; \gamma_{\xi_i}^{-1} \; \xi_i$$

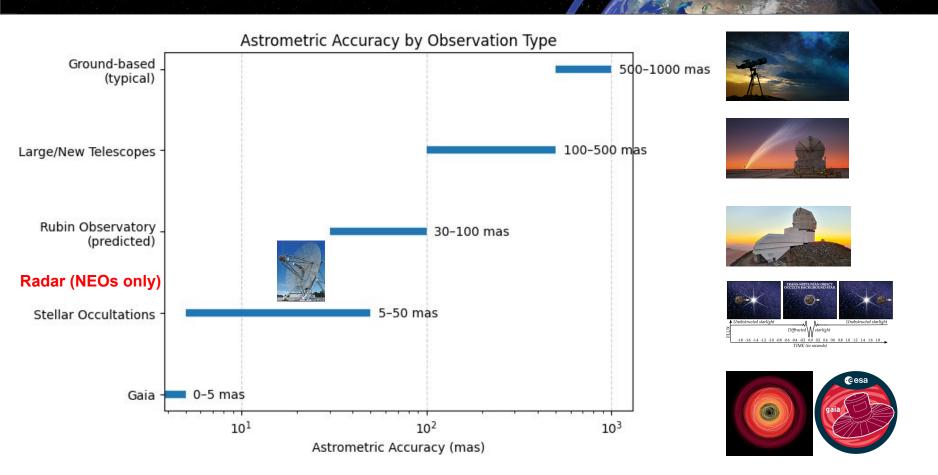
Target function

 $Q(\xi) = \frac{1}{2m} \xi^T \mathbf{W} \xi$

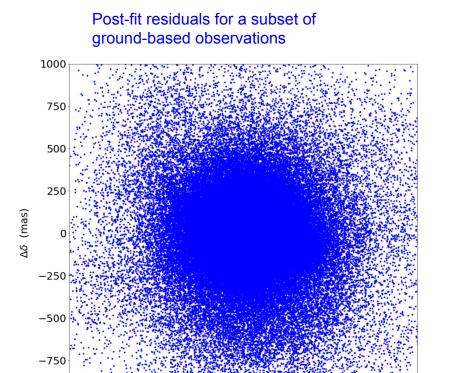
- ξ: residuals
- m: number of observations
- $W = \Gamma^{-1}$: weight matrix

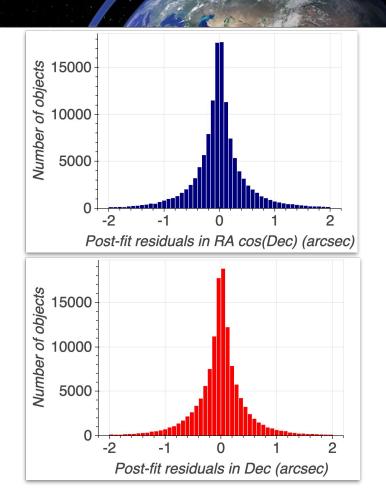

$$\Gamma = \begin{bmatrix} \sigma_{\alpha_1}^2 & \text{cov}(\alpha_1, \delta_1) & 0 & \cdots & 0 \\ \text{cov}(\alpha_1, \delta_1) & \sigma_{\delta_1}^2 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & & \\ 0 & 0 & \cdots & \sigma_{\alpha_m}^2 & \text{cov}(\alpha_m, \delta_m) \\ 0 & 0 & \cdots & \text{cov}(\alpha_m, \delta_m) & \sigma_{\delta_m}^2 \end{bmatrix}$$

$$C = B^T W B; D = -B^T W \xi \left(B = \frac{\partial \xi}{\partial x} \right)$$

