aicas Technology

Multicore Systemes:
Impact of the Programming Language

iLeapan

T

COOPERATION

Dr. Fridfjof Siebert, CTO
aicas GmbH
ESA ESTEC ADCSS, 27™ October 2011

Y s
ek

lems

» fypical code sequence (C/C++ or Java)

int counter;

void increment ()

{

counter++;

}

Multi-Core Systems: Impact of the Programming Language

» fypical code sequence (C/C++ or Java)

int counter;

void increment (

{ rl = counter;
counter++; r2 =rl + 1;
} counter = r2;

Multi-Core Systems: Impact of the Programming Language

"
I 8

cal Problems

Typi

O

n

» fypical code sequence (C/C++ or Java)

int counter;

void increment (Thread 1 Thread 2

{ rl = counter; rl = counter;
counter++; r2 =rl + 1; r2 =rl + 1;

} counter = r2; counter = r2;

Multi-Core Systems: Impact of the Programming Language

--' T o L1 j‘ b “ “
H-)
I 4

cal Problems

Typi

O

n

» fypical code sequence (C/C++ or Java)

int counter;

void increment (Thread 1 Thread 2

{ rl = counter; rl = counter;
counter++; r2 =rl + 1; r2 =rl + 1;

} counter = r2; counter = r2;

One increment() can get lost!

Multi-Core Systems: Impact of the Programming Language

Typial robems

= - (R f’.uﬁ{i.._‘ i -“-' - =
e }‘L L ey
1 {
' 4

N a Multicore

O

» fypical code sequence (C/C++ or Java)

int counter;

void increment ()

{

counter++;

}

Multi-Core Systems: Impact of the Programming Language

Y s
ek

» fypical code sequence (C/C++ or Java)

int counter;

void increment ()

{

counter++;

}
* this code misses synchronization

» but on asingle core, it practically always works!
* on d multicore, chances for failure explode!

Multi-Core Systems: Impact of the Programming Language

» solution: synchronize

int counter;

synchronized void increment ()
{

counter++;

}
* eqsy, problem solved.
» Or? See later,

Multi-Core Systems: Impact of the Programming Language

» What is the result of

int a, b;

Thread Thread 2
b = a; a = -1;
?

Multi-Core Systems: Impact of the Programming Language

» What is the result of

int a, b;

Thread Thread 2
b = a; a = -1;
?

@ b == 0
b == -1

Multi-Core Systems: Impact of the Programming Language

» What is the result of

long a, b;

Thread Thread 2
b = a; a = -1;
?

Multi-Core Systems: Impact of the Programming Language

» What is the result of

long a, b;

oooo -

Thread Thread 2
a; a = -1;
0
-1
—~4294967296
4294967295

Multi-Core Systems: Impact of the Programming Language

chhe Structure

» CPUs use local caches for performance

Main Memory

A
\ \ 4
L2 Cache L2 Cache
A A
Y y v Y

LT Cache LT Cache L1 Cache L1 Cache

¢ : : :

CPUO CPUT CPU2 CPU3

Multi-Core Systems: Impact of the Programming Language

chhe Structure

Main Memory

A
] Y

L2 Cache L2 Cache

i i
¥ 7 ¥ ¥

LT Cache L1 Cache L1 Cache L1 Cache

: :

CPUO CPU1 CPU2 CPU3

Modifications do not become visible immediately

Modifications may e re-ordered
» Reads may refer to outdated (cached) data
» Reads may be re-ordered

Multi-Core Systems: Impact of the Programming Language

ey ay
o

lems

» polling update

long counter;

[..]
do

{
doSomething () ;

}

while (counter <) ;
*» counter IS incremented by parallel thread

» on a Mulficore, changes to counter may noft
become visible!

Multi-Core Systems: Impact of the Programming Language

ey ay
o

lems

» polling update

long counter;

[..]

do
{
d thing();
}
whi (ter <) ;

*» counter IS incremented by parallel thread

» on a Mulficore, changes to counter may noft
become visible!

Multi-Core Systems: Impact of the Programming Language

» polling update

volatile long counter;

[..]
do

{
doSomething () ;

}

while (counter <) ;

*» works for Java

Multi-Core Systems: Impact of the Programming Language

» polling update

volatile long counter;
[..]
do

{
doSomething () ;

}

while (counter <

) ;

» works for Java
» does not work for ClI

Multi-Core Systems: Impact of the Programming Language

(=

memory model!

» Memory model specifies what optfimisations are
permitted by the compiler or underlying hardware

o C/C++ programs have undefined semantics in
case of race condiftions

» Java defines a strict memory model

Multi-Core Systems: Impact of the Programming Language

* ordering operations are
* synchronized block

* accessing a volatile variable

» The presence of an ordering operation
determines the visible stafe in shared memory

Multi-Core Systems: Impact of the Programming Language

» all reads are completed before
* entering synchronized block, or

* reading a volatile variable

1 read fence

» all writes are completed before

* exiting a synchronized block, or
* writing a volatile var

1y write fence

Multi-Core Systems: Impact of the Programming Language

qua S memory model Data Races

» data races are not forbidden in Java

* YOU can use shared memory variables
* your code has to tolerate optimizations

* examples

* collecting debugging / profiling informnation

+ useful if occasional errors due to data races are
tolerable

Multi-Core Systems: Impact of the Programming Language

J b
Al
- 4 - i i
BN

Examp ue of Jav

» Shared memory communication

Ptr P;
boolean p_valid;

Thread 1

p = new Ptr(),;
p_valid = true;

Multi-Core Systems: Impact of the Programming Language

» Shared memory communication

Ptr P;
boolean p_valid;

Thread 1 Thread 2

p = new Ptr(),;
p_valid = true;

Multi-Core Systems: Impact of the Programming Language

» Shared memory communication

Ptr P,

boolean p_valid;

Thread 1 Thread 2

p = new Ptr(),; if (p_wvalid)
p_valid = true; p.call();

Multi-Core Systems: Impact of the Programming Language

» Shared memory communication

Thread 1 Thread 2
p = new Ptr(); if (p_wvalid)
p_valid = true; p.call();

Multi-Core Systems: Impact of the Programming Language

Example use of Java's memory model

» Shared memory communication

Thread 1 Thread 2

p = new Ptr(); if (p_wvalid)
p_valid = true; p.call();
What may happen:

Multi-Core Systems: Impact of the Programming Language

Example use of Java S memory model

» Shared memory communication
Thread 1 Thread 2

p = new Ptr(); if (p_wvalid)
p_valid = true; p.call();

What may happen:
tl = new Ptr();

t2 = true;

p_valid = t2;

p = tl;

Multi-Core Systems: Impact of the Programming Language

Example use of Java S memory model

» Shared memory communication
Thread 1 Thread 2

p = new Ptr(); if (p_wvalid)
p_valid = true; p.call();

What may happen:
tl = new Ptr();

t2 = true;

p_valid = t2;

P = tl;

Writes reordered!

Multi-Core Systems: Impact of the Programming Language

» Shared Mory communication

Thread 2
Ptr(); if (p_wvalid)
true; p.call();

ay happen:
tl = new Ptr();
t2 = true;
p_valid = t2;
p = tl;

Writes reordered!

Multi-Core Systems: Impact of the Programming Language

» Shared Mory communication

Thread 2
Ptr(); if (p_wvalid)
true; p.call();
ay happen:
tl = new Ptr(); t3 = p;
t2 = true; if (p_wvalid)
p_valid = t2; t3.call();
p = tl;

Writes reordered!

Reads reordered!

Multi-Core Systems: Impact of the Programming Language

T - g
] A 2
' e

le use of Jav

| Examp

» Shared Mory communication

Thegad

Ptr(); if 1lid)
true; 1();

ay happen:
tl = new Ptr(); t3 = p;
t2 = true; if (p_wvalid)
p_valid = t2; t3.call();
p = tl;
Writes reordered! Reads reordered!

Multi-Core Systems: Impact of the Programming Language

» Shared memory communication

» volatile Ptr P;
volatile boolean p_wvalid,;

Thread 1 Thread 2

p = new Ptr(),; if (p_wvalid)
p_valid = true; p.call();
in Java

Multi-Core Systems: Impact of the Programming Language

» Shared memory communication

volatile Ptr P,
volatile boolean p_wvalid,;
Thread 1 Thread 2

p = new Ptr(),;
p_valid = true;

if (p_wvalid)
p.call();

in Java

Multi-Core Systems: Impact of the Programming Language

» Shared memory communication

volatile Ptr P,
volatile boolean p_wvalid,;
Thread 1 Thread 2

p = new Ptr(),;
p_valid = true;

if (p_wvalid)
p.call();

in Java

Multi-Core Systems: Impact of the Programming Language

» Shared memory communication

volatile Obj *p;

volatile boolean p_ wvalid;

Thread 1 Thread 2

p = malloc(..); if (p_wvalid)
p_valid = TRUE, p—>f = ..,
in C?