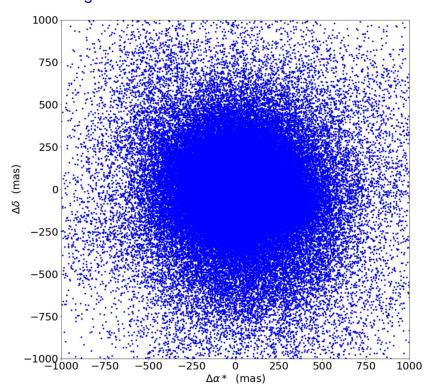

Differential correction

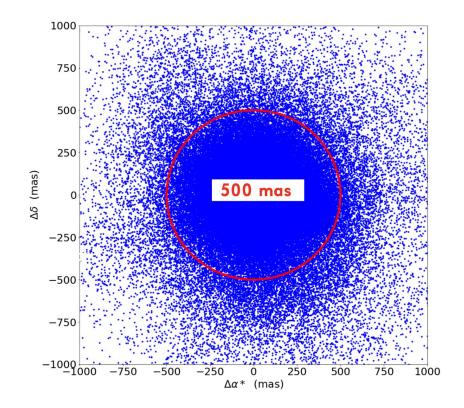
$$Correction = C^{-1}D$$

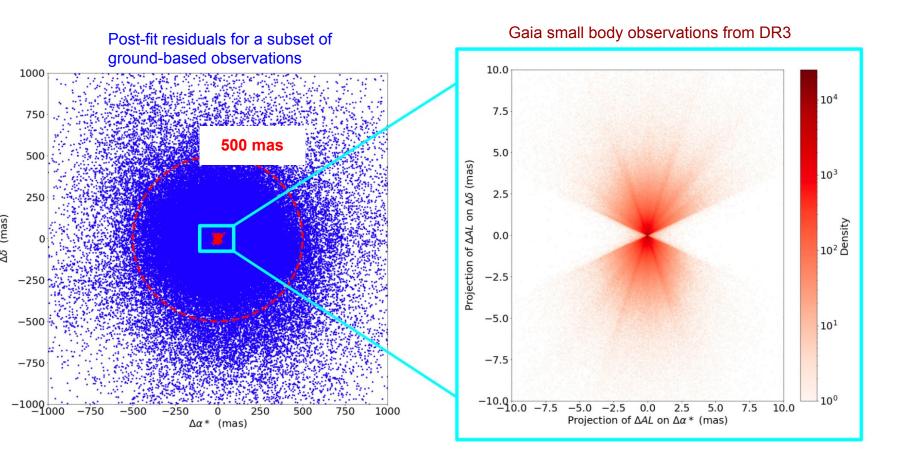




Minor Planet Center



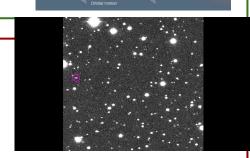

(mas)


Post-fit residuals for a subset of ground-based observations

Asteroid population

What does influence the accuracy? Minor Planet Center

The epoch of the observations


Older observations have lower accuracies, but they are extremely useful to detect small perturbation, such as the Yarkovsky effect

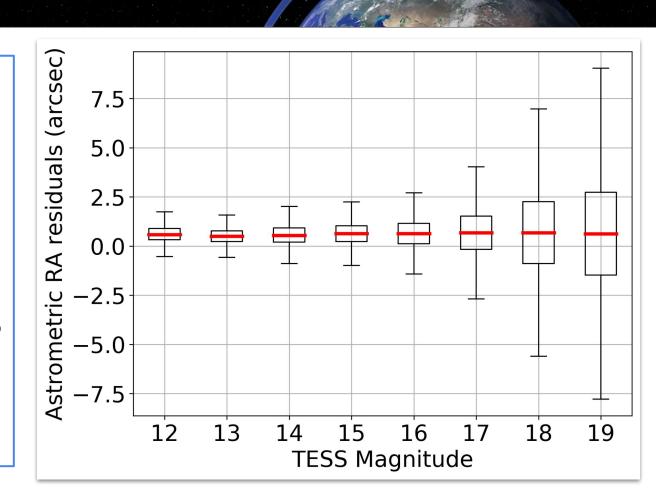
The stellar catalog

The catalog used to measure the positions of the object

Other factors

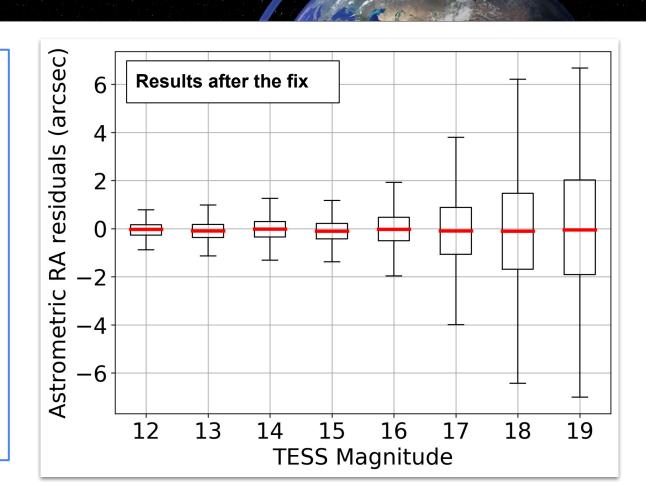
- The rate of motion of the object (fast movers are more difficult)
- The object type
 - Comet observations are more difficult to measure
 - Faint and/or fast Near-Earth Asteroids
- The observed magnitude of the object
- The observer

What does influence the accuracy? Minor Planet Center


- The epoch of the observations
 - Older observations have lower accuracies, but they are extremely useful to detect small perturbation, such as the Yarkovsky effect
- The stellar catalog
 - The catalog used to measure the positions of the object
- Other factors
 - The rate of motion of the object (fast movers are more difficult)
 - The object type
 - Comet observations are more difficult to measure
 - Faint and/or fast Near-Earth Asteroids
 - The observed magnitude of the object
 - The observer

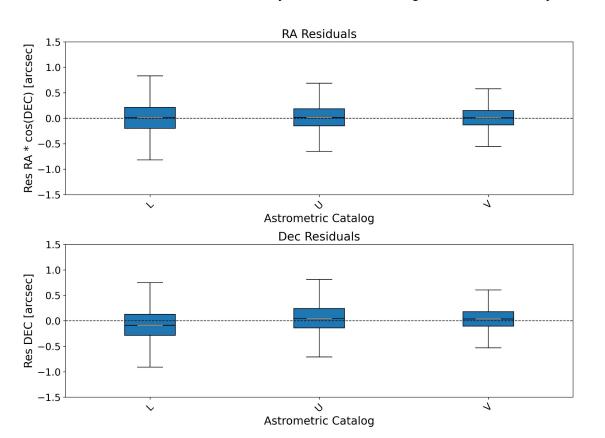
Collective effort from multiple centers (e.g. MPC, JPL) to collect all the post-fit residuals for more than 300M observations and analyze their dependendencies on the different factors

Minor Planet Center


- Transiting Exoplanet Survey Satellite (TESS) is a space telescope for NASA's Explorer program, designed to search for exoplanets using the transit method in an area 400 times larger than that covered by the Kepler mission.
- TESS serendipitously observers small bodies (low accuracy, but very interesting for light curves)
- The TESS team submitted more than 30M observations to the MPC
- A preliminary analysis of the post-fit residuals shows a clear bias in right ascension
- The bias was due to a bug in time conversion