Multi-Core Systems: Impact of the Programming Language

» Shared memory communication

volatile Obj *p;

volatile boolean p_ wvalid;

Thread 1 Thread 2

p = malloc(..); if (p_wvalid)
p_valid = TRUE, p—>f = ..,
in C?

CPU may still reorder memory accesses!

Multi-Core Systems: Impact of the Programming Language

» Shared memory communication

volatile Obj *p;

volatile boolean p_ wvalid;

Thread 1 Thread 2

P c(..); if (p_wvalid)
P_ TRUE; p—>f = ..,

CPU may still reorder memory accesses!

Multi-Core Systems: Impact of the Programming Language

» Shared memory communication

volatile Obj *p;
volatile boolean p_ wvalid;
Thread 1 Thread 2

CPU may still reorder memory accesses!

Multi-Core Systems: Impact of the Programming Language

» Shared memory communication

volatile Obj *p;

volatile boolean p_ wvalid;

Thread 1 Thread 2

p = malloc(..); if (p_wvalid)
p_valid = TRUE, p—>f = ..,

How fo fix it? Add memory fences!

Multi-Core Systems: Impact of the Programming Language

» Shared memory communication

volatile Obj *p;

volatile boolean p_ wvalid;

Thread 1 Thread 2

p = malloc(..); if (p_wvalid)

asm volatile (p—>f = ..,
"sfence":::"memory");

p_valid = TRUE;

How fo fix it? Add memory fences!

Multi-Core Systems: Impact of the Programming Language

» Shared memory communication

volatile Obj *P;
volatile boolean p_ wvalid;
Thread 1 Thread 2
p = malloc(..); if (p_wvalid)
asm volatile({
"sfence":::"memory"); asm volatile(
p_valid = TRUE; "lfence":::"memory");

p—>f = ..,
}
How to fix it? Add memory fencesl!

Multi-Core Systems: Impact of the Programming Language

» Shared memory communication

volatile Obj *p;

volatile boolean p_ wvalid;

Thread 1 Thread 2

p = malloc(..); if (p_wvalid)

asm volatile({
"sfence":::"memory") ; asm volatile(

p_valid = TRUE; "lfence":::"memory") 4
p—>f = ..,
}

How fo fix it? Aad memory fences!

Multi-Core Systems: Impact of the Programming Language

* Imagine this code

int x = 0, n = 0;
Thread 1 Thread 2
for (i=0;i<n; i++) x = 42;

x += £(1); print (x) ;

Multi-Core Systems: Impact of the Programming Language

' Out-of-thin-Alr

* Imagine this code

int x = 0, n = 0;
Thread 1 Thread 2
for (i=0;i<n; i++) x = 42;

x += £(1); print (x) ;

o can only print 42 in Java

Multi-Core Systems: Impact of the Programming Language

Out ' thln A|r Introduchon ofertes

* loop optimization in C/C++

int x = 0, n = 0;

Thread 1 Thread 2

tmp = x;

for (i=0;i<n; i++) x = 42;
tmp += £(1);

X = tmp;

print (x);

Multi-Core Systems: Impact of the Programming Language

* loop optimization in C/C++

int x = 0, n = 0;

Thread 1 Thread 2

tmp = x;

for (i=0;i<n; i++) x = 42;
tmp += £(1);

X = tmp;

print (x);
o can print 0 In C/C++

Multi-Core Systems: Impact of the Programming Language

' Out-of-thin-

* Imagine this code
int x =0, vy = 0;

Thread 1 Thread 2
rl = x; r2 = vy;
y = rl; X = r2,;

Multi-Core Systems: Impact of the Programming Language

* Imagine this code

int x = 0, y = 0;

Thread 1 Thread 2
rl = x; r2 = vy;
y = rl; X = r2;
+ Expected result
X == O; y == ;