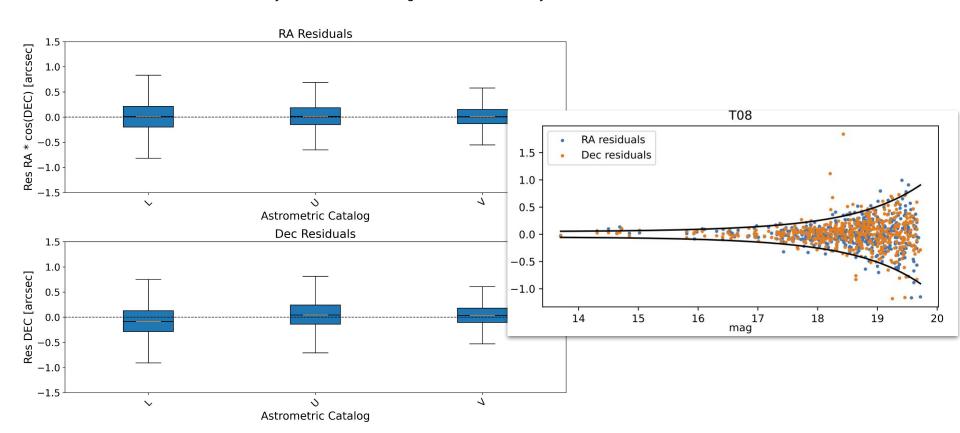
Timing issues

Minor Planet Center


- Transiting Exoplanet Survey
 Satellite (TESS) is a space
 telescope for NASA's Explorer
 program, designed to search
 for exoplanets using the transit
 method in an area 400 times
 larger than that covered by the
 Kepler mission.
- TESS serendipitously observers small bodies (low accuracy, but very interesting for light curves)
- The TESS team submitted more than 30M observations to the MPC
- A preliminary analysis of the post-fit residuals shows a clear bias in right ascension
- The bias was due to a bug in time conversion

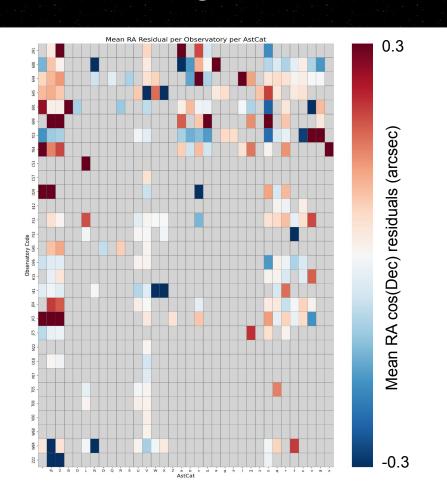
Stellar catalogs

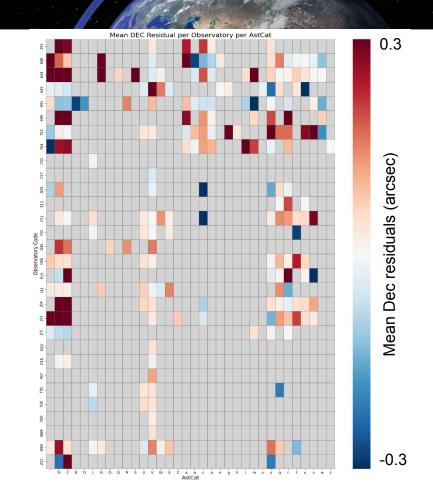
Box Plots of RA and Dec Residuals by Astrometric Catalog for T08 observatory



- Astrometric post-fit residuals for one of the ATLAS telescopes
- L = 2MASS
- U = Gaia DR1
- V = Gaia DR2

Stellar catalogs




Box Plots of RA and Dec Residuals by Astrometric Catalog for T08 observatory

Stellar catalogs

Minor Planet Center

MPC Orb JSON

- At the IAU General Assembly in Rome in 2027, the MPC would like to present the adoption of a new standard for the exchange of the orbits
- The goal is the same: standardizing the exchange and storage of orbit data and their associated data descriptions between observers and orbit computing centers.

```
"version":"0.5",
"title": "Best Fit Orbit Data for Single Solar System Object",
"description": "Standardized MPC JSON format for the exchange of orbit-fit data. Designed to communicate the best-fit orbit for a single minor planet or
"type": "object",
"required": [
    "CAR".
    "COM",
    "designation_data",
    "orbit_fit_statistics",
    "non grav booleans",
    "magnitude_data",
    "epoch data",
    "moid_data",
    "categorization",
    "software_data",
    "system data"
```

MPC Orb JSON

"system data"

- At the IAU General Assembly in Rome in 2027, the MPC would like to present the adoption of a new standard for the exchange of the orbits
- The goal is the same: standardizing the exchange and storage of orbit data and their associated data descriptions between observers and orbit computing centers.

```
"version":"0.5",
"title": "Best Fit Orbit Data for Single Solar System Object",
"description": "Standardized MPC JSON format for the exchange of orbit-fit data. Designed to communicate the best-fit orbit for a single minor planet or
"type": "object",
"required": [
    "CAR".
    "COM",
    "designation_data",
    "orbit fit statistics",
                                                                        Thank you for your attention!
    "non grav booleans",
    "magnitude_data",
    "epoch data",
    "moid_data",
    "categorization",
    "software_data",
```