+ Only possible result in Java

Multi-Core Systems: Impact of the Programming Language

| Out of - thlnAlr Ophmlzahon |nC/C++

* Imagine this code
int x =0, vy = 0;

Thread 1 Thread 2
y = 42; r2 =y,
rl = x; X = r2;
if (rl '= 42)

y = rl;

» Possible in new C++ MM. Results in

Multi-Core Systems: Impact of the Programming Language

» example: single-core app, 3 threads

» all Threads synchronize frequently on the same
lock

Multi-Core Systems: Impact of the Programming Language

» example: single-core app, 3 threads

» all Threads synchronize frequently on the same
lock

while (true)

{

synchronized (lock)

{

counter++;

}
doSomething () ;

}

Multi-Core Systems: Impact of the Programming Language

» example: single-core app, 3 threads

High
- Normail
Background
|I|I|’I|IIII|II
880us 920us 960us Ous 40us 80us 120us 160us 200us 240us 280us 320us 360us
741ms 741 ms f41ms 742ms 742ms 742ms 742ms 742ms 742ms 742ms 742ms 42ms f42ms

Multi-Core Systems: Impact of the Programming Language

Performance on a Multicore

» example: single-core app, 3 threads

High
- Normail
Background
|I|I|’I|IIII|II
880us 920us 960us Ous 40us 80us 120us 160us 200us 240us 280us 320us 360us
741ms 741 ms f41ms 742ms 742ms 742ms 742ms 742ms 742ms 742ms 742ms 42ms f42ms
|
- mMult
onNn d MulTticore
- = _High = = = = = = = = = = = HEh = =
= = = = = = = = = Normal_- = = == = = = = = = = _-Norm_aT = = = = =
= = = = == = = = Béckground Background = = = =
|I|I|’I|IIII|II
ge0us 920us 960us Ous 40us a0us 120us 160us 200us 240us 280us 320us 360us
741ms 741 ms 741 ms 742ms 742ms 742ms 742ms 742ms 742ms 742ms 742ms 742ms 742ms

Multi-Core Systems: Impact of the Programming Language

» frequent synchronization can kill the performance

» typical non-RTOS will use heuristics to improve
average performance

* spin-lock for a short time
* block after that

Multi-Core Systems: Impact of the Programming Language

» can we avoid monitors?

* can we use lock-free algorithms”?

Multi-Core Systems: Impact of the Programming Language

* typical code sequence

do
{

X = counter,
result = CAS (counter, x,x+1);

}

while (result != x);

Multi-Core Systems: Impact of the Programming Language

III.-—.__‘{ Al i ; " i

A - = M
‘ ~ } s AR

E=E , 7 ! r

Cmre-And-S

* typical code sequence

do
{

X = counter,
result = CAS (counter, x,x+1);

}

while (result != x);

» whatis the WCET? w?

Multi-Core Systems: Impact of the Programming Language

» use of libraries helps

AtomicInteger counter
void increment ()

{

new AtomicInteger();

(void) counter.incrementAndGet () ;

}
» Code is easier and safer

» Hand-made lock-free algorithms are not for every-
day development

Multi-Core Systems: Impact of the Programming Language

» Code that runs well on single CPU may fail on @
multicore

» Clear semantics of concurrent code is required for
safe applications

Performmance of locks may be prohibifive
» Lock-free code is very hard to get right

A reliable memory model and good concurrent
libbraries are basis for multicore development.

Multi-Core Systems: Impact of the Programming Language

Multi-Core Systems: Impact of the Programming Language

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21
	Folie 22
	Folie 23
	Folie 24
	Folie 25
	Folie 26
	Folie 27
	Folie 28
	Folie 29
	Folie 30
	Folie 31
	Folie 32
	Folie 33
	Folie 34
	Folie 35
	Folie 36
	Folie 37
	Folie 38
	Folie 39
	Folie 40
	Folie 41
	Folie 42
	Folie 43
	Folie 44
	Folie 45
	Folie 46
	Folie 47
	Folie 48
	Folie 49
	Folie 50
	Folie 51
	Folie 52
	Folie 53
	Folie 54
	Folie 55
	Folie 56
	Folie 57
	Folie 58
	Folie 59
	Folie 60
	Folie 61